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Talk based on

Collaboration with Giuseppe De Nittis

o The Perturbed Maxwell Operator as Pseudodifferential Operator
Documenta Mathematica 19, 2014

o Effective Light Dynamics in Perturbed Photonic Crystals
to appear in Comm. Math. Phys.

@ On the Role of Symmetries in the Theory of Photonic Crystals
in preparation

o Semiclassical dynamics in Photonic Crystals
in preparation
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Assumption

Material weights w = (e, )
@ e, 1€ L®(R3, Matg(3))
Qe =cp=p
@D 0<c<egu<C<oo
@ ¢, pperiodicwrtT = 73
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| #J Assumption
' ﬂij‘lj ! Material weights w = (g, )
r @ 4 € 1% (R?, Matc(3))
Qe =cp=p
@D 0<c<egu<C<oo
@ ¢, pperiodicwrtT = 73
@ Ime,Imp =20
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Maxwell equations as Schrédinger equation

@ Field energy

E(E,H) = ;/RB dx (E(x) - £(x) E(x) + H(x) - u(x) H(x))
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@ Field energy
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Maxwell equations as Schrédinger equation
@ Field energy

E(E,H) = ;/RB dx (E(x) - £(x) E(x) + H(x) - u(x) H(x))

@ Dynamical equations

e E(t) = —Vx x H(t), E(0) =E
pOH(t) = +V, x E(t), H(0)=H
@ No sources
Vx-cE(t) =0
V- pH(t) =0
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Maxwell equations as Schrédinger equation
@ Field energy (E,H) € L%(R3 C%) with norm

| (E, H)Hfa = /RS dx (E(x) - (x) E(x) + H(x) - u(x) H(x))
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Maxwell equations as Schrédinger equation

@ Field energy (E,H) € L%(R3 C%) with norm

2

I H); = 2€(E H)

@ Dynamical equations ~~ »Schrédinger equation«

id% <:(<?>> - (—w (O—ivx)X e (5 ivx}x) <:(<?>>

=M
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Maxwell equations as Schrédinger equation
@ Field energy (E,H) € L2(R3, C®) with norm
| (E, H)Hfa = /RS dx (E(x) - £(x) E(x) + H(x) - 1(x) H(x))
@ Dynamical equations ~ »Schréodinger equation«

T

=M

@ No sources

= {(E,H) € 12(R3,CY) | Vx-sE:OAVX-MH:O}
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The frequency band picture

S5}
zZ _
_/B dk M(k)

B @dk 0 +e7 L (—iVy + k)X
~JB —uH (=iVy + k)% 0

=| |2MmKk) c *(B) ® L3,(T?,CP)
keB
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The frequency band picture

S
M%MZ:/ dk M(k)
B

D (M(k)) = H'(T?,C®) N J(k) & G(k) C L3 (T?,C°)
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The frequency band picture

S
M%MZ:/ dk M(k)
B

D (M(k)) = H'(T?,C®) N J(k) & G(k) C L3 (T?,C°)

M(k)|G(k) = 0 = focus on M(k) |J(k)

conclusion
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The frequency band picture

Physical bands

M(k)ipn (k) = wn (k) on(k)

o Frequency band functions k — wp (k)
o Bloch functions k — ¢p(k)
o both € C, analytic away from band crossings

conclusion
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The frequency band picture
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Complex conjugation induces a symmetry

Complex conjugation

C: L12(R3,C% — 12 (R?,CP),
(CO)(x) = U(x)

conclusion
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Complex conjugation induces a symmetry

Complex conjugation

C: L2 (R3,CO) — 12(R3,CY),
(CT)(x) = ¥(x)

C%: 12(B) ® L2(T3,C%) — [2(B) ® L2(T3,CH),
(CZp) (k) = Cp(—k) = (k)
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Complex conjugation induces a symmetry

Particle-hole-type symmetry

CeC=c¢

C,uCzu} = CMC=-M

~» C not a time-reversal symmetry
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Complex conjugation induces a symmetry

Particle-hole-type symmetry

CeC=¢

cuc:u} = CM(k)C = —M(—k)
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Complex conjugation induces a symmetry

Symmetrically related bands

M(K)pn (k) = wn (k) on(k)
<~

M(k) pn(—K) = —wn(—k) pn(—K)
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Complex conjugation induces a symmetry

Symmetrically related bands

M(k)pn(k) = wn(k) ©n(k)
<~

M(k) (CZn) (k) = —wn(—k) (CZn) (k)
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Complex conjugation induces a symmetry
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Physical states & their geometry

Definition (Physical states from a narrow range of frequencies)

®
Iy = / dk 1,6 (M(K)) so that
B
@ orel(k) = orel(—k) = Uper{wn(k)} isolated family of bands
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Physical states & their geometry

Definition (Physical states from a narrow range of frequencies)

@
Iy = / dk 1,6 (M(K)) so that
B

@ orel(k) = orel(—k) = Uper{wn(k)} isolated family of bands
@ source free: ranlly C ZJ
@ real: CZ I, C* =11,
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Physical states & their geometry

Definition (Physical states from a narrow range of frequencies)

@
Iy = / dk 1,6 (M(K)) so that
B

@ orei(k) = orel(—k) = Upez{wn(k) } isolated family of bands
@ source free: ranlly C ZJ
@ real: CZ 11, C* =11,
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Physical states & their geometry

Corollary (De Nittis-L. 2013)
Physical states cannot be supported by a single band.
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Physical states & their geometry

Corollary (De Nittis-L. 2013)
Physical states cannot be supported by a single band.

Proof.

(¢n + CZ¢n),
i (on — CZon).

1re = Re Z(Pn =

Yim = ImZQPn =

‘H N[ —

5]

linear combination of Bloch functions to w, (k) and —w,(—k). O
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Physical states & their geometry

Corollary (De Nittis-L. 2013)
] (‘¢Re,lm><¢Re,lm |) = Oeven thOUgh 1 (“Pn><§0n‘) 7é 0
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Physical states & their geometry

Corollary (De Nittis-L. 2013)
] (‘¢Re,lm><¢Re,lm |) = Oeven thoth 1 (“Pn><§0n‘) 7é 0

De Nittis & Gomi (2014) = No topological effects when w = w
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Physical states & their geometry

Corollary (De Nittis-L. 2013)
] (‘¢Re,lm><¢Re,lm |) = Oeven thoth 1 (“Pn><§0n‘) 7é 0

De Nittis & Gomi (2014) = No topological effects when w = w
~» more on that in talk by De Nittis (Friday 14:00)
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perturbed effective dynamics

Perturbed photonic crystals

conclusion
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x [lattice constants]
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Perturbed photonic crystals

HRanastte———

Perturbation of material constants

\ = [lattice spacing]

[length scale of modulation] <1

e(x) ~ ex(x) == T2 () e(x), p(X) ~ (%) = 72 () pu(x)
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Perturbed photonic crystals

Haneattes———

Assumption (Slow modulation)
= Cgo(R?’), Tey Ty > € >0



unperturbed

perturbed

effective dynamics

Adiabatically perturbed Maxwell operator

My=S7*M

_ <T§ (O)\x) 0

a0w) (icton,

+e71(x) (=iVy)™
—pH(x) (—=iVy)* 0
slow modulation & periodic Maxwell operator

conclusion
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existence of physical states
in the presence of perturbations
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Existence of physical states

Definition (Physical states: unperturbed)

@
Iy = / dk 1,6 (M(K)) so that
B

@ orel(k) = orel(—k) = Uper{wn(k)} isolated family of bands
@ source free: ranlly C ZJ
@ real: CZ I, C* =11,

conclusion



unperturbed perturbed effective dynamics ray optics conclusion

Existence of physical states

Definition (Physical states: perturbed)

3}
I, = / dk 1,0 (M(K)) + O()) so that
B

@ ovei(k) = orel(—k) = Upez{wn(k) } isolated family of bands
@ source free: “ranIly C ZJ," upto O(A>)
@ real: C 11, CZ =TI, + O(A™®)
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Existence of physical states

Definition (Physical states: perturbed)

IT), _/ dk 15,6 (M(K)) + O()) so that

@ ovei(k) = orel(—k) = Upez{wn(k) } isolated family of bands
@ source free: “ran1l, C ZJ," up to O(\>°)
@ real: C 11, CZ =TI, + O(A™®)
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Existence of physical states

Theorem (De Nittis-L. 2013)

Suppose the bands oei(k) = orei(—k) areisolated and 0 & o¢(0).
Then there exist orthogonal projections

I =114 \ +II_ y + O(X*)
so that
My, 111 5] = O(X)

whose range supports physical states.
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Goal

Approximate e M for physical states from a narrow range of
frequencies up to O(\").
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Goal

Approximate e M for physical states from a narrow range of
frequencies up to O(\").

Reduction in complexity: only few bands contribute to dynamics
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Effective light dynamics

Theorem (De Nittis-L. 2013)

Suppose the bands oei(k) = orei(—k) are isolated and 0 & o¢(0).
Then there exist a unitary V and an effective Maxwell operator

Mege = V5 ' Opy (Mesr) Vi
which approximates the full light dynamics,

e—ith ]._.[)\ Rez — ReZ e—itMeff H}\ ReZ L (9()\00)7

A Z _f
e ItMX 1T, ImZ = Im % e~ tMeft Iy Im Z T O()\OO),

and leaves ran I1, invariant up to O(A°).
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Effective light dynamics

Theorem (De Nittis-L. 2013)

Suppose the bands oei(k) = orei(—k) are isolated and 0 & o¢(0).
Then there exist a unitary V and an effective Maxwell operator

Mest = V5 ' Opy (Mefr) Va
which approximates the full light dynamics,
e ™5 T, Re Z = Re Z e ™ [T, Re Z + O(\™),
e ™I I ImZ = ImZ e ™et T, Im Z + O(A™),
and leaves ran I1, invariant up to O(A°).

Ty, V) and Mg can be computed explicitly order-by-order in A
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Effective light dynamics

Corollary (“Peierl's substitution’, De Nittis-L. 2013)
In case oei (k) = {w(k), —w(—k) } consists of two topologically trivial
bands, then the symbol to the pseudodifferential operator is

Mete(r,K) = (1) (1) <°"(()k) _w?_k)> +O().
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Effective light dynamics

Corollary (“Peierl's substitution’, De Nittis-L. 2013)
In case oei (k) = {w(k), —w(—k) } consists of two topologically trivial
bands, then the symbol to the pseudodifferential operator is

Met(r,K) = 72() 7(1) <°"(()k) _w?_k)> +o0).

=- motivates the definition of a Maxwell-Harper operator
~ Hofstadter butterfly?
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Effective single-band dynamics

Simplest case:
semiclassical dynamics
aka ray optics

conclusion
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Effective single-band dynamics
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Effective single-band dynamics

Theorem (De Nittis-L. 2013)
For all suitable observables f, the following Egorov-type theorem holds:

HHj:,A <e+itM§ Op, (f) e ™% — Op, (fo ‘1’?[)) Hi,)\H =0\

®* flow associated to positive/negative frequency band

@ (r, k) and ®; (r, k) = T ,(r, —k) related by symmetry
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Effective single-band dynamics

Theorem (De Nittis-L. 2013)
d* js the flow associated to the ray optics equations

0 —id+AQ\ (1) _ (ViME
+id +AQE Q% k)~ \ViMzE
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Effective single-band dynamics

Theorem (De Nittis-L. 2013)
d* js the flow associated to the ray optics equations

0 —id+ A\ (1) _ (ViME
+Hd+ A0 A k) \ViMg

OF generalized Berry curvature
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Effective single-band dynamics

Theorem (De Nittis-L. 2013)
Semiclassical Maxwellian

./\/lsic = T, TuwW++
+ A (iTE <g0Ei,VrTM X cpi> — 17 <g0ll, V7 X gpft>+
5 {ow SISO — remun} S0

Symbol My and analog of Rammal-Wilkinson term
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Effective single-band dynamics

But: single bands cannot support real states
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Semiclassical twin-band dynamics

Consider twin-band case

Urel(k) — {w(k)a _w(_k)}
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Semiclassical twin-band dynamics

Writing IT\ = IL; , +1I_ y + O(A*) leads to equations for pe:

Re ZII, et'3MX Op(f) e "5MX [Ty Re Z =
= Fi(t) + F-(t) + Fine(1)
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Semiclassical twin-band dynamics

Writing IT\ = IL; , +1I_ y + O(A*) leads to equations for pe:
Re ZII, et'3MX Op(f) e "5MX [Ty Re Z =
= F(t) + F_(t) + Finte(t)

In-band contribution:

t

Fi(t) = ReZ Il , eT'3M5 Op(f) e 'xM5 T, Re Z
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Semiclassical twin-band dynamics

Writing IT\ = IL; , +1I_ y + O(A*) leads to equations for pe:

Re Z IT) e*3M% Op(f) e "3MX IT\Re & =
= F(t) + F-(t) + Fine(t)

In-band contribution:

Fi(t) =Re? Hi,\e AOp(f)e IAMAHiARe
=111, Op, (fo ) T4\ + O(N?)

= Can be approximated with semiclassical flow <I>§t



unperturbed perturbed effective dynamics ray optics

Semiclassical twin-band dynamics

Writing IT\ = IL; , +1II_ y + O(A*) leads to equations for pe:

Re Z TI, e"3MX Op(f) e x5 TI, Re Z =
= Fi(t) + F() + Fine(1)

Band transitions:

Fint(t) = Re Z T, et'3M5 Op(f e AMX I1_ , Re 2

+ReZII_,e™3MS Op(f) e x5 11, , Re Z

conclusion
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Semiclassical twin-band dynamics

Writing IT\ = IL; , +1II_ y + O(A*) leads to equations for pe:

Re Z TI, e"3MX Op(f) e x5 TI, Re Z =
= Fi(t) + F() + Fine(1)

Band transitions:
Fint(t) = Re Z T, et'3M5 Op(f e AMX I1_ , Re 2

+ReZII_,e™3MS Op(f) e x5 11, , Re Z
=0\ (easy)

conclusion
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Semiclassical twin-band dynamics

Writing IT) = II; , +1II_ y + O(A*) leads to equations for pe:

Re ZII, et'3M3 Op(f) e "5MX [Ty Re Z =
= F () + F—(t) + Fine(1)

Band transitions:

Fint(t) = Re Z I, e '35 Op(f e AMX I1_  Re 2
t

+ReZII_,e™3MS Op(f)e *MX 11, , Re Z

= 0(\?)? (relative phases remain locked)

conclusion
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Semiclassical twin-band dynamics

Conjecture

Fint(t) = O(A?), and thus ray optics dynamics approximate light
dynamics up to O(\?).
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Semiclassical twin-band dynamics

Conjecture

Fint(t) = O(A?), and thus ray optics dynamics approximate light
dynamics up to O(\?).

~> Work in progress
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o »derivation by analogy«
o necessity of slow variation recognized, but small parameter A
not used
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Ray optics: Notable previous results

All non-rigorous, single-band results:
@ Haldane & Raghu
o »derivation by analogy«

o necessity of slow variation recognized, but small parameter A
not used

o ~» eom are missing O()\) terms, only leading-order correct
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Ray optics: Notable previous results

All non-rigorous, single-band results:
@ Haldane & Raghu

o ~» eom are missing O()\) terms, only leading-order correct

@ Esposito & Gerace
o derivation of k equation, yields result proposed by Raghu &
Haldane
o requation still missing
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Ray optics: Notable previous results

All non-rigorous, single-band results:
@ Onoda, Murakami & Nagaosa



unperturbed perturbed effective dynamics ray optics conclusion

Ray optics: Notable previous results

All non-rigorous, single-band results:
@ Onoda, Murakami & Nagaosa

o use Sundaram-Niu variational technique + second quantization
o semiclassical states W(r, k, z) parametrized by (r, k) € T'R3,
z € §% ~ find extremals of functional
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Ray optics: Notable previous results

All non-rigorous, single-band results:
@ Onoda, Murakami & Nagaosa
o use Sundaram-Niu variational technique + second quantization
o semiclassical states W(r, k, z) parametrized by (r, k) € T'R3,
z € 5% ~~ find extremals of functional
o result is not readily comparable to ours
o O(\) terms eom different, only leading-order correct
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Recap

@ Maxwell ~ quantum? Question of dynamics!
@ ~~ Rewrite Maxwell equations as Schrédinger equation
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@ Maxwell ~ quantum? Question of dynamics!
@ ~~ Rewrite Maxwell equations as Schrédinger equation
@ Effective light dynamics: bona fide multiband problem
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Maxwell ~ quantum? Question of dynamics!
~ Rewrite Maxwell equations as Schrédinger equation
Effective light dynamics: bona fide multiband problem

Complex conjugation: particle hole-type symmetry, not
time-reversal symmetry

In non-gyroscopic PhCs: frequency bands and Bloch functions
come in conjugate pairs
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perturbed effective dynamics ray optics conclusion

Recap

Maxwell ~ quantum? Question of dynamics!
~ Rewrite Maxwell equations as Schrédinger equation
Effective light dynamics: bona fide multiband problem

Complex conjugation: particle hole-type symmetry, not
time-reversal symmetry

In non-gyroscopic PhCs: frequency bands and Bloch functions
come in conjugate pairs

For ray optics: control of band transition term
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Thank You for your attention!
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