$\alpha-Z \quad$ relative Renyi entropies

Nilanjana Datta
University of Cambridge

j ointly with: Koenraad Audenaert
Royal Holloway \& University of Ghent

Quantum Relative Entropy

-- a fundamental quantity in Quantum Mechanics \& Quantum Information Theory :

The quantum relative entropy of ρ w.r.t σ,

$$
\begin{aligned}
& \rho \geq 0, \operatorname{Tr} \rho=1 ; \quad \sigma \geq 0: \\
& \text { (density matrix/state) }
\end{aligned}
$$

$$
D(\rho \| \sigma):=\operatorname{Tr}(\rho \log \rho)-\operatorname{Tr}(\rho \log \sigma)
$$

$$
\log \equiv \log _{2}
$$

well-defined if $\quad \operatorname{supp} \rho \subseteq \operatorname{supp} \sigma$

- Classical counterpart:

$$
D(p \| q):=\sum_{x \in X} p_{x} \log \frac{p_{x}}{q_{x}} ; \quad p=\left\{p_{x}\right\}_{x \in X} ; q=\left\{q_{x}\right\}_{x \in X}
$$

聯圈 UNIVERSITY OF
CAMBRIDGE

- $D(\rho \| \sigma)$ acts as a parent quantity for von Neumann entropy:

$$
S(\rho):=-\operatorname{Tr}(\rho \log \rho)=-D(\rho \| I) \quad(\sigma=I)
$$

- It also acts as a parent quantity for other entropies
- Conditional entropy

$$
S(A \mid B)_{\rho}:=S\left(\rho_{A B}\right)-S\left(\rho_{B}\right)=-D\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right)
$$

$$
\rho_{B}=\operatorname{Tr}_{A} \rho_{A B}
$$

- Mutual information

$$
I(A: B)_{\rho}:=S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S\left(\rho_{A B}\right)=D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right)
$$

Some Properties of $D(\rho \| \sigma)$
"distance"

$$
\begin{aligned}
D(\rho \| \sigma) & \geq 0 \quad \rho, \sigma \text { states } \\
& =0 \text { if } \& \text { only if } \rho=\sigma
\end{aligned}
$$

- Joint convexity:

For two mixtures of states $\rho=\sum_{i=1}^{n} p_{i} \rho_{i} \quad \& \quad \sigma=\sum_{i=1}^{n} p_{i} \sigma_{i}$

$$
D(\rho \| \sigma) \leq \sum_{i=1}^{n} p_{i} D\left(\rho_{i} \| \sigma_{i}\right)
$$

- Invariance under joint unitaries

$$
D\left(U \rho U^{*} \| U \sigma U^{*}\right)=D(\rho \| \sigma)
$$

- Data-processing inequality \equiv Monotonicity under quantum operations

| Quantum operation:any allowed physical process on a
 quantum-mechanical system |
| :--- | :---: |

Most general description given by
a completely positive trace-preserving (CPTP) map (Λ)

- Data-processing inequality (DPI)

$$
D(\Lambda(\rho) \| \Lambda(\sigma)) \leq D(\rho \| \sigma)
$$

This is a fundamental property for any relative entropy

Significance of the quantum relative entropy in Quantum Information Theory

It acts as a parent quantity for optimal rates of information-processing tasks e.g.

- data compression,
- transmission of information through a channel etc.
in the "asymptotic memoryless setting"
information sources \& channels are assumed to be
- memoryless
- available for infinite number of uses (asymptotic limit)
($n \rightarrow \infty$)
- E.g. Transmission of classical information

Optimal rate (of classical information transmission):
classical capacity

$C(\mathcal{N})=$ maximum number of bits transmitted per use of \mathcal{N}

memoryless: there is no correlation in the noise acting on successive inputs
: n successive uses of the channel; independent

- To evaluate $C(\mathcal{N})$:

- One requires: prob. of error $p_{e}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$
$C(\mathcal{N})$: Optimal rate of reliable information transmission -given in terms of a mutual information:
(obtainable from the relative entropy)

Other important relative entropies
(1) $\alpha-$ relative Renyi entropies: $\alpha-\mathrm{RRE}$
(2) Max- and min-relative entropies
(1) $\quad \alpha$ - relative Renyi entropies: $\quad \alpha-\mathrm{RRE}$

$$
D_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log \left[\operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right)\right]
$$

$$
\lim _{\alpha \rightarrow 1} D_{\alpha}(\rho \| \sigma)=D(\rho \| \sigma)
$$

- Also is of important operational significance,

(2) Max- and Min- relative entropies

- Max-relative entropy [ND 2008]

$$
D_{\max }(\rho \| \sigma):=\inf \left\{\gamma: \rho \leq 2^{\gamma} \sigma\right\}
$$

- Min-relative entropy [Renner et al 2012]

$$
D_{\min }(\rho \| \sigma):=-2 \log \|\sqrt{\rho} \sqrt{\sigma}\|_{1}
$$

Properties of the min-max relative entropies

- Positivity: If $\rho, \sigma \in \mathcal{D}(\mathcal{H}), \quad$ for $*=$ max, min

$$
D_{*}(\rho \| \sigma) \geq 0
$$

just as $D(\rho \| \sigma)$

- Data-processing inequality:

$$
D_{*}(\Lambda(\rho) \| \Lambda(\sigma)) \leq D_{*}(\rho \| \sigma) \quad \text { for any CPTP map } \Lambda
$$

- Invariance under joint unitaries:

$$
D_{*}\left(U \rho U^{\dagger} \| U \sigma U^{\dagger}\right)=D_{*}(\rho \| \sigma)
$$

for any unitary operator U

- Interestingly,

$$
D_{\min }(\rho \| \sigma) \leq D(\rho \| \sigma) \leq D_{\max }(\rho \| \sigma)
$$

Operational significance of the Max- and Min- relative entropies in:

One-shot Information Theory [Renner; ND]

One-shot information theory

One-shot classical capacity :=max. number of bits that can be transmitted on a single use
$C^{(1)}(\mathcal{N})$: given in terms of a mutual information obtained from the max-relative entropy

In Summary.....

- there is a plethora of different entropic quantities which arise in Quantum Information theory
-- which are interesting both from the mathematical and operational points of view;
- hence it is desirable to have a
unifying mathematical framework
for the study of these different quantities.
- Recently, such a framework was partially provided: by a non-commutative generalization of the $\alpha-\mathrm{RRE}$
[Wilde et al; Muller-Lennert et al]

$$
\tilde{p}_{\alpha}^{-}(\rho, i, \sigma):=\frac{1}{\alpha-1} \log \operatorname{Tr}\left[\left(\sigma^{\frac{(1-\alpha)}{2 \alpha}} \rho \sigma^{\frac{(1-\alpha)}{2 \alpha}}\right)\right]^{\alpha}
$$

α - Quantum Renyi Divergence
(sandwiched Renyi entropy)

α - Quantum Renyi Divergence

- Recently, such a framework was partially provided:
by a non-commutative generalization. $\alpha-\mathrm{RRE}$
[Wilde et al; Muller-Lennert et al]
$\alpha-\mathrm{QRD}$
$\tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log \operatorname{Tr}\left[\begin{array}{c}\left(\sigma^{\frac{(1-\alpha)}{2 \alpha}} \rho \sigma^{\frac{(1-\alpha)}{2 \alpha}}\right) \\ \square \downarrow\end{array}\right]^{\alpha}$
IF $[\rho, \sigma]=0$ THEN

$$
\begin{gathered}
\operatorname{Tr}\left[\rho \sigma^{\frac{(1-\alpha)}{\alpha}}\right]^{\alpha} \\
\downarrow \\
\operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right)
\end{gathered}
$$

α - Quantum Renyi Divergence

- Recently, such a framework was partially provided: by a non-commutative generalization $\alpha-\mathrm{RRE}$
[Wilde et al; Muller-Lennert et al]
$\alpha-\mathrm{QRD}$

$$
\tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log \operatorname{Tr}\left[\sigma^{\frac{(1-\alpha)}{2 \alpha}} \rho \sigma^{\frac{(1-\alpha)}{2 \alpha}}\right]^{\alpha}
$$

$\alpha-\operatorname{RRE} \quad D_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right)$

關 UNIVERSITY OF

$$
\underbrace{D_{\text {min }}(\rho \| \sigma)}_{\alpha=1 / 2}
$$

"super-parent"

- Properties of
properties of

$$
\tilde{D}_{\alpha}(\rho \| \sigma) \longrightarrow \begin{gathered}
D_{\min }(\rho \| \sigma), D(\rho \| \sigma) \\
D_{\max }(\rho \| \sigma)
\end{gathered}
$$

$D_{\text {min }}(\rho \| \sigma)$
$D(\rho \| \sigma)$

- J oint convexity of $\tilde{D}_{\alpha}(\rho \| \sigma)$ for $1 / 2 \leq \alpha \leq 1$
[Frank \& Lieb]
\Rightarrow joint convexity of $D_{\text {min }}(\rho \| \sigma), D(\rho \| \sigma)$
- $\tilde{D}_{\alpha}(\rho \| \sigma)$ monotonically increasing in $\alpha \begin{aligned} & D_{\alpha}(\rho \| \sigma) \leq D_{\beta}(\rho \| \sigma) \\ & \text { for } \alpha \leq \beta .\end{aligned}$
[Muller-Lennert et al] $\Rightarrow D_{\text {min }}(\rho \| \sigma) \leq D(\rho \| \sigma) \leq D_{\text {max }}(\rho \| \sigma)$
- Data-processing inequality for $\tilde{D}_{\alpha}(\rho \| \sigma)$ for $\alpha \geq 1 / 2$
[Frank \& Lieb; Beigi] \Rightarrow DPI for $D_{\text {min }}(\rho \| \sigma), D(\rho \| \sigma), D_{\text {max }}(\rho \| \sigma)$

Limitations of the $\alpha-\mathrm{QRD}$

- The data-processing inequality is not satisfied for $\alpha \in(0,1 / 2)$
- The important family of $\alpha-$ RRE can only be obtained from the $\alpha-\mathrm{QRD}$ in the special case of commuting operators
(Q) Can one define a more general family of relative entropies which overcomes these limitations?
(A) Yes!
- Two-parameter family of relative entropies

$$
D_{\alpha, z}(\rho \| \sigma) ; \quad \alpha, z \in \mathbb{R}
$$

$\alpha-z$ relative Renyi entropies: $\quad \alpha-z-\mathrm{RRE}$

- They stem from quantum entropic functionals defined by

Jaksic, Ogata, Pautrat and Pillet

for the study of entropic fluctuations in non-equilibrium
statistical mechanics
$\rho:$ reference state of a dynamical system
$\sigma \equiv \rho_{t}$: state resulting from ρ due to time evolution under the action of a Hamiltonian for a time t.

Definition:

$$
\forall \rho \in \mathcal{D}(\mathcal{H}) ; \sigma \in \mathcal{P}(\mathcal{H}): \operatorname{supp} \rho \subseteq \operatorname{supp} \sigma
$$

$$
D_{\alpha, z}(\rho \| \sigma)=\frac{1}{\alpha-1} \log f_{\alpha, z}(\rho \| \sigma)
$$

with the trace functional

$$
\begin{aligned}
& \qquad f_{\alpha, z}(\rho \| \sigma)=\operatorname{Tr}\left(\rho^{\frac{\alpha}{z}} \sigma^{\frac{(1-\alpha)}{z}}\right)^{z} \\
& \alpha, z \in \mathbb{R} \quad=\operatorname{Tr}\left(\sigma^{\frac{(1-\alpha)}{2 z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{(1-\alpha)}{2 z}}\right)^{z}
\end{aligned}
$$

Take limits for

$$
\alpha \rightarrow 1 ; \quad z \rightarrow 0
$$

$$
=\operatorname{Tr}\left(\rho^{\frac{\alpha}{2 z}} \sigma^{\frac{(1-\alpha)}{z}} \rho^{\frac{\alpha}{2 z}}\right)^{z}
$$

用閣UNIVERSITY OF
(1) CAMBRIDGE Retrieving all other relative entropies

Quantum Renyi axioms for a relative entropy

Unitary invariance : $D_{\alpha, z}(\rho \| \sigma)=D_{\alpha, z}\left(U \rho U^{\dagger} \| U \sigma U^{\dagger}\right)$

- Tensor property:

$$
D_{\alpha, z}(\rho \otimes \kappa \| \sigma \otimes \omega)=D_{\alpha, z}(\rho \| \sigma)+D_{\alpha, z}(\kappa \| \omega)
$$

- Order Axiom:

$$
\rho \geq \sigma \Rightarrow D_{\alpha, z}(\rho \| \sigma) \geq 0
$$

$$
\forall z \geq|\alpha-1| \quad \rho \leq \sigma \Rightarrow D_{\alpha, z}(\rho \| \sigma) \leq 0
$$

etc.

$$
\forall z \geq|\alpha-1| \quad \rho \geq \sigma \Rightarrow D_{\alpha, z}(\rho \| \sigma) \geq 0
$$

- Proof:

Let $0<\alpha<1$

$$
D_{\alpha, z}(\rho \| \sigma) \underset{(}{\frac{1}{2-1}} \log f_{\alpha, z}(\rho \| \sigma)
$$

- r.t.p. $\quad \rho \geq \sigma \Rightarrow \log f_{\alpha, z}(\rho \| \sigma) \leq 0$

$$
\rho \geq \sigma \Rightarrow f_{\alpha, z}(\rho \| \sigma) \leq 1
$$

r.t.p.

$$
\rho \geq \sigma \Rightarrow f_{\alpha, z}(\rho \| \sigma) \leq f_{\alpha, z}(\rho \| \rho)
$$

$$
\left.\because f_{\alpha, z}(\rho \| \rho)\right)=1
$$

$$
\begin{gathered}
\operatorname{Tr}\left[\rho^{\frac{\alpha}{2}} \sigma^{\frac{(1-\alpha)}{2}}\right]^{2} \leq \operatorname{Tr}\left[\rho^{\frac{\alpha}{2}} \rho^{\frac{(1-\alpha)}{2}}\right]^{2} \\
\operatorname{Tr}\left[\rho^{\frac{\alpha}{2}} \sigma^{\nu}\right]^{2} \leq \operatorname{Tr}\left[\rho^{\frac{\alpha}{2}} \rho^{\nu}\right]^{2}
\end{gathered}
$$

For $0<v<1, x^{v}$ is operator monotone: $\rho \geq \sigma \Rightarrow \rho^{v} \geq \sigma^{v}$

$$
\begin{aligned}
& f_{\alpha, z}(\rho \| \rho)=\operatorname{Tr}\left[\rho^{\frac{\alpha}{z}} \rho^{v}\right]^{z} \geq \operatorname{Tr}\left[\rho^{\frac{\alpha}{z}} \sigma^{v}\right]^{z}=f_{\alpha, z}(\rho \| \sigma) \\
& \text { (a) holds if } 0<v<1, \text { i.e. if } \frac{(1-\alpha)}{z}<1, \text { i.e., }-\frac{z>(1-\alpha) \text {; ; }}{z},
\end{aligned}
$$

- For $0<\alpha<1$ order axiom holds for $Z>(1-\alpha)$
- Similarly, for $\quad \alpha_{z}>1$ order axiom holds for $z>(\alpha-1)$

\because Order Axiom:	$\rho \geq \sigma$	\Rightarrow	$D_{\alpha, z}(\rho \\| \sigma) \geq 0$
$\forall z \geq\|\alpha-1\|$	$\rho \leq \sigma$	\Rightarrow	$D_{\alpha, z}(\rho \\| \sigma) \leq 0$

Data-processing inequality (DPI)

$$
\forall \Lambda: \operatorname{CPTP} \quad D_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \leq D_{\alpha, z}(\rho \| \sigma)
$$

(Q) For which parameter ranges does $D_{\alpha, z}$ satisfy the DPI ?

- Data-processing inequality for the $\alpha-Z-\mathrm{RRE}$

Data-processing inequality (DPI)

Proof of DPI in the blue region:
 $$
0 \leq \alpha<1 ; \quad z \geq \max (\alpha, 1-\alpha)
$$

$D_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \leq D_{\alpha, z}(\rho \| \sigma)$
[Frank \& Lieb]:

- To prove DPI it suffices to prove that $\quad f_{\alpha, Z}(\rho \| \sigma)$

$$
\begin{aligned}
& \text { is j ointly concave } \\
& \text { for } \quad 0 \leq \alpha \leq 1
\end{aligned}
$$

(trace functional)
gininivrsit of
CAMBRIDGE

Data-processing inequality (DPI) contd.
J oint concavity of $\quad f_{\alpha, z} \Rightarrow$ DPI for $D_{\alpha, z}$ for $0 \leq \alpha<1$

- Proof

$$
\Lambda: \operatorname{CPTP} \quad D_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \leq D_{\alpha, z}(\rho \| \sigma)
$$

Stinespring's Dilation Theorem:
Action of Λ on a state $\rho \in \mathcal{D}(\mathcal{H})$:

J oint concavity of $\quad f_{\alpha, z} \Rightarrow$ DPI for $D_{\alpha, z}$ for $0 \leq \alpha<1$
Proof: contd.

$$
\Lambda(\rho)=\operatorname{Tr}_{2}\left[U(\rho \otimes \tau) U^{*}\right]
$$

- Let
du: normalized Haar measure on all unitaries on \mathcal{H}_{2}

Set: $\quad X=U(\rho \otimes \tau) U^{*} \in \mathcal{D}\left(\mathcal{H} \otimes \mathcal{H}_{2}\right)$

$$
\begin{aligned}
\int d u(I \otimes u) X\left(I \otimes u^{*}\right) & =\left(\operatorname{Tr}_{2} X\right) \otimes \kappa \\
& =\operatorname{Tr}_{2}\left[U(\rho \otimes \tau) U^{*}\right] \otimes \kappa
\end{aligned}
$$

Integral representation

$$
=\Lambda(\rho) \otimes \kappa
$$

Joint concavity of $\quad f_{\alpha, z} \Rightarrow$ DPI for $D_{\alpha, z}$ for $0 \leq \alpha<1$

$$
\begin{aligned}
& D_{\alpha, z}(\rho \| \sigma) \stackrel{1}{\alpha-1} \log f_{\alpha, z}(\rho \| \sigma) \\
& D_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \leq \bar{D}_{\alpha, z}(\rho \| \sigma) \quad \Leftrightarrow f_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \geq f_{\alpha, z}(\rho \| \sigma)
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Lambda(\rho) \otimes \kappa & =\int d u(I \otimes u) U(\rho \otimes \tau) U^{*}\left(I \otimes u^{*}\right) \\
& =\int d u V_{u}(\rho \otimes \tau) V_{u}^{*} & V_{u}=(I \otimes u) U
\end{array}
$$

J oint concavity of $\quad f_{\alpha, z} \Rightarrow$ DPI for $D_{\alpha, z}$ for $0 \leq \alpha<1$

$$
\begin{aligned}
& D_{\alpha, z}(\rho \| \sigma)=\frac{1}{\alpha-1} \log f_{\alpha, z}(\rho \| \sigma) \\
& D_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \leq D_{\alpha, z}(\rho \| \sigma) \Leftrightarrow f_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \geq f_{\alpha, z}(\rho \| \sigma) \\
& f_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma))=f_{\alpha, z}(\Lambda(\rho) \otimes \kappa \| \Lambda(\sigma) \otimes \kappa) \quad \begin{array}{ll}
\text { Tensor } \\
\text { property }
\end{array} \\
& =f_{\alpha, z}\left(\int d u V_{u}(\rho \otimes \tau) V_{u}^{*} \| \int d u V_{u}(\sigma \otimes \tau) V_{u}^{*}\right) \\
& \text { IF jointly concave } \\
& \geq \int d u f_{\alpha, z}\left(V_{u}(\rho \otimes \tau) V_{u}^{*} \| V_{u}(\sigma \otimes \tau) V_{u}^{*}\right) \\
& =\int d u f_{\alpha, z}(\rho \otimes \tau \| \sigma \otimes \tau) \\
& \text { unitary invariance } \\
& \Lambda(\rho) \otimes \kappa=\int d u(I \otimes u) U(\rho \otimes \tau) U^{*}\left(I \otimes u^{*}\right) \\
& =\int d u V_{u}(\rho \otimes \tau) V_{u}^{*} \quad V_{u}=(I \otimes u) U
\end{aligned}
$$

J oint concavity of $\quad f_{\alpha, z} \Rightarrow$ DPI for $D_{\alpha, z}$ for $0 \leq \alpha<1$

$$
\begin{gathered}
D_{\alpha, z}(\rho \| \sigma)=\frac{1}{\alpha-1} \log f_{\alpha, z}(\rho \| \sigma) \\
D_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \leq D_{\alpha, z}(\rho \| \sigma) \Leftrightarrow f_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \geq f_{\alpha, z}(\rho \| \sigma) \\
f_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma))=f_{\alpha, z}(\Lambda(\rho) \otimes \kappa \| \Lambda(\sigma) \otimes \kappa) \\
\quad=f_{\alpha, z}\left(\int d u V_{u}(\rho \otimes \tau) V_{u}^{*} \| \int d u V_{u}(\sigma \otimes \tau) V_{u}^{*}\right)
\end{gathered}
$$

IF jointly concave

$$
\begin{aligned}
\geq \int d u & f_{\alpha, z}\left(V_{u}(\rho \otimes \tau) V_{u}^{*} \| V_{u}(\sigma \otimes \tau) V_{u}^{*}\right) \\
& =\int d u f_{\alpha, z}(\rho \otimes \tau \| \sigma \otimes \tau) \quad \text { unitary invariance } \\
& =f_{\alpha, z}(\rho \otimes \tau \| \sigma \otimes \tau) \quad \text { normalization of the Haar measure } \\
& =f_{\alpha, z}(\rho \| \sigma) \quad \text { Tensor property }
\end{aligned}
$$

$$
\therefore f_{\alpha, z}(\Lambda(\rho) \| \Lambda(\sigma)) \geq f_{\alpha, z}(\rho \| \sigma)
$$

In fact: To prove DPI it suffices to prove that

$f_{\alpha, z}(A) \equiv f_{\alpha, z}(A, K):=\operatorname{Tr}\left(A^{\frac{\alpha}{2}} K A^{\frac{1-\alpha}{z}} K^{*}\right)^{z}$ is concave in A.
$A \geq 0, K$ fixed matrix
[Carlen \& Lieb]

- Why? Because for
$\begin{gathered}\text { Because for } \\ \text { the choice }\end{gathered} K=\left(\begin{array}{ll}0 & I \\ 0 & 0\end{array}\right) ; \quad A=\left(\begin{array}{cc}\rho & 0 \\ 0 & \sigma\end{array}\right)$

$$
f_{\alpha, z}(A)=f_{\alpha, z}(\rho \| \sigma)
$$

- Concavity of $f_{\alpha, Z}(A, K)$ in A
$\Rightarrow \quad \mathrm{J}$ int concavity of
- So focus on proving concavity of

$$
f_{\alpha, z}(A)
$$

CHMIVERSTY OF

- Concavity of

$$
\begin{aligned}
& f_{\alpha, z}(A):=\operatorname{Tr}\left[A^{\frac{\alpha}{z}} K A^{\frac{1-\alpha}{z}} K^{*}\right]^{z} \\
\text { for } & \alpha \in(0,1) ; z \geq \max \{\alpha, 1-\alpha\}
\end{aligned}
$$

- Set $p=\frac{\alpha}{z} ; q=\frac{1-\alpha}{z} ; \quad z=\frac{1}{p+q}$

$$
f_{p, q}(A)=\operatorname{Tr}\left[A^{p} K A^{q} K^{*}\right]^{\frac{1}{p+q}}
$$

- Concavity of $f_{p, q}(A)$ for $p, q \in(0,1)$
(holomorphic functions that map the upper half plane into itself)
Pick Functions: Holomorphic functions defined on the upper-half plane:

$$
I^{+}(\mathbb{C}):=\{\xi \in \mathbb{C}: \operatorname{Im} \xi>0\}
$$

with their ranges in the closed upper half plane $\{\xi \in \mathbb{C}: \operatorname{Im} \xi \geq 0\}$

Then $f(\xi)$ is a Pick function if

$$
\operatorname{Im} \xi>0 \Rightarrow \operatorname{Im} f(\xi) \geq 0
$$

Also known as: Hergl otz functions or Nevanlinna functions

$$
\begin{aligned}
& \text { Let } \begin{array}{ll}
f(\xi)=\xi^{p} ; & 0<p<1 \\
\text { defined on the cut plane } \\
\xi^{p}=e^{p \log |\xi|} e^{i p \arg \xi} & \arg \xi \in(-\pi,+\pi) \\
\xi=|\xi| e^{i \arg \xi} & \\
\operatorname{Im} \xi>0 \Leftrightarrow \arg \xi \in(0, \pi) & \operatorname{Im} \xi \uparrow \\
\Rightarrow \arg \xi^{p}=p \arg \xi \in(0, \pi) & \\
\quad(\because 0<p<1) & \mathbb{C} \\
\therefore \operatorname{Im} \xi^{p} \geq 0 & \operatorname{Re} \xi
\end{array}
\end{aligned}
$$

Hence $f(\xi)=\xi^{p}$ is a Pick function

CAMBRIDGE Subclass of Pick functions $P(a, b)$

- Let (a, b) be an open interval on the real axis
- Then $P(a, b)$: the subclass of Pick functions which can be analytically continued across the interval (a, b) into the lower half plane such that the continuation is by reflection w.r.t. the real axis. $\quad f(\bar{\xi})=\overline{f(\xi)}$
- Loewner's theoremr
$P(a, b)$: the class of functions that are operator monotone on (a, b)

Relevance of Pick functions for our proofs

- A Pick function $f(\xi) \in P(a, b)$ has a unique canonical integral representation of the form

$$
f(\xi)=\alpha \xi+\beta+\int_{a}^{b}\left(\frac{1}{t-\xi}-\frac{t}{t^{2}+1}\right) d \mu(t)
$$

where $\alpha \geq 0 ; \quad \beta \in \mathbb{R}$; and
$d \mu(t)$: a positive Borel measure on the real t - axis for which

$$
\alpha=\lim _{y \rightarrow \infty} \frac{f(\text { iy })}{i y} ; \beta=\operatorname{Re} f(i) ; \quad \xrightarrow[a]{a}\left(t^{2}+1\right)^{-1} d \mu(t)<\infty
$$

We want to prove

- Concavity of $f_{p, q}(A)$ for $p, q \in(0,1)$

This would imply DPI
for $D_{\alpha, z}(\rho \| \sigma)$ here

- Concavity of $f_{p, q}(A)$ for $p, q \in(0,1)$
(Q) How do Pick functions enter into the proof?
- Consider 2 related functions:
$A \geq 0$

$$
\begin{aligned}
& F(\xi)=f_{p, q}(Q+\xi R) \\
& G(\xi)=f_{p, q}(\xi Q+R) \quad Q>0, R=R^{*}
\end{aligned}
$$

where: domain of $f_{p, q}$ hàs been extended to complex matrices

- The 2 functions are related :

$$
\begin{aligned}
F(\xi) & =f_{p, q}(Q+\xi R) \\
& =\xi f_{p, q}\left(\frac{1}{\xi} Q+R\right)=\xi G\left(\frac{1}{\xi}\right)
\end{aligned}
$$

$$
\begin{array}{r}
f_{p, q}(A)=\underset{\text { Tr }}{\operatorname{Tr}}\left[A^{p} K A^{q} K^{*}\right]^{\frac{1}{p+q}} \\
\text { ofogeneous order 1 }
\end{array}
$$

$$
f_{p, q}(A)=F(\xi)=f_{p, q}(Q+\xi R) ; \quad G(\xi)=f_{p, q}(\xi Q+R)
$$

- Claim: Concavity of $f_{p, q}(A)$ for $A \geq 0$ amounts to proving: Concavity of $F(x)$, for $x \in \mathbb{R}$; (over the domain of F)

Concavity of $f_{p, q}(A)$ for $A \geq 0$

\Leftrightarrow Concavity of $F(x)$, for $x \in \mathbb{R}$;

- Suppose $A_{1}, A_{2} \geq 0 \quad \&$ for $\forall x \in[0,1]$

$$
f_{p, q}\left(x A_{1}+(1-x) A_{2}\right) \geq x f_{p, q}\left(A_{1}\right)+(1-x) f_{p, q}\left(A_{2}\right) \text { concavity }
$$

$$
\text { Set } Q=A_{2}, R=A_{1}-A_{2} ; \quad \xi=x
$$

$$
F(x)=f_{p, q}(Q+x R)
$$

$$
F(\xi)=f_{p, q}(Q+\xi R)
$$

$$
\begin{aligned}
& =f_{p, q}\left(A_{2}+x\left(A_{1}-A_{2}\right)\right) \\
& =f_{p, q}\left(x A_{1}+(1-x) A_{2}\right) \geq x f_{p, q}\left(A_{1}\right)+(1-x) f_{p, q}\left(A_{2}\right) \\
& \quad\left[f_{p, q}\left(A_{1}\right)=F(1) ; f_{p, q}\left(A_{2}\right)=F(0)\right]
\end{aligned}
$$

$$
F(x) \geq x F(1)+(1-x) F(0)
$$

$$
f_{p, q}(A) \longrightarrow F(\xi)=f_{p, q}(Q+\xi R) ; \quad G(\xi)=f_{p, q}(\xi Q+R)
$$

Concavity of $F(x)$, for $x \in \mathbb{R}$; implies DPI

Proof of concavity outline in 4 lines

- Prove that $G(\xi)$ is a Pick function
- It hence has an integral representation
- This carries over to $F(x)$; $\because F(\xi)=\xi G\left(\frac{1}{\xi}\right)$
- Then proving concavity of $F(x)$ amounts to proving concavity of the integral's kernel
- which is straightforward!

$$
0 \leq \alpha<1 ; \quad z \geq \max (\alpha, 1-\alpha)
$$

Concavity of $F(x)$, for $x \in \mathbb{R}$; (over the domain of F)

$$
\begin{aligned}
& \text { domain of holomorphy of } \quad F(\xi)=f_{p, q}(Q+\xi R) \text {; } \\
& F(x)=\alpha x+\beta+\int_{-c}^{c} \frac{x^{2}}{t x-1} d \mu(t) \\
& \text { - kernel } \\
& \begin{array}{l}
g(x)=\frac{x^{2}}{t x-1} \\
g^{\prime \prime}(x)=\frac{2}{(t x-1)^{3}}<0
\end{array} \\
& \text { for } x<1 /|c|<1 / t \\
& \Rightarrow F^{\prime \prime}(x) \leq 0 \Rightarrow F(x) \text { concave }
\end{aligned}
$$

SUMMARY

- Introduced a 2-parameter family of relative entropies,
-- that unifies the study of all known relative entropies $\alpha-z-$ relative Renyi entropies: $\alpha-z-\mathrm{RRE}$

$$
D_{\alpha, z}(\rho \| \sigma)
$$

- These satisfies the quantum generalizations of Renyi's axioms for a relative entropy.
- Focus: For which parameter ranges does it satisfy the DPI ?
- Proved the DPI for $0 \leq \alpha<1 ; \quad z \geq \max (\alpha, 1-\alpha)$ using the theory of Pick functions.

Thank You!

- Thanks to Koenraad Audenaert;
- \& to Felix Leditzky for preparing the figures.

Summary and conj ectures regarding DPI

- Regions of concavity (blue) and conjectured convexity (orange) of the (reparametrizede) trace functional

