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Quantum Relative Entropy

-- a fundamental quantity in Quantum Mechanics & Quantum 

Information Theory :

The quantum relative entropy of
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 acts as a parent quantity for von Neumann entropy:
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 Conditional entropy

 Mutual information

 It also acts as a parent quantity for other entropies

: Tr ( ( log ))  S    ( )I 

( || )D  

( || )D I 



Some Properties of

( || ) 0
            if & only  i0  f 
D  

 

 

( || )D  

 Joint convexity:

1
||( ) ( || )

n

i i i
i

D p D  



 Invariance under 

joint unitaries

* *( || ) ( || )D U U U U D   

,  states

1

n

i i
i

p 


For two mixtures of states
1

n

i i
i

p 


&

“distance”



 Data-processing inequality Monotonicity under quantum 
operations

Quantum operation:
any allowed physical process on a 

quantum-mechanical system

Most general description given by 

a completely positive trace-preserving (CPTP) map 

 Data-processing inequality (DPI)
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This is a fundamental property for any relative entropy
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Significance of the quantum relative entropy in 
Quantum Information Theory

It acts as a parent quantity for optimal rates of 
information-processing tasks e.g.

 data compression, 
 transmission of information through a channel etc.

information sources & channels are assumed to be 
 memoryless
 available for infinite number of uses (asymptotic limit)

“asymptotic memoryless setting”in the

( )n 



 E.g. Transmission of classical information

Noisy quantum
channel

classical 
info

N

( )C N

classical capacity

maximum number of bits transmitted per use of N

Optimal rate (of classical information transmission):

memoryless: there is no correlation in the noise acting 
on successive inputs

n:       successive uses of the channel; independentnN



“asymptotic, memoryless setting”
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output

inputnE nD
decoding

'x

( ) :C N To evaluate

0 One requires :   prob. of error as n 
( )n
ep

( ) :C N Optimal rate of reliable information transmission

-given in terms of a mutual information:
(obtainable from the relative entropy)



Other important relative entropies

(1) relative Renyi entropies:

(2) Max- and min-relative entropies 
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RRE  

relative Renyi entropies: RRE  

 Also is of important operational significance,
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(2) Max- and Min- relative entropies

 max ( || ) : inf : 2D      

 Min-relative entropy [Renner et al 2012]

min 1( || ) : 2 log || ||D     

 Max-relative entropy [ND 2008]
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†( || ) ( || )D U U U U D   
for any unitary

operator U

 Data-processing inequality:

 Invariance under joint unitaries:

 Positivity: , ( ),  D H
Properties of the min-max relative entropies
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Operational significance of the Max- and Min- relative 
entropies in:

One-shot Information Theory [Renner; ND]

asymptotic, memoryless



single use
classical 

info

N

One-shot classical capacity :=

(1) ( )C N

One-shot information theory

max. number of bits that can be
transmitted on a single use

x x
N

encoding

( )xN

channel 
output

inputE D
decoding

'x

:given in terms of a mutual information 

obtained from the max-relative entropy



In Summary……

 there is a plethora of different entropic quantities 
which arise in Quantum Information theory

-- which are interesting both from the mathematical 
and operational points of view;

 hence it is desirable to have a 

unifying mathematical framework 

for the study of these different quantities.



 Recently, such a framework was partially provided:

by a non-commutative generalization of the RRE 
[Wilde et al; Muller-Lennert et al]
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(sandwiched Renyi entropy)
Quantum Renyi Divergence 



 Recently, such a framework was partially provided:

by a non-commutative generalization RRE 
[Wilde et al; Muller-Lennert et al]

( || )D  

Quantum Renyi Divergence

QRD 

 

(1 )

Tr







 

 
 

1Tr( )  

IF                  THEN [ , ] 0  

(1 ) (1 )
2 21: log Tr

1
( )

 

 



 


  
    



 Recently, such a framework was partially provided:

by a non-commutative generalization RRE 
[Wilde et al; Muller-Lennert et al]
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Quantum Renyi Divergence

QRD 
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[Frank & Lieb]
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 joint convexity of  min ( || ),D   ( || )D  

( || )D   monotonically increasing in 
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Limitations of the        

 The data-processing inequality is not satisfied for 

 The important family of                   can only be obtained 

from the                  in the special case of commuting operators

(Q) Can one define a more general family of relative 
entropies which overcomes these limitations ?

 10, 2 

RRE 
QRD 

QRD 

(A) Yes!



The more general family is a……

 Two-parameter family of relative entropies 

relative Renyi entropies:

 They stem from quantum entropic functionals defined by 

for the study of entropic fluctuations in non-equilibrium 

statistical mechanics

reference state of a dynamical system

state resulting from        due to time evolution under

the action of a Hamiltonian for a time
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Retrieving all other relative entropies 
from the , ( || )zD  



Quantum Renyi axioms for a relative entropy

 Unitary invariance :
† †
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 Tensor property:
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(Q) For which parameter ranges does             satisfy the DPI ?,  zD

Data-processing inequality (DPI)

, ,( ( ) || ( )) ( || )z zD D      CPTP:



RREz   Data-processing inequality for the

 Theorem:
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Proof of DPI 

Data-processing inequality (DPI)

[Frank & Lieb]:
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is jointly concave 

for

 To prove DPI 
it suffices to 
prove that , ( || ) zf   0 1 

(trace functional)

0 1;  max( ,1 )z   in the blue region:



Data-processing inequality (DPI) contd.

Stinespring’s Dilation Theorem:
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In fact:To prove DPI it suffices to prove that 
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Key ingredients: Pick functions



Re

Im

 ( ) : : Im 0I      

Pick Functions: Holomorphic functions defined on the upper-half 

plane:

with their ranges in the closed upper half plane                 : Im 0  

(holomorphic functions that map the upper half plane into itself)

Then           is a Pick function if 
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Also known as: Herglotz functions or Nevanlinna functions



Example of a Pick function
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Subclass of Pick functions ( , )P a b
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 Let                 be an open interval on the real axis

( , ) :P a b Then                 the subclass of Pick functions which can be

analytically continued across the interval              into the 

lower half plane 

reflection w.r.t. the real axis.
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 Loewner’s theorem:

such that the continuation is by 



Relevance of Pick functions for our proofs

 A Pick function                             has a unique canonical 
integral representation of the form
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(Q) How do Pick functions enter into the proof?

 Concavity of                    for , ( )p qf A ,  (0,1)p q
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,( ) ( );p qF f Q R   ,( ) ( )p qG f Q R  
, ( )p qf A

Proof of concavity outline in 4 lines

 Prove that           is a Pick function

 It hence has an integral representation

 This carries over to

 Then proving concavity of            amounts to proving 
concavity of the integral’s kernel

– which is straightforward! 
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SUMMARY

 Introduced a 2-parameter family of relative entropies,
-- that unifies the study of all known relative entropies 

relative Renyi entropies: 

, ( || )zD  

RREz  z  

 These satisfies the quantum generalizations of Renyi’s
axioms for a relative entropy.

 Focus: For which parameter ranges does it satisfy the DPI ?

 Proved the DPI for                                               using the 

theory of Pick functions. 
0 1;  max( ,1 )z   



Thank You!

 Thanks to Koenraad Audenaert;

 & to Felix Leditzky for preparing the figures.
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DPI conjectured
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Summary and conjectures regarding DPI
 Regions of concavity (blue) and conjectured 

convexity (orange) of the (reparametrizede) trace 
functional
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