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1. The Quantum Random Energy Model
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Hamming cube: Qy :={—1,1}" JhaVady
m configuration space of N spins o o ’ ° Y °
@ 1]
f N
Laplacian on Qy: (—AY) (o) == Ny(o) — 222 »(Fjo)
m Spinflip:  Fjo=(oq,...,—0j,...,0N)
Hence the Laplacian acts as a transversal magnetic field: —A =N — E]N:1 al?‘
m Eigenvalues: 2JA|, AC {1,...,N} Degeneracies: (‘le)

Normalized Eigenvectors:  fa(o) = ﬁ [jcaoj

Perturbation by a multiplication operator U:

| H=-A+xU

m U=U(c%,...,0%); Coupling constant x > 0; [|U]loo = O(N)
1 i

= In this talk: U(o) = V'N g(o) with {g(o)}UEQN i.i.d. standard Gaussian r.v. ~REM



Some motivations and related questions

1. Adiabatic Quantum Optimization: Farhi/Goldstone/Gutmann/Snipser '01, ...

Question:  Find minimum in a complex energy landscape U(o)

e.g. REM, Exact Cover 3, ...

Idea: Evolve the ground state through adiabatic quantum evolution, i.e.
ionpt = H(t/7) ¢+ generated by

[H(s)==(1-8)(-A)+sU, sc0,1]]

Requiredtime: 7T~x~cA_2

min

2. Mean field model for localization transition in disordered N particle systems
Altshuler '06

3. Evolutionary Genetics: Rugged fitness landscape for quasispecies . ..

Schuster/Eigner '77, Baake/Wagner '01, ...



Predicted properties for QREM

Predicted low-energy spectrum:

A=T(—A-N)+U/V2, ier=(v2r)™!

20, 40 lowest eigenvalues
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First order phase transition of the ground state at ~. = \/;W:

k < k¢:  Extended ground state with non-random ground-state energy
E, = —K+ o(1)
Kk > ke Low lying eigenstates are concentrated on lowest values of U.
In particular: Eo =N+ x minU+ O(1)
Kk = ke:  Energy gap Anmin = E1 — Ep vanishes exponentially in N

One aim in this talk:  explain some of the above features!



Some heuristics

Known properties of the REM: U(o) = VN g(o)
m Location of the minimum:
Up :=minU = —k;"' N+ O(InN)

m The extreme values Uy < U; < ... form a Poisson process
about —r; ' N + O(In N) of exponentially increasing intensity.

Perturbation theory:

m Fate of localized states: (06, Hés) = N+ x U(0).
m Fate of delocalized states:  (fa, Ufa) = 5y 3=, U(o) = O(vVN27"/?).



2. Low-energy regime of the QREM in case x < k¢

Theorem (Case k < kc)

For any e > 0 and except for events of exponentially small probability, the
eigenvalues of H below (1 - 5) N are within balls centred at

H2

2n’
T-%

2n— ne{0,1,...}],

of radius © (N‘% e ) with § > O arbitrary.

VA WA
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There are exactly (',‘1’) eigenvalues in each ball and their eigenfunctions are
delocalized:

el < 27N e (FN

whereT(x) := —xInx — (1 — x)In(1 — x) and xg := % + = te



Sketch of the proof — delocalization regime

Step 1: Hypercontractivity of the Laplacian
[We(@)® < (0o, Poeri(H) do) = inf %35, 67" 6,)
— inf eE-") (5, et = 2N (FIN,
t>0
Step 2: Reduction of fluctuations

Projection on centre of band and its complement:

Qe =1 =P := Iinp—e)Na+e)(—D).

2 _1
Note: dimpP. <2Ne=s"N/2  _  iake s:O(N 2*5).



Sketch of the proof — delocalization regime

There exist constants C, ¢ < oo such that for any e > 0 and any A > 0:

dim P. Y
IP‘(IIPEUPeII—E[IPEUPeII]I>A N )3 Ce

dim P.

= CNe N4,

E[||P-UPc|] < CN

Concentration of measure using Talagrand inequality:
Lipschitz continuity of F: RSN - R, F(U) := ||P-UP-||:
F(U) - F(U) < (¢, Up) — (v, U'y)

, , dim P,
S U= Ulel$llee < U= Ull2\| —55— -

Moment method to estimate E[||P.UP.||] < (E [Tr(P-UP.)?"])"/2N ...




Sketch of the proof — delocalization regime

Step 3: Schur complement formula

—1
P.(H-z)'P. = (PEHPg —z—-°P.UQ. (Q-HQ. - 2)" Q. UPs)
...and using Step 2:

1 - N _14s
P.UQ. (Q-HQ. —2) ' Q.UP. ~ 1=—P. + O (N"2%) .



Low-energy regime of the QREM

Main idea: Geometric decomposition

For energies below E; := (1 -+ 5) N the localized eigenstates originate
in large negative deviation sites:

X5 = {UlKU(U) < —£N+6N}
(o

O O
o o °F°

For § > 0 small enough and except for events of exponentially small probability (e.e.p.):

m X consists of isolated points which are separated by a distance greater than
2+ N with some v > 0.

m Onballs By , := {o’ | dist(c, ") < N} the potential is larger than —eN
aside from at .



Low-energy regime of the QREM

Theorem

E.e.p. and for 6 > 0 sufficiently small, there is some v > 0 such that all
eigenvalues of H below Es = (1 -t 6) N coincide up to an exponentially
small error with those of

i:l5 =Hr ® @ HB’y,a .

oeXs

where R := Qn\ U

0€X5

m Low energy spectrum of Hg looks like H in the delocalisation regime

m Low energy spectrum of Hg

.o IS explicit consisting of exactly one
eigenstate below E; . ..



Some spectral geometry on Hamming balls

Known properties of Laplacian on B, ,:

Eo(-4s, ) = N(1 —2/7(1 = 7)) + o(N)

Adding a large negative potential U at o and some more moderate
background elsewhere, rank-one analysis yields:

B | E(Hs,,) = N+rU(0) - s,(N+ rU(0)) + O(N~'/?)

where s, is the self-energy of the Laplacian on a ball of radius yN.

m for the corresponding normalised ground state:

ST [we(@)ff < e M forsome L, > 0.
0'€0B~ s

[¢o(o))? > 1 —O(N™")

m Hp, , has a spectral gap of O(N) above the ground state.



3. Resonant delocalization:  an outlook and some conjectures

Random operators may exhibit regimes in which extended states are formed from res-
onating local quasi-modes. The corresponding eigenstates may satisfy the eigenfunc-
tion thermalization hypothesis (ETH, i.e., a heuristic version of the equidistribution
principle) or not. Our aim is to:

m clarify conditions for resonance of local quasi-modes.

m pinpoint scenarios which fail ETH.

Example 1: M.Aizenman, S.W., JEMS 15: 1167-1222 (2013)

Regular tree graph B with coordination number K + 1 > 3:

H=-A+\g onf(B) |

Spectral phase diagram:

\ \ m Appearance of extended states

within the £'-spectrum of —A.

m Transition from Poisson level statistics to
GOE within extended state regime?
Biroli/Ribeiro-Teixeira/Tarzia '13.



Some heuristics for resonant delocalization:  tunnelling of quasi-modes

Given quasi-modes (g, v;) of H, their tunnelling amplitude o at energy E
is defined through:

Pi(H — E)™"Pic = [ e/;;;(fi_()E) e ijkrsi)(f—:) ]_

If the typical gap size for quasi-modes is A(E), then the condition for
resonant delocalisation at E is:

| A(E) < Jow(E).|




Supporting evidence for the resonant delocalisation conjecture

Example 2: M.Aizenman, M. Shamis, S.W. (2013)

Complete graph over M sites:

| H = —I¢o) (ol + rm 9|

with (@o| = (1,1,...,1)/vVM and ky := \/2;W

m Toy model for QREM (M = 2N)

m Quasi-modes: (km g(f),9)) Gap size: A(E)™' = kM o(E/km)
m Conditions for resonant delocalisation:

28 _ _ [ evyav.
Tox(E)] ~ MALE) (1 ][,vaE)wLO(ﬂ < 0(1)

is satisfied for energies near E = 0 and E = —1 in case A > v/2.



Supporting evidence for the resonant delocalisation conjecture

Theorem (Aizenman, Shamis, W. ’13)

Consider a sequence of energies Ey with

Jim MA(En) (1 —][M> =a€R.

KpmV — EM

Then:

the rescaled eigenvalue point process in a window around in Ey
converges in distribution as M — oo to the Seba point process at level
.

the corresponding eigenfunctions are almost surely all ¢' -delocalized:

||m ||1/Jn,M||1

= oo for all |n| < cc.
Moo |[¢on,ml|oo

Yet, the eigenfunctions are localized in the ¢-sense satisfying the
distributional limit

 awle
lim ————= € (1, .
W Tgmllon © (1%

| oo



4. Conclusion:

Complete description of the low-energy spectrum of the QREM

...and generalisations to non-gaussian r.v.'s
Ground-state phase transition o T

at k = k¢ with
an exponentially closing gap.

-20, 40 lowest eigenvalues
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Resonant delocalisation conjecture in QREM with eigenfunctions
violating quantum ergodicity are expected to occur closer to centre of
band within renormalised gaps of Laplacian.



