Combinatorics in Mayer's Theory of CLUSTER AND VIRIAL EXPANSIONS
 Quantum Many Body Systems Workshop - Warwick University

Stephen James Tate
University of Warwick

March 2014

Context of Combinatorics for Cluster and

Virial Expansions

- Pressure expansion in terms of activity or fugacity $\beta P=\sum_{n \geq 1} b_{n} \frac{z^{n}}{n!}$ (Cluster Expansion)
- Pressure expansion in terms of density $\beta P=\sum_{n \geq 1} c_{n} \frac{\rho^{n}}{n!}$ (Virial Expansion)
- Cluster and virial coefficients as weighted connected and two-connected graphs respectively (Mayer [40])
- Connections with Combinatorial Species of Structure (Ducharme Labelle and Leroux [07])
- Two simple statistical mechanical models (One Particle Hardcore and Tonks Gas) - provide interesting combinatorial identities - want to understand them purely combinatorially
- Bernardi [08] gives the result for the connected graph case

ONE -PARTICLE HARDCORE MODEL

The one-particle hardcore model:

- pair potential: $\varphi\left(x_{i}, x_{j}\right)=\infty$
- Mayer edge weight: $f_{i, j}:=\exp \left(-\beta \varphi\left(x_{i}, x_{j}\right)\right)-1=-1$
- Partition Function (all simple graphs) $\Xi(z)=1+z$
- Cluster expansion (connected graphs)
$\beta P=\log (1+z)=\sum_{n \geq 1} \frac{(-1)^{n+1} z^{n}}{n}$
- virial expansion (two-connected graphs) $\beta P=-\log (1-\rho)=\sum_{n \geq 1} \frac{\rho^{n}}{n}$

Two-Connected Graph Combinatorial Identity - One Particle Hardcore Gas

Theorem (T. 14)

If $b_{n, k}$:= the number of two-connected graphs with n vertices and k edges, then:

$$
\sum_{k=n}^{\frac{1}{2} n(n-1)}(-1)^{k} b_{n, k}=-(n-2)!
$$

The cancellations from this alternating sum are explained through a graph involution $\Psi: \mathcal{B} \rightarrow \mathcal{B}$, fixing only the two-connected graphs which are formed from an increasing tree on the indices $[1, n-1]$ and has vertex n connected to all other vertices.

The Tonks Gas

The one-particle hardcore model:

- pair potential: $\varphi\left(x_{i}, x_{j}\right)= \begin{cases}\infty & \text { if }\left|x_{i}-x_{j}\right|<1 \\ 0 & \text { otherwise }\end{cases}$
- Mayer edge weight:

$$
f_{i, j}:=\exp \left(-\beta \varphi\left(x_{i}, x_{j}\right)\right)-1= \begin{cases}-1 & \text { if }\left|x_{i}-x_{j}\right|<1 \\ 0 & \text { otherwise }\end{cases}
$$

- Can express a graph weight as $w(g):=(-1)^{e(g)} \operatorname{Vol}\left(\Pi_{g}\right)$
- Cluster expansion (connected graphs) $\beta P=W(z)=\sum_{n \geq 1} \frac{(-n)^{n-1} z^{n}}{n}$
- virial expansion (two-connected graphs) $\beta P=\frac{\rho}{1-\rho}=\sum_{n \geq 1} \rho^{n}$

Two-Connected Graph Combinatorial Identity - Tonks Gas

Theorem (T. 14)

For the Polytope

$$
\begin{equation*}
\Pi_{g}:=\left\{\mathbf{x}_{[2, n]} \in \mathbb{R}^{n-1}| | x_{i}-x_{j} \mid<1 \forall\{i, j\} \in g \text { with } x_{1}=0\right\} \tag{1}
\end{equation*}
$$

We have the combinatorial equation:

$$
\sum_{g \in \mathcal{B}[n]}(-1)^{e(g)} \operatorname{Vol}\left(\Pi_{g}\right)=-n(n-2)!
$$

Two-connected Graph Combinatorial Identity
 - Tonks Gas

- The cancellations from this alternating sum are explained through a collection of graph involutions $\Psi_{\mathbf{h}}: \mathcal{B}_{\mathbf{h}} \rightarrow \mathcal{B}_{\mathbf{h}}$.
- These fix only the two-connected graphs which are formed from a maximal vertex connected to all other vertices and an increasing tree on the remaining vertices. The order of the vertices depends on the vector \mathbf{h}.
- The vector $\mathbf{h} \in \mathbb{Z}^{n-1}$ comes from a method of splitting the polytope Π_{g} into simplices of volume $\frac{1}{(n-1)!}$ attributed to Lass in the paper by Ducharme Labelle and Leroux [07].

Conclusions \& Open Questions

- It is possible to obtain a combinatorial interpretation of the cancellations found in the two models of statistical mechanics with the weighted graph interpretation of the coefficients
- Is it possible to generalise the approach to general positive potentials or stable potentials for the two connected case? (analogy with Penrose tree construction and Tree-Graph Inequalities of Brydges Battle Federbush)

