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Statistical mechanics away from equilibrium is in a formative
stage, where general concepts slowly emerge.

David Ruelle (2008)



ENTROPY PRODUCTION OBSERVABLE
Hilbert space H, dim’H < co. Hamiltonian H.
Observables: O = B(H). (A, B) = tr(A*B).
State: density matrix p > 0. p(A) = tr(pA) = (A).

Time-evolution:
_ —itH _itH
pt = € pe

Ot — eitHOe—itH

The expectation value of O at time t:

(Or) = tr(pO) = tr(p:0O)



"Entropy observable” (information function):

S = —1logp.
Entropy:

S(p) = —tr(plog p) = (S).

Average entropy production over the time interval [0, ¢]:

1
Ac(t) = ?(St —9).
Entropy production observable

o= tli_l’)Tg)Aa(t) = i[H, S].

1 rt
Aoc(t) = ?/O osds.



The entropy production observable = "quantum phase space
contraction rate”.

Radon-Nikodym derivative=relative modular operator

A, (A) = piAp~ T

AUAE is a self-adjoint operator on © and

tr(pa 1, (A)) = tr(prA)



log A, ,(A) = (logp)A — Alog p

= log A, ,(A) + (/Ot J_Sds) A

d
a log APt|P(A)‘t:0 = g A.



BALANCE EQUATION

Relative entropy
S(ptlp) = tr(pt(log pt — 109 p))

= (pr/? log A, pt/?) > 0.

pelpPt 1 =

1 1 t
~S(pp) = (Do (1) = [ (os)ds



OPEN QUANTUM SYSTEMS




Hilbert spaces ‘Hy, K = 0,--- , M. Hamiltonians H;.

Initial states
o, = e et/ 7,
Composite system:
H=Ho® - - QHp
pP=p0RX & pp
He = Z Hy,

H = Hg + V.



Energy change of R, over the time interval [0, ¢]:

1 . -
AQ(t) = ;(e'tHer T ).

The energy flux observable

Py = —tli_r% AQr(t) = i[Hy, H] = i[Hg, V].

1 rt
AQp(t) = _;/O Ppsds.



The balance equation takes the familiar form:

= — ) BrHy
Ac(t) =—) BrAQu(t)
— ) BrpPy

(Ao (1)) = =) Br(AQk(t)) >

Heat flows from hot to cold.
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GOAL |

(Do(1)) = %/Ot<as>ds.

TD= Thermodynamic limit. Existence of the limit (steady state
entropy production):

(0)4 = Jim lim(Ao(1))
(o)4 > 0. Strict positivity:

<(7>_|_ > 0.
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GOAL I

More ambitious: non-equilibriium steady state (NESS). TD leads
to C* quantum dynamical system (O, 7t, p).

1t
p(A) = Jim — [ p(r*(4))ds.

(o)1 = py (o).

Structural theory:

o+ >0 < py Lo
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THE REMARK OF RUELLE

D. Ruelle: "How should one define entropy production for nonequi-
librium quantum spin systems?” Rev. Math. Phys. 14,701-

707(2002)

The balance equation

(Ao (b)) = =) Br(AQk(D)).

can (should?) be written differently.
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Hyp = Qjxk Hj- State of the k-th subsystem at time ¢:

ASK(1) = (S(ors) — S(pp)):

Ay(®) = S(pwlon)

AS() =Y AS,(t)

AG(t) =) Aoi(t).
Obviously,
Ac(t) > 0.
> S(pr) = S(p) = S(pt) and by the sub-additivity:

AS(t) > 0.
14



One easily verifies
(Ao (b)) = AS() + A ().

Clausius type decomposition.

Set

Ep. = lim limAS
P+ tLoolLD S(1)

NGy = lim lim AG(f).
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OPEN PROBLEMS

Mathematical structure of the decomposition

(@) + =Ep4 + Ady.

The existence of Ep_ and Ao in concrete models (to be dis-
cussed latter).

When is Aoy = 07 Ruelle: Perhaps when the boundaries be-
tween the small system and the reservoirs are allowed to move
to infinity. This limit is more of less imposed by physics, but
seems hard to analyze mathematically.
Another possibility: adiabatically switched interaction (quasi-static
process)?
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XY SPIN CHAIN

A = [A, B] C Z, Hilbert space Hp = @, C2.
Hamiltonian

Z Jx (Jél)aéi)l + 0;%”023_)1)

(1) _ |0 1 2 | 0 —i 3 |1 O
oz —[1 o]’ oz _[i o]’ oz _[o ~1
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O @ @ ® 00

Central part C (small system S): XY-chain on Ay = [—N, N].

Two reservoirs Ry, /! XY-chains on A, = [-M, —N — 1] and
Ap =[N + 1, M].

N fixed, thermodynamic limit M — oo.

Decoupled Hamiltonian He = Hp, + Hp, + Hpp-

18



The full Hamiltonian is

H = Hp,un,ung = Her + Vi + Vg,

Vv, = J=N-1 (0(_1> oD 4 o2 10(2)) etc.

2

Initial state:

0= e PLHN, & po ® e_ﬁRH/\R/Z,

PO = 1/dim H/\C.

Fluxes and entropy production:
P/ r = —ilH,Hp Rl

o= 0P — BrPg.
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Araki-Ho, Ashbacher-Pillet ~ 2000, J-Landon-Pillet 2012: NESS
exists and

Esinh(ABE)

E :
cosh BLTE cosh %%Ed >0

)4 =50 [ ITB)P

AP = @5, — Br. Landauer-Buttiker formula.

o4 does not depend where the boundary N is set.

20



Steady state heat fluxes:

(Pr)y +(PRr)+ =0

(o) 4 = —Br(PL)+ — Br(PR)+-

@R =, [ 1T

Esinh(ABE)

cosh BLTE cosh @%TE

dE.
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|dea of the proof—Jordan-Wigner transformation.

O is transformed to the even part of CAR(¢2(Z)) generated
by {az,a} |z € Z} acting on the fermionic Fock space F over

02(7Z).
Transformed dynamics: generated by dI'(h), where h is the
Jacobi matrix

hug = Jpuga1 + Jo_1up 1 + Aguz,  u € £2(Z).

@ (and similarly ®;, o) is transformed to
—iJyInt1(anan 2 — anyoaN)
— iJNAN—Fl(a?VaN—I—l — a}k\f+1CLN).
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Decomposition

(?(Z) = £*(]— 00, —N— 1) @/*([-N, N]) ®£*([N + 1, 00[),
her = hr, + h¢ + hpg,
h = hf +vp, + VR,

vp = JN(|dn41)(6N] + h.C)

The initial state p is transformed to the quasi-free state gener-
ated by
1 1 1

1 + ePrhr © 2N + 1 ® 1 + ePrhr’
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The wave operators
wt =s— lim ee " 1,c(he)
t—=+o0

exist and are complete.

The scattering matrix:

s = whw_ : Hac(he) — Hac(he)

_[a® 1T(E)
s(B) = [T(E) B(E)]'
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T(B) = 2 J_y_1 Iy {63 |(h— B~10)16_x)\/FL(B) F(B)

Frr(E) =1m (51 gl(hy /g — E —i0)" 167 /R),

o, =0_N-1, OR = 0N 41
T(E) is non-vanishing on the set spyc(hr) Nspac(hpr).

Jr = const, Ay = const (or periodic)

|T| — Xa(h)
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Assumption:
h has no singular continuous spectrum

Open question: The existence and formulas for Ep_ and Ac .

Open question: NESS and entropy production if A has some
singular continuous spectra. Transport in quasi-periodic struc-
tures.
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HEISENBERG SPIN CHAIN

The Hamiltonian H of XY spin chain is changed to
Hp=H4+P

where
1
R ONON
x€[—N,N|
The central part is now Heisenberg spin chain

Iy 1oL ® + 1,0P0 @, + Kuo®o®)

a:—l—l
2 xe[—N,N]|

4+ — Z )\xa(?’).
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Initial state remains the same. h is the old Jacobi matrix.

Fluxes and entropy production:
®r/r = —ilHp, Hy /R

0= —=BLPL — BrPr

TD limit obvious. 7p denotes the perturbed C*-dynamics.
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Assumption For all z,y € Z,

/O (6, €t76,)|dt < oo.

Denote

eN:/ sup {0z, eiths,)|dt,
0 x,yE[—N,N[
6° 1 1

K = .
7024N 0y
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Theorem. Suppose that

sup |Kz| < K.
x€[—N,N]|

Thenforall A € O,

p(A) = lim p(h(A))

exists.
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Comments:

No time averaging. The constant K is essentially optimal. With

change of the constant K the result holds for any P depending

on finitely many 0:(1;3)3

3 3
P =] Kooy 083 - 08,

The NESS p_ is attractor in the sense that for any p-normal
initial state w,

lim wo 7L = .
t—o00 P p+
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The map

({K=z},BL,BRr) — (o) = p4(0)

is real analytic. This leads to the strict positivity of entropy pro-
duction.

Green-Kubo linear response formula holds for thermodynamical
force X = B; — Bpr (J-Pillet-Ogata)

Bosonization Central Limit Theorem holds (J-Pautrat-Pillet)
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OPEN PROBLEM

The existence (and properties) of NESS

1t
p(A) = fim = [ p(rp(4))ds

for all {K;} € R2V,

This is an open problem even if

P = Kpajapaial.
Dependence of (o)4 on N?
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Idea of the proof: Jordan-Wigner transformation: T]tg IS gener-
ated by

1
dI'(h) + 5 > Kiz(2ayaz — 1)(2a4 10,41 — 1).
x€[—N,N]|
One proves that
AT (A) = lim 7t o 75(A)
t—00

exists and is an x-automorphism of O. The starting point is the
Dyson expansion of =% o ng. One then proceeds with careful
combinatorial estimates of each term in the expansion.

The key ingredient is:
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Theorem (Botvich-Maassen).

Let m;, m; be two sequences of nonnegative numbers and g, g
two integrable nonnegative functions on [0, oco[. Denote by ||g]|
and ||g|| their L1-norms, set go = g and g, = g for k > 0 and
define

To any rooted tree T' with root O and nodes 1, --- , n associate
the weight (r; is the number of children of the node j)

/LU(T) — mromrl cc o Myy,

X / H 97(;)(s1(j) — 85) dso - - dsp_1.

0=s5,<s,_1<--<s0 1=1
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Then, the sum

W = i Z w(T)

n=1TecT,
is finite if and only if the equation

M(llgllz) =
has a positive solution x such that

M(||gllz) < oo.

If £* denotes the least such solution, then

W = M(||gll=*).

36



The transport theory of non-equilibrium quantum statistical me-
chanics leads to an insight regarding two basic questions of
spectral theory:

What is localization?

What is absolutely continuous spectrum?
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WHAT IS LOCALIZATION?
Simplest setup. XY chain.
Jy = Jeforx € [-N,N|, Jp = Jr, A\ = A forz < —N and
Jr = JR, Ap = ARfora:- > N.

[a,b] = sp(h) Nsp(hp).

{Az}2c[— N N I.d. random variables.
he = JeA 4+ Az

discrete Schrodinger operator on [— N, N]. ~v(F) its Lyapunov
exponent.
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Esinh(ABE)

AB b 2
E({o = — | E(T(E
(o)) = = [ E(T(E)) ) cosh BLE cosh 2

1 .
sy 09E(4) ~ = it ()

Physically natural characterization of localization.

dE
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Heisenberg chain, K, = K forxz € [-N, N — 1].

(@)1 = limsup(Aa (D).

Definition of exponential localization on [a, b]:

1
limsup N log E({(c)4+) < O.

N —o0
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OPEN PROBLEM

Instead of Heisenberg chain chain, consider a single site inter-
action

P = Kajapaiay.

Prove exponential localization in this case.
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ELECTRONIC BLACK BOX MODEL

42



ENTROPIC FLUCTUATIONS

e J., Ogata, Pautrat, Pillet:

"Entropic fluctuations in non-equlibrium quantum statistical
mechanics. An Introduction.”

In Quantum Theory from Small to Large Scales, Les Houches
Proceeding (2012)

e J., Pillet, Rey-Bellet:

"Entropic Fluctuations in Statistical Mechanics |. Classical
Dynamical Systems.” Nonlinearity (2011)
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NAIVE FLUCTUATION RELATION FAILS
Finite dimensional setup. Time-reversal invariance.

Spectral resolution

1 /t
Ac(t) = ;/O osds = SO APy.

Time-reversal implies

dim P)\ = dim P_)\.

Entropy balance equation

“S(alp) = (Bo() = Y Atr(pPy) > 0.
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Positive \’s are favoured. Heat flows from hot to cold.

BAD NEWS: The fluctuation relation

tr(pP_)) — ot
tr(pPy)

FAILS.

Cummulant generating function:

enaive(a) = log tr(Pe_atAa(t))

= log tr(e_Se_O‘(St_S)).

Equivalent form of bad news:

6naive((%) — 6naive(1 — 04)

FAILS.
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QUANTUM ENTROPIC FUNCTIONAL |

Kurchan (2000), Tasaki-Matsui (2003)

ercs(a) = log tr(e— (1—a)Se—ash),

Renyi relative entropy:

efcs(@) = log tr(P%_aPa)-

Time reversal invariance implies that the symmetry

efcs(Oé) — 6fcs(l — o)
HOLDS.
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Tasaki-Matsui relative modular operator interpretation.
O = B(H), (A, B) = tr(A*B). Q, = pl/2.
Apt|p(A) — ptAp_l'

efcs(a) = 109(€2p, A1 2p)

= log /R e Py (c).
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Atomic probability measure P; is the spectral measure for the
operator

1 1
——10g Ay, (A) = ——log A, (A) — Ao () A
and €2,.

Pi(—<)

=& .
Pi(s)
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Kurchan interpretation gives the physical meaning:
ercs () is the cummulant generating function for the full count-

ing statistics (Levitov-Lesovik) of the repeated quantum mea-
surement of S = — log p.

S:ZSPS

Measurement at ¢ = 0 yields s with probability tr(pPs).

49



State after the measurement:

pPs/tr(pPs).

State at later time ¢:

e_ithPseitH/tr(pPs).

Another measurement of S yields value s’ with probability

tr(Py et p Py /tr(pPs).

The probability of measuring the pair (s, s’) is
tr(P et ppeltil)

50



Probability distribution of the mean change of entropy

¢ = (s — s)/t

Is the spectral measure of Tasaki-Matsui:

Pi(s) = 3 tr(Pye 't peltly,

s/ —s=tc¢

ercs(a) is the cummulant generating function for P.
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QUANTUM ENTROPIC FUNCTIONAL I

J-Ogata-Pautrat-Pillet.

evar(a) = log tr(e~(1—a)S—adh),

Time reversal implies

evar(a) = evar(1l — )

Variational characterization:

evar(a) = —inf (atr(w(S; — 5)) + S(plw)) .

Golden-Thompson:

evar(a) < 6fcs(@)-
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Herbert Stahl (2011): Bessis-Moussa-Villani conjecture.

There exist probability measure Q¢ such that

— —alg
evar(a) = log /Re 40O ().
evar(()é) = evar(l — Oé) |mpI|eS

dQ¢(—s) _ o ts
dQ¢ (<) |
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ALGEBRAIC BMV CONJECTURE

(9, rt, Q) W*-dynamical system on a Hilbert space H. Q2 is
(7, B)-KMS vector.

Tt(A) — eitLAe_itL.
V € I selfadjoint, 2y, the - KMS vector for perturbed dynam-

icS
A (A) = St (LA+V) go—it(L+V)

Qy = e—g(L-l—V)Q
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The Pierls-Bogoluibov and Golden-Thompson inequality hold:

e PELVSD/2 <oy | < e PV/2Q).

CONJECTURE:
There exists measure Q on R such that for a € R,

12012 = [ e*?dQ(e).

Finite systems:
Qv |12 = tr(e PHFAV)Y jtr(e=BH),
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INTERPOLATING FUNCTIONALS

Forp € [1, 00),

_l-ag _2ag _l-ag\P/?
ep(a) = log tr (e P e Pt b S)
1-a 29 1-q p/2
=|Ogtr<ppptppp> :
o ex(a) = efes(a).

o o) = liMmp_ooep(a) = evar(a).

o ep(a) =ep(l —a)
56



ep(0) = ep(1) = 0.
a — ep(a) is convex.
h(0) = —S(pilp), eh(1) = S(pilp).

[1,00] > p — ep(a) is decreasing (strictly): (Araki)-Lieb-
Thirring.



—05

0.5
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e Interpolating functionals motivated recent work: arXiv:1310.7178.
M.R. Audenaert, N. Datta: a-z-relative Renyi entropies.
Forv,( > 0O, set

l1-a 2a 1-a\P/2
Sp.a(v,() = logtr (1/ p (Py D )

Obtaining a single quantum generalization of the classical
relative Renyi entropy, which would cover all possible oper-
ational scenarios in quantum information theory, is a chal-
lenging (and perhaps impossible) task. However, we be-
lieve Sp.« is thus far the best candidate for such a quantity,
since it unifies all known quantum relative entropies in the

literature.
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e Quantum transfer operators. Act on B("H). Specific norm:

1
1Ay = (tr(Ap/PP)) 7.

1 1
Up()A = A_ser”te p°.

Properties:
Up(t1 + t2) = Up(t1)Up(t2)
Up(—t)AUp(t) = Ay
1Up(0)Allp = [ Allp.

Crucial property:

ep(a) =109 ||U, /(1) 1]},
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GOALS

e Mathematical structure of finite time theory that deals di-
rectly with infinitely extended system within the framework
of algebraic quantum statistical mechanics. Modular theory
of W*-dynamical systems (Araki, Connes, Haagerup).

Critical role: Araki-Masuda theory of non-commutative LP-
spaces.

Araki, H., Masuda, T. (1982). Positive cones and LP-spaces
for von Neumann algebras. Publ. RIMS, Kyoto Univ. 18,
339-411.

e Benefit of unraveling the algebraic structure of entropic func-
tionals: Quantum Ruelle transfer operators.
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e Concrete models: Thermodynamic limit of the finite time
finite volume structures.

e The existence and regularity of

o1
ep4(a) = tll)rgo ?ept(oz).

Difficult problem in physically interesting models. Link with
quantum Ruelle resonances.



ep4 () inherits all the listed properties of e ().

20

~05 05 0 15

e (0)=—(o)y, € (0)=(o)4
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e |Implications. p = 2, the large deviation principle and cen-
tral limit theorem for the full counting statistics of entropy/energy/charge
transport. The symmetry @ — 1 — « in the linear regime
(small «, linear response) yields the Green-Kubo formulas
and Onsager reciprocity relations energy and charge fluxes.
The Fluctuation-Dissipation Theorem follows.

e p = oo. The large deviation principle and central limit theo-
rem for the BMV Q:. Quantum version of Gallavotti’s linear

response theory.
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BACK TO XY CHAIN
Two additional functionals:

(I) (Evans-Searles) Fluctuations with respect to the initial state:

: — ft osds
Ci(a) = Mllm log tr (pe 0 ) :

— 0

(I) (Gallavotti-Cohen) Steady state fluctuations: p; = e~ tH peltf

t
Ciy(a) = lim lim logtr <pTe_O‘ Jo 03d5> :

T—o00 M—o0

Naive quantizations of the classical entropic functionals.
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After the TD limit
t
Ct(()ﬂ) — |Og 0 <e—Oé fO O'gdS)

— Iog/Re_O‘tgdPt(g),

_ ft d
Cit(a) = logpy <e @ JoOs S)

— Iog/Re_O‘tgdPH(g).

P, /44 is the spectral measure for p/p and § [§ osds.
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THEOREM

Assumption: Jacobi matrix A has purely ac spectrum.

(1)

. 1 , 1
C(a) = lim ~Cy@) = Jim ~Ciy (@)

_/ o (det(l—I—Ka(E))> dE
— R ° det(1 + Ko(E)) ) 2x’

Ko(E) = eko(E)/2ga(s*(E)ko(E)s(E)—ko(E)) gko(E)/2

—prE O

ko(E) = 0  —BRE

_[A(B) T(E)
s(B) = [T(E) B(E)]
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(2)

ep_|_(Oé) = t'L[QO ;ept(o‘) — /R log (det(l + Ko(F)) )

Kap(E) = (ekO(E)(1_O‘)/ps(E)ekO(E)QO‘/ng(E)e’fo(]gf’)(1—04)/19)19/2

(3) The functionals C'(«), e, () are real-analytic and strictly

convex.
C(0) = ¢e,4-(0) = 0 and

C'(0) = €,1.(0) = — (o) 4.

4)
C"(0) =40 = [ (o1~ () ) — (o)1), it



(5) The function

[1,00] 3 p > e, ()

IS continuous and decreasing.
It is strictly decreasing unless h is reflectionless:

T(E)| € {0, 1} VE.

If h is reflectionless, then e, () does not depend on p and

ept-(a) = C(a) =

1 / cosh((Br(1 —a) + Bra)E/2) x (L — R)
sp(h)

or cosh(BrE/2) cosh(BrE/2) db.

Phenomenon: "Entropic triviality.”



(6) If his not reflectionless, C'(1) > 0.

(7) The Central Limit Theorem and Large Deviation Principle
hold for measures P, Py, P, Q:.

Pty = 05y Py Qr — 5<U>+. Gartner-Ellis theorem.
Pu(B) = Py (B) = et Msen (),

Py(B) ~ o—tinfeep ]I(g‘)7

Qi(B) ~ et MBI ()



I(¢) = —inf (as+ C()),
acR
I() = = Inf (as +e24(a)),
J(c) = — olére]{R (ozg + eoo_|_(a))

Fluctuation Relation implies

I(—¢) = ¢+ I(s),

etc.



OPEN PROBLEM

Suppose that J, = J > 0 for all x.

huy = J(ug4q + ugp—1) + Agux
discrete Schrodinger operator.

Davies-Simon (1978): h is called homogenuous if it is reflection-
less and has purely a.c. spectrum.

We feel that the theory of homogeneous Hamiltonians
is worthy of further stualy.

Does there exist h with purely a.c. spectrum which is not reflec-
tionless?
66



HEISENBERG CHAIN

K = SUPze[—N,N] | K-

Given 6 > O there exists ¢ > 0 such that if | K| < e,

ep+ ()
existsforp = 2,coand o €] — 4,1 + 4.

({Kz}, o) — epq () is real analytic.
CLT and local LDP for P; and Q.
Proof: Combination of De Roeck-Kupianien dynamical polymer

expansion and combinatorial estimates of J-Pautrat-Pillet.
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ELECTRONIC BLACK BOX MODEL
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MCLENNAN-ZUBAREV DYNAMICAL ENSEMBLES

Open systems:

pt = e_S—t — e_ZBk(Hk‘ng cbk(_s)ds)

p+— Gibbs state at inverse temperature 1 for

t
> B (Hy, +/o Pp(—s))ds.
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TD limit: p; is KMS-state for the dynamics generated by

510) = X B4 + [ [y, 1

NESS p_ is the KMS state for the dynamics generated by

5i() = Y0 (56O + [ [0y, 1)

Aschbacher-Pillet, Ogata-Matsui, Tasaki-Matsui.
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XY-chain, J, = const, Ay = 0,

B=Br+Br)/2, v=(Br—-BL)/2
p+ is B-KMS state for Hamiltonian

)
H4+-K
B

1
K=j(zx—y)— Z (aél)a:g_)l . J?S:i>1a§2) — h.C.))

2|$<y

where j is the Fourier transform of | cos 6)|.
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eot(a) = log tr(e_(l_o‘)se_O‘S’f).

eoot(@) = log tr(e~(1—a)S—as)

In open systems:

enr(a) = log tr (e—(l—&)Zﬁkﬂke—aZﬁk(Hk-l—fé Cbkst)) _

eoot(a) = |Og tr (e_ZBk(Hk—l_a fg (Dksds-) )

Similarly for other e, (o). The entropic functionals can be viewed
as deformations McLennan-Zubarev dynamical ensembles.
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ENTROPIC GEOMETRY (UNDER CONTRUCTION)

David Ruelle: Extending the definition of entropy to nonequilib-
rium steady states. Proc. Nat. Acad. Sci. 100 (2003).

Outside of equilibrium entropy has curvature.
An old idea. Ruppeiner geometry (1979).

G. Ruppeiner (1995): Riemannian geometry in thermodynamic
fluctuation theory. Reviews of Modern Physics 67 (3): 605659

Older:

B. Effron: Defining the curvature of the statistical problem. The
Annals of Statistics (1975), 1189-1242.
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Even older:

Rao, C.R: (1945) Information and accuracy attainable in the es-
timation of statistical parameter. Bull. Calcutta Math. Soc. 37.

Information geometry. Monograph:
Amari-Nagaoka: Methods of information geometry (2000)
For our purposes:

G. Crooks (2007): Measuring thermodynamic length. PRL 99.



Parameter manifold: (81, -, By).
eyt (0) = BiBrLp;k-
7.k

This introduces a (possibly degenerate) metric on the tangent
space at (81, -+, Bum)-

p = 2. metric is induced by the CLT variance of CLT for the full
counting statistics.

Lo = [ o ((@js = o4 (@) (@re = p (®1))) s
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In equilibrium 8, = --- = By, Loj, are Onsager transport
coefficents.

At p = oo, twist to Bogoluibov-Kubo-Mari inner product.
The induced norms || - ||, are monotone in p.

Crooks thermodynamical path out of equilibrium.
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RELATIONS WITH QUANTUM INFORMATION THEORY

Landauer principle: the energy cost of erasing quantum bit of in-
formation by action of a thermal reservoir at inverse temperature
T is > kT log 2 with the equality for quasi-static processes.

Full counting statistics, e 4 (o) = the Chernoff error exponent
in the quantum hypothesis testing of the arrow of time, i.e., of
the family of states {p¢, p—t}+>0-

J., Ogata-Pillet-Seiringer.: Quantum hypothesis testing and non-
equilibrium statistical mechanics, Rev. Math. Phys, 24 (6) (2012),
1-67

Parameter estimation, Fisher entropies, entropic/information ge-
ometry?
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STEADY STATE FLUCTUATION RELATIONS
Classical statistical mechanics: Dynamical system (M, ¢¢, p).

Observable: f : M — R. p(f) = [3; fdp. Time evolution
Jt = [ oy

pt = p O Pt
Phase space contraction:

dor

Dplp = dp’

Entropy production observable

d
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t

log Apt\p = /o o_sds.

t
S(pilp) = [ 10g B, 001 = [ plo)ds

Classical open systems:
o=—) Bk

/8



Evans-Searles entropic functional:

t
et(a) = log /M e Jo osdsqp.

Time-reversal invariance.
Evans-Searles fluctuation relation:

et(a) = ei(1 — o).

Let P; be the probability distribution of

1 ot
— | O
t/OS

with respect to p.
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dPt(—C) — e—tg
dP;(s) ‘

o1
et (a) = tll)rgo ;et(a).

CLT and LDP are with respect to p.

Important: The classical counterpart of the theory of quantum
entropic fluctuations described so far is the Evans-Searles fluc-
tuation relation.

Gallavotti-Cohen fluctuation relation: Related but also very dif-
ferent.
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NESS: weak limit
p4 () = Jim pi(P).

p_I_(O') >O<:>p_|_J_,0.

Gallavotti-Cohen entropic functional:

~ — ft osds
e:(a) = log /Me 0 dp4.

Finite time fluctuation relation
ét(a) =e(1 —a)

does not hold.
It is even possible that e;(1) = oo for ¢ > 0 (chain of harmonic
oscillators).
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1
et (a) = tlLrQO ;ét(oz).

Gallavotti-Cohen fluctuation relation: for Anosov diffeomprhisms
of compact manifolds the symmetry

§+(CV) — /é_|_(1 — Oé)
IS restored. In this case

et(a) =eqp(a).

General Gallavotti-Cohen fluctuation relation.
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Principle of regular entropic fluctuations.Exchange of limits:

1 I
et () = tlngo—log/ e_o‘foasdsdp

u-+t
— lim —Iog/ e~y osdsy,

t—oo ¢

t
= lim —Iog/ O‘fogsdsdpu

t—oo t

t
= lim |lim —Iog/ O‘foasdsdpu

t—oo U—030 ¢

t
= lim —Iog/ O‘foasdsdm_

t—oo t

— /6\_|_(Oé).
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OPEN PROBLEM
Gallavotti-Cohen fluctuation relation in quantum statistical mechancs.
Two obvious routes:

Tasaki-Matsui: (H, 7, €2,) GNS-representation induced p,

t
09 8,1, =109 A, + [ o-ss.

e2(a) = log [ e " By(c)

allog A | —[tosds
=|og<s2p,e( plo~Jo )Qp>
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(H—|—77T—|—7Q,0_|_)5
log A — [t osd
() = |og<Qp+,eO‘<Og ooyl S)Qp+>

= Iog/Re_O‘tgd]@t(g).
oo (@) = lim Ten(a)
ex4 (o _t—>oot€2t ).
XY chain:

ex4(a) = exy ().

Same for locally interacting case.
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Missing: Physical interpretation. Repeated quantum measure-
ment procedure incompatible with NESS structure.

One possibility: Indirect measurements.

Bauer M., Bernard D., Phys. Rev. A84, (2011) Convergence

of repeated quantum non-demolition measurements and wave
function collapse.

M. Bauer, T. Benoist, D. Bernard, Repeated Quantum Non-Demolition

Measurements: Convergence and Continuous Time Limit, Ann.
Henri Poincar 14 (2013) 639 67
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One difficulty in quantum optic experiments is to measure a sys-
tem without destroying it. For example to count a number of
photons usually one would need to convert each photon into an
electric signal. To avoid such destruction one can use non de-
molition measurements. Instead of measuring directly the sys-
tem, quantum probes interact with it and are then measured.
The interaction is tuned such that a set of system states are
stable under the measurement process.

This situation is typically the one of Serge Haroche’s (2012 No-
bel prize in physics) group experiment inspired the work | will
present. In their experiment they used atoms as probes to mea-
sure the number of photons inside a cavity without destroying
them.

Abstract of T. Benoist talk at McGill (2014)
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p = oo. Slightly more satisfactory.

Eoot = —Jgjp (S(w|p) + oz/otw(as)ds> :

oot — — INf
oot wpy

Again, in the cases where one can compute (XY, etc):

Coodt-(a) = et ().

(SClop) +a [ w(onds).
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TOPICS NOT DICSUSSED
Weak coupling limit (Davies 1974, Lebowitz-Spohn 1978)

Repeated interactions systems:
Bruneau, Joye, Merkli: Repeated interactions in open quantum
systems, to appear in JMP.

Pauli-Fierz systems (finite level atom coupled to bosonic reser-
VOIrs).

Classical statistical mechanics.
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CONCLUSIONS
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