
Entropy and Entanglement Bounds for Reduced Density
Matrices of Fermionic States

Elliott Lieb
Princeton University

Joint work with Eric Carlen

Elliott Lieb – Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States Nr. 1



Introduction

Bosons are sometimes thought to be more complicated than fermions because they can

‘condense’. But condensed bosons that are in a product, or ’coherent’, state

Ψ = ϕ(x1)ϕ(x2) · · ·ϕ(xN ) are not entangled in any way (by usual definitions of entan-

glement) whereas fermions are always entangled, by the Pauli principle. Our goal was to

quantify the minimum possible entanglement and, as folklore might suggest, show that

pure Slater determinant states give the minimum entanglement. If this is the case then

Slaters can be said to be the fermionic analog of boson condensation!

We study the bipartite density matrix of 2 fermions embedded in a sea of N fermions.

Some results depend on N , while others do not. A subtle, but signifcant question, then,

is What is N? It is the number of particles in a ‘container’ under observation. But any

electron, in or out of the container, is (Pauli principle) entangled with all the electrons in

the universe, so is N = ∞?
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Remark about N

The reason N is finite is that a physical state is really a state on a physically relevant

algebra of observables, which, in this case, is the algebra of observables in the container.

In statistical mechanics one must always use the lowest possible dimensionality of a density

matrix, and not add superfluous degrees of freedom like color or flavor, which might exist,

but are not observable, to artificially increase entropy.
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Entanglement Reminder

Consider a bipartite quantum system on H1⊗H2. A density matrix (state) ρ12 on H1⊗H2

is separable if it is convex combination of tensor product states:

ρ12 =
n∑

j=1

λjρ
(j)
1 ⊗ ρ

(j)
2 .

Otherwise, it is entangled – by definition.

The fundamental example of an entangled state is the ebit ρ12 := |ϕ⟩⟨ϕ|,
where |ϕ⟩ ∈ C2 ⊗ C2 is the (pure) Bell state

|ϕ⟩ = 1√
2
(|00⟩+ |11⟩) .

The ebit is the basic ‘currency of the realm’ in quantum information. Given a bipartite

state ρ12 one can ask: ’How many ebits does it take to construct ρ12’ or ’How many

ebits can one extract from ρ12’? These questions can be partially answered by certain

entropically based entanglement measures, which will be the subject of this talk.
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Theorem #1

We all know subadditivity of entropy (positivity of mutual information): S1 + S2−S12 ≥ 0,

and that equality occurs only when ρ12 = ρ1 ⊗ ρ2. This can happen for bosons but not

for fermions!

Mutual Information of fermionic ρ12:

S1 + S2 − S12 ≥ ln

(
2

1− Trρ21

)
,

and there is equality if and only if the N -particle fermionic state is a pure-state Slater

determinant. (not a convex combination of Slaters)

Recall that for N fermions ρ1 = ρ2 ≤ 1
N 1, and equality occurs only for an N -particle

Slater. For a Slater S1 = S2 = lnN and S12 = ln
(
N
2

)
.
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Proof of Theorem #1

First we prove a new, general, non-fermionic, theorem

THM: [Quantitative subadditivity]

S1 + S2 − S12 ≥ −2 ln
(
1− 1

2Tr
[√

ρ12 −
√
ρ1 ⊗ ρ2

]2) ≥ Tr
[√

ρ12 −
√
ρ1 ⊗ ρ2

]2
In particular, S1 + S2 − S12 ≥ 0 with equality if and only if ρ12 = ρ1 ⊗ ρ2.

Proof: Peierls-Bogoliubov inequality: IfH and A are self adjoint operators and Tre−H = 1,

Tr
(
e−H+A

)
≥ exp{TrAe−H} .

Apply this with H = − log ρ12 and A = 1
2 (log ρ1 + log ρ2 − log ρ12) . Then with

∆ : = 1
2 (S12 − S1 − S2) (Note the 1/2 !). By the Peierls-Bogoliubov inequality and the

Golden-Thompson inequality, we have:
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e∆ = exp
[
Tr ρ12

{
1
2 (log ρ1 + log ρ2 − log ρ12)

}]
≤ Tr exp

[
1
2 (log ρ12 + log(ρ1 ⊗ ρ2)

]
≤ Tr exp

[
1
2 log ρ12

]
exp

[
1
2 log(ρ1 ⊗ ρ2)

]
= Tr

[
ρ
1/2
12 (ρ1 ⊗ ρ2)

1/2
]
.

Since

Tr
[
ρ
1/2
12 (ρ1 ⊗ ρ2)

1/2
]
=

(
1− 1

2Tr
[
ρ
1/2
12 − (ρ1 ⊗ ρ2)

1/2
]2)

, (1)

the quantitative subadditivity theorem is proved. QED

Now we prove that for fermions S1 + S2 − S12 ≥ ln
(

2
1−Trρ2

1

)
. We use Schwarz on

the left side of (1), but remember to insert Pf the projector onto 2-particle antisymmetric

states. Thus, since Trρ12 = 1, Tr
[
ρ
1/2
12 (ρ1 ⊗ ρ2)

1/2
]
≤ Tr

[
Pf (ρ1 ⊗ ρ2)

1/2Pf

]2
.

By introducing a spectral resolution for ρ1, and antisymmetrizing, and fiddling around,

one gets Theorem #1. QED
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Theorem #2

Entanglement of Formation of ρ12:

Ef (ρ12) := inf
λ,ω


n∑

j=1

λjS(Trace2 ωj) : ρ12 =
n∑

j=1

λjω
j

 .

Then, Ef (ρ12) ≥ ln(2) for fermions

and there is equality if and only if ρ12 is a convex combination of pure-state Slater

determinants; i.e., the state is fermionic separable. In other words,

Eantisymmetric
f (ρ12) := Ef (ρ12)− ln(2)

is a faithful measure of fermionic entanglement.
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Proof of Theorem #2

Recall that Ef (ρ12) := infλ,ω

{∑n
j=1 λjS(Tr2 ωj)

}
. To prove Ef ≥ ln(2) it suffices

to prove that if ρ12 is any fermionic density matrix on H ∧H and ρ1 = Tr2ρ12, then

S(ρ1) ≥ ln 2 . (2)

Any pure Slater has S(ρ1) ≥ ln 2, and so does a convex combination of pure Slaters.

So Slaters would minimize if we can prove (2).

By theorem #1 (subadditivity) and by S(ρ12) ≥ 0, and by S(ρ1) = S(ρ2), we have

2S(ρ1) ≥ S(ρ1) +
1
2

{
ln 2− ln[1− Tr ρ21]

}
. (3)

By Jensen, e−S(ρ1) ≤ Tr ρ21 . Therefore, letting x := Tr ρ21, we can deduce from (3) that

2S(ρ1) ≥ inf
0≤x≤1/2

{
− lnx− 1

2 ln(1− x) + 1
2 ln 2

}
.

A simple calculation shows the minimum is achieved at x = 1/2, which yields (2). QED
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Theorem #3

Consider the entropy S(ρ12) = S12 of the two-particle density matrix of an N -particle

fermion state. For a Slater we easily find that ρ12 has
(
N
2

)
eigenvalues 1/

(
N
2

)
, and thus

S12 = ln
(
N
2

)
≈ 2 lnN − ln(2) for a Slater.

We believe that a Slater minimizes S12. What we can prove is:

The 2-particle reduced density matrix of any N -particle fermionic state satisfies

S(ρ12) ≥ 2 lnN +O(1) .

and, therefore, a Slater is at least asymptotically close to the minimum.
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Theorem #3 continued

To summarize: The entropy of a single fermion satisfies

S1 ≥ lnN with equality only for a Slater

and the entropy of two fermions satisfies

S12 ≥ 2 lnN +O(1) which is satisfied by any Slater.

The N dependence and the factor of 2 is very interesting for the following reason: Recall

that while the eigenvalues of a fermionic ρ1 are characterized by λ ≤ 1/N , there is no

simple characterization of the eigenvalues of a fermionic ρ12. Yang showed that the upper

bound is not
(
N
2

)−1
, as one might think, but rather λ ≤ 2/(N − 1). If the eigenvalues

were mostly of this magnitude one could get an entropy S12 ≈ lnN − ln(2).

But our result says that this cannot happen. There must be many much smaller eigen-

values because S12 ≥ 2 lnN +O(1).
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Topic#4

Squashed Entanglement of ρ12:

Esq(ρ12) =
1
2 inf
ρ123

{−S123 − S3 + S13 + S23} ≥ 0,

where 3 refers to an extra Hilbert space (of arbitrary dimension) and H = H1 ⊗H2 ⊗H3,

and Tr3 ρ123 = ρ12.

In general, Esq > 0 unless ρ12 is separable, (which a fermionic ρ12 is not) and Ef ≥ Esq.

We cannot find the minimum of Esq over all fermionic states but

We conjecture that the minimum Esq occurs for Slaters

We conjecture that Esq for a Slater is given by:

Esq(ρ12) =


1
2 ln

N+2
N−2 if N is even

1
2 ln

N+3
N−1 if N is odd
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Squashed entanglement continued

At first we thought that the minimum was the same as for the entanglement of formation

Ef , namely, ln(2). This is grossly incorrect! The mininimum is at least as small as the

value just mentioned, i.e.,

Esq(ρ12) =

{
1
2 ln

N+2
N−2 if N is even

1
2 ln

N+3
N−1 if N is odd.

This upper bound shows that Esq for a Slater depends heavily on N , namely ≈ 2/N .

We obtain it by starting with an N -particle Slater (which is pure and which gives us the

required ρ12) and then taking ρ123 to be the (mixed) N/2-particle reduced density matrix

of this Slater state. Thus, dimH3 =
(

N
N/2− 2

)
. Then

S123 = ln
(

N
N/2

)
, S3 = ln

(
N

N/2−2

)
, S13 = S23 = ln

(
N

N/2−1

)
and 1

2 (S13 + S23 − S123 − S3) is as above. (Also found by Christandl-Schuch-Winter.)
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Monotonicity of Relative Entropy

Finally, let me mention an inequality, which is not related to entanglement, but which is

proved similarly to the previous ones (using the Peierls-Bogoliubov inequality) – except

for one thing! The Golden-Thompson inequality used before is not strong enough for this

purpose and one has to use the triple matrix inequality, which was at the basis of the proof

of strong subadditivity of entropy (with Ruskai).

Tr exp{lnA+ lnB − lnC} ≤ Tr

∫ ∞

0

A
1

t+ C
B

1

t+ C
dt

Remainder term for the monotonicity of relative entropy : D(ρ||σ) := Tr ρ[ln ρ− lnσ].

D(ρ12||σ12)−D(ρ1||σ1) ≥ Tr
[√

ρ12 − exp
{

1
2 lnσ12 − 1

2 lnσ1 +
1
2 ln ρ1

}]2
. (4)

Thus, we rederive a theorem of Ruskai that there is equality if and only if

ρ12 − lnσ12 = (ln ρ1 − lnσ1)⊗ I2.

Elliott Lieb – Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States Nr. 14



THANKS FOR LISTENING !
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