Symmetry breaking in quantum 1D jellium

Sabine Jansen
Ruhr-Universität Bochum

joint work with Paul Jung (University of Alabama at Birmingham)

Warwick University, March 2014

Context

Setting: quantum statistical mechanics. Charged fermions move on a line, homogeneous neutralizing background.

Wigner '34: in order to understand the effect of electronic interactions in solids, crude approximation: periodic charge distribution (atoms) \approx homogeneous positive charge distribution. Keep electronic interactions. Jellium, one-component plasma.

Possible scenario: at low density, electrons minimize repulsive Coulomb energy by forming a periodic lattice. Wigner crystal.

Dimension one: Wigner crystallization proven for the classical jellium at all densities (Kunz '74, Brascamp-Lieb '75, Aizenman-Martin '80), for the quantum and classical jellium at low densities Brascamp-Lieb ' 75.

This talk: Wigner crystallization for quantum 1D jellium at all densities. Proof combines arguments of cited works, notably Kunz's transfer matrix approach.

Outline

1. Setting
2. Main result

- existence of the thermodynamic limit of all correlation functions
- translational symmetry breaking at all $\beta, \rho>0$

3. Proof ideas

- path integrals
- transfer matrix, Perron-Frobenius

Electrostatic energy and Hamiltonian

- N particles of charge -1 , positions $x_{1}, \ldots, x_{N} \in[a, b] \subset \mathbb{R}$
- one-dimensional Coulomb potential $V(x-y)=-|x-y|$
- neutralizing background of homogeneous charge density $\rho=N /(b-a)$
- total potential energy

$$
\begin{aligned}
U\left(x_{1}, \ldots, x_{N}\right):=-\sum_{1 \leq j \leq k \leq N}\left|x_{j}-x_{k}\right|+\rho & \sum_{j=1}^{N} \int_{a}^{b}\left|x_{j}-x\right| \mathrm{d} x \\
& -\frac{\rho^{2}}{2} \int_{a}^{b} \int_{a}^{b}\left|x-x^{\prime}\right| \mathrm{d} x \mathrm{~d} x^{\prime}
\end{aligned}
$$

- \mathcal{H}_{N} Hilbert space for N fermions $=$ antisymmetric functions in $L^{2}\left([a, b]^{N}\right)$.
- Hamilton operator

$$
H_{N}:=-\frac{1}{2} \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+U\left(x_{1}, \ldots, x_{N}\right)
$$

Dirichlet boundary conditions at $x=a$ and $x=b$.

Free energy and reduced density matrices

- $\beta>0$ inverse temperature
- Thermodynamic limit

$$
N \rightarrow \infty, a \rightarrow-\infty, b \rightarrow+\infty, \frac{N}{b-a} \rightarrow \rho
$$

- Canonical partition function

$$
Z_{N}(\beta):=\operatorname{Tr} \exp \left(-\beta H_{N}\right)=\frac{1}{N!} \int_{[a, b]^{N}} \exp \left(-\beta H_{N}\right)(\mathbf{x}, \mathbf{x}) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{N}
$$

$\exp \left(-\beta H_{N}\right)(\mathbf{x} ; \mathbf{y})$ integral kernel of $\exp \left(-\beta H_{N}\right)$.

- Free energy

$$
f(\beta, \rho)=-\lim \frac{1}{\beta N} \log Z_{N}(\beta)
$$

- n-particle reduced density matrices

$$
\rho_{n}^{N}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right) \propto \int_{[a, b]^{N-n}} \exp \left(-\beta H_{N}\right)\left(\mathbf{x}, \mathbf{x}^{\prime} ; \mathbf{y}, \mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}
$$

proportionality constant fixed by

$$
\int_{[a, b]^{n}} \rho_{n}^{N}(\mathbf{x} ; \mathbf{x}) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}=N(N-1) \cdots(N-n+1)
$$

Results

Theorem (Free energy)

$$
f(\beta, \rho)=\frac{1}{12 \rho}+\left(\sqrt{\frac{\rho}{2}}+\frac{1}{\beta} \log \left(1-e^{-\beta \sqrt{2 \rho}}\right)\right)-\frac{1}{\beta} \log z_{0}(\beta, \rho) .
$$

$z_{0}(\beta, \rho)$ principal eigenvalue of a transfer operator.
Free energy of independent harmonic oscillators + a correction term.
Theorem (Symmetry breaking)
(i) In the thermodynamic limit along $a, b \in \rho^{-1} \mathbb{Z}$, all reduced density matrices have uniquely defined limits

$$
\rho_{n}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)=\lim \rho_{n}^{N}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right) .
$$

The convergence is uniform on compact subsets of $\mathbb{R}^{n} \times \mathbb{R}^{n}$, and ρ_{n}^{N} and ρ_{n} are continuous functions of \mathbf{x} and \mathbf{y}.
(ii) The limit is periodic with respect to shifts by $\lambda=\rho^{-1}$,

$$
\rho_{n}\left(x_{1}-\lambda, \ldots ; \ldots, y_{n}-\lambda\right)=\rho_{n}\left(x_{1}, \ldots ; \ldots, y_{n}\right)
$$

for all $n \in \mathbb{N}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. For every $\theta \notin \lambda \mathbb{Z}$ there is some $n \in \mathbb{N}$ and some $\mathbf{x} \in \mathbb{R}^{n}$ such that $\rho_{n}(\mathbf{x}-\theta ; \mathbf{x}-\theta) \neq \rho_{n}(\mathbf{x} ; \mathbf{x}): \lambda$ is the smallest period.

Periodicity of the one-particle density

Limit state on fermionic observable algebra has smallest period $\lambda=\rho^{-1}$.
Question: periodicity visible at the level of the one-particle density?
Brascamp, Lieb '75: one-particle density is

$$
\rho_{1}(x ; x)=\sum_{k=-\infty}^{\infty} F(x-k \lambda) \exp \left(-\frac{(x-k \lambda)^{2}}{2 \sigma^{2}}\right)
$$

F even, log-concave function, $2 \sigma^{2}=[\sqrt{2 \rho} \tanh (\beta \sqrt{\rho / 2})]^{-1}$. At low density $\left(\lambda=\rho^{-1} \gg \sigma\right)$, one-particle density has smallest period $\lambda=\rho^{-1}$.

At high density, we do not know whether this is true.
Note A state can have a non-trivial period but constant one-particle density. Example

$$
\Psi_{N}=\cdots \wedge \mathbf{1}_{[-1,0)} \wedge \mathbf{1}_{[0,1)} \wedge \cdots \wedge \mathbf{1}_{[n, n+1)} \wedge \cdots
$$

One-particle density $\sum_{n} \mathbf{1}_{[n, n+1)}(x) \equiv 1$, periodicity visible only at the level of two-point correlation functions.

Energy as a sum of squares

Observation: when particles are labelled from left to right

$$
a \leq x_{1} \leq \cdots \leq x_{N} \leq b
$$

energy is a sum of squares

$$
U\left(x_{1}, \ldots, x_{N}\right)=\rho \sum_{j=1}^{N}\left(x_{j}-m_{j}\right)^{2}+\frac{N}{12 \rho}, \quad m_{j}=a+\left(j-\frac{1}{2}\right) \lambda
$$

BAXter '63. Elementary computation:

$$
\begin{aligned}
-\sum_{j<k}\left(x_{k}-x_{j}\right) & +\rho \sum_{j}\left(x_{j}-\frac{a+b}{2}\right)^{2} \\
& =\sum_{k}(k-1) x_{k}-\sum_{j}(N-j+1) x_{j}+\rho \sum_{j}\left(x_{j}-\frac{a+b}{2}\right)^{2}
\end{aligned}
$$

then complete the squares.
Remark: Boltzmann weight: a Gaussian times a characteristic function (of a convex set). Starting point for Brascamp, Lieb ' 75.

Transfer matrix for the classical jellium

Partition function for the classical system:

$$
Z_{N}(\beta) \propto \int_{a}^{b} \mathrm{~d} x_{1} \cdots \int_{a}^{b} \mathrm{~d} x_{N} \exp \left(-\beta \rho \sum_{j=1}^{N}\left(x_{j}-m_{j}\right)^{2}\right) \mathbf{1}\left(x_{1} \leq \cdots \leq x_{N}\right) .
$$

Three easy steps:

1. change variables $y_{j}=x_{j}-m_{j}$
2. define Gaussian measure $\mu(\mathrm{d} y)=\exp \left(-\beta \rho y^{2}\right) \mathrm{d} y$
3. write indicator that particles are ordered as product of pair terms

$$
\mathbf{1}\left(x_{1} \leq \cdots \leq x_{N}\right)=\prod_{j=2}^{N} \mathbf{1}\left(y_{j-1} \leq y_{j}+\lambda\right)=\prod_{j=2}^{N} K\left(y_{j-1}, y_{j}\right)
$$

Remember $m_{j}-m_{j-1}=\lambda=\rho^{-1}$.
Partition function becomes

$$
Z_{N}(\beta) \propto \int_{\mathbb{R}^{N}} \mu\left(\mathrm{~d} y_{1}\right) \cdots \mu\left(\mathrm{d} y_{N}\right) F\left(y_{1}\right) K\left(y_{1}, y_{2}\right) \cdots K\left(y_{N-1}, y_{N}\right) G\left(y_{N}\right)
$$

Functions $F\left(y_{1}\right)=\mathbf{1}\left(y_{1}+m_{1} \geq a\right)$ and $G\left(y_{N}\right)=\mathbf{1}\left(y_{N}+m_{N} \leq b\right)$ encode boundary conditions. Representation used in Kunz's proof.

Path integrals I

Work in L^{2} (Weyl chamber) instead of antisymmetric wave functions.

$$
W_{N}(a, b)=\left\{\mathbf{x} \mid a \leq x_{1} \leq \cdots \leq x_{N} \leq b\right\}
$$

Fermionic Hilbert space is isomorphic to $L^{2}\left(W_{N}(a, b)\right)$. Hamiltonian becomes

$$
H_{N}=\sum_{1 \leq j \leq N}\left(-\frac{1}{2} \frac{\partial^{2}}{\partial x_{j}^{2}}+\rho\left(x_{j}-m_{j}\right)^{2}\right)+\frac{N}{12 \rho}
$$

Fermi statistics \Rightarrow Dirichlet boundary conditions at $x_{j}=x_{j+1}$.
Apply Feynman-Kac formula in Weyl chamber. Path space

$$
E=\{\gamma:[0, \beta] \rightarrow \mathbb{R} \mid \gamma \text { continuous }\}
$$

$\mu_{x y}=$ Brownian bridge measure on E (not normalized). Non-colliding paths

$$
W_{N}^{\beta}(a, b):=\left\{\left(\gamma_{1}, \ldots, \gamma_{N}\right) \in E^{N} \mid \forall t \in[0, \beta]: a<\gamma_{1}(t)<\cdots<\gamma_{N}(t)<b\right\}
$$

Feynman-Kac formula:

$$
e^{-\beta H_{N}}(\mathbf{x} ; \mathbf{y}) \propto \mu_{x_{1} y_{1}} \otimes \cdots \otimes \mu_{x_{N} y_{N}}\left(e^{-\rho \sum_{j=1}^{N} \int_{0}^{\beta}\left(\gamma_{j}(t)-m_{j}\right)^{2} \mathrm{~d} t} \mathbf{1}_{W_{N}^{\beta}(a, b)}(\gamma)\right)
$$

Path integrals II

$$
Z_{N}(\beta) \propto \int_{W_{N}(a, b)} \mu_{x_{1} x_{1}} \otimes \cdots \otimes \mu_{x_{N} x_{N}}\left(e^{-\rho \sum_{j=1}^{N} \int_{0}^{\beta}\left(\gamma_{j}(t)-m_{j}\right)^{2} \mathrm{~d} t} \mathbf{1}_{W_{N}^{\beta}(a, b)}(\gamma)\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{N} .
$$

Probability measure on non-colliding paths $W_{N}^{\beta}(a, b) \subset E^{N}$. Gaussian measure conditioned on non-collision. Particle positions recovered as path starting points $x_{j}=\gamma_{j}(0)$.

Transfer matrix for the quantum jellium

Step 1: change variables $\eta_{j}(t)=\gamma_{j}(t)-m_{j}$.
Step 2: Define Gaussian measure ν on 1-particle path space

$$
\int_{E} \nu(\mathrm{~d} \eta) f(\eta)=\frac{1}{c(\beta, \rho)} \int_{\mathbb{R}} \mathrm{d} x \int_{E} \mu_{x x}(\mathrm{~d} \eta) \exp \left(-\rho \int_{0}^{\beta} \eta(t)^{2} \mathrm{~d} t\right) f(\gamma)
$$

Step 3: Transfer operator in $L^{2}(E, \nu)$ encoding non-collision:

$$
(\mathbb{K} f)(\eta)=\int_{E} K(\eta, \xi) f(\xi) \nu(\mathrm{d} \xi), \quad K\left(\eta_{1}, \eta_{2}\right)=\mathbf{1}\left(\forall t: \eta_{1}(t)<\eta_{2}(t)+\lambda\right)
$$

Partition function

$$
Z_{N}(\beta) \propto\left\langle F, \mathbb{K}^{N-1} G\right\rangle
$$

suitable $F, G \in L^{2}(E, \nu)$. Operator \mathbb{K} is compact (Hilbert-Schmidt), irreducible $\Rightarrow\|\mathbb{K}\|=$ largest eigenvalue $z_{0}(\beta, \rho)>0$ (Krein-Rutman / Perron-Frobenius).

Asymptotics of the partition function \leftrightarrow principal eigenvalue $z_{0}(\beta, \rho)$ of \mathbb{K}. Infinite volume measure on $E^{\mathbb{Z}}$: Shift-invariant, ergodic.
Theorems on free energy, existence and uniqueness of the limits of correlation functions follow.

Symmetry breaking I

- It is enough to look at "diagonal" correlation functions $\rho(\mathbf{x} ; \mathbf{x}) /$ expectations of multiplication operators. Instead of dealing with full quantum state, look at probability measure \mathbb{P} on point configurations

$$
\omega=\left\{x_{j} \mid j \in \mathbb{Z}\right\}
$$

Shifted configuration is

$$
\tau_{\theta} \omega=\left\{x_{j}+\theta \mid j \in \mathbb{Z}\right\}
$$

- Correlation functions are factorial moment densities of \mathbb{P}

$$
\int_{I \times \cdots \times I} \rho_{n}(\mathbf{x} ; \mathbf{x}) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}=\mathbb{E}\left[N_{l}\left(N_{l}-1\right) \cdots\left(N_{l}-n+1\right)\right],
$$

$N_{I}=\# \omega \cap I=\#\left\{j \mid x_{j} \in I\right\}$ number of particles in interval I. Correlation functions determine measure \mathbb{P} uniquely (moment problem).

- If measure \mathbb{P} and shifted measure $\mathbb{P} \circ \tau_{\theta}$ are mutually singular, then there must be some correlation function ρ_{n} and some x_{1}, \ldots, x_{n} such that $\rho_{n}\left(x_{1}-\theta, \ldots ; \ldots, x_{n}-\theta\right) \neq \rho_{n}\left(x_{1}, \ldots ; \ldots, x_{n}\right)$.
We prove $\mathbb{P} \circ \tau_{\theta} \perp \mathbb{P}$ whenever $\theta \notin \lambda \mathbb{Z}$.

Symmetry breaking II

Label particles in infinite point configuration ω as

$$
\cdots<x_{-1}(\omega)<x_{0}(\omega) \leq 0 \leq x_{1}(\omega)<\cdots
$$

\mathbb{P} limit along $a, b \in \lambda \mathbb{Z}$. Preferred positions: half-integer multiples of λ.
Lemma: ergodicity of measure for infinitely many paths \Rightarrow

$$
\lim _{n \rightarrow \infty} \exp \left(\mathrm{i} \frac{2 \pi}{\lambda} \frac{1}{n} \sum_{j=1}^{n}\left(x_{k}(\omega)-\left(k-\frac{1}{2}\right) \lambda\right)\right)=1 \quad \mathbb{P} \text {-almost surely. }
$$

W.r.t. shifted measure $\mathbb{P} \circ \tau_{\theta}$, almost sure limit is instead $\exp (\mathrm{i} 2 \pi \theta / \lambda)$. Measure and shifted measure are mutually singular when $\theta \notin \lambda \mathbb{Z}$.

Related to arguments in Aizenman, Martin '80, Aizenman, Goldstein, Lebowitz '01.

Conclusion

Symmetry is not limited to low temperature or low density.

Proofs combine standard tools from statistical mechanics: path integrals \& transfer matrices.

Ref,:

S. Jansen and P. Jung,

Wigner crystallization for the quantum 1D jellium at all densities. arXiv: 1306.6906 [math-ph]

