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Context

Setting: quantum statistical mechanics. Charged fermions move on a line,
homogeneous neutralizing background.

Wigner ’34: in order to understand the effect of electronic interactions in
solids, crude approximation: periodic charge distribution (atoms) ~
homogeneous positive charge distribution. Keep electronic interactions.
Jellium, one-component plasma.

Possible scenario: at low density, electrons minimize repulsive Coulomb energy
by forming a periodic lattice. Wigner crystal.

Dimension one: Wigner crystallization proven for the classical jellium at all
densities (KuNz '74, BRASCAMP-LIEB 75, AIZENMAN-MARTIN ’80), for the
quantum and classical jellium at low densities BRASCAMP-LIEB '75.

This talk: Wigner crystallization for quantum 1D jellium at all densities.
Proof combines arguments of cited works, notably Kunz's transfer matrix
approach.



Outline

1. Setting

2. Main result

> existence of the thermodynamic limit of all correlation functions
> translational symmetry breaking at all 3,p > 0

3. Proof ideas

> path integrals
» transfer matrix, Perron-Frobenius



Electrostatic energy and Hamiltonian

> N particles of charge —1, positions x1,...,xy € [3,b] CR
» one-dimensional Coulomb potential V(x —y) = —|x — y|
> neutralizing background of homogeneous charge density p = N/(b — a)

> total potential energy
N b
U(xt,...,xn) = — Z \xj-—xk|+p2/ |x; — x]dx
=172

1</<k<N
2 b b

—p—/ / |x — x"|dxdx’".
2 a a

Hn Hilbert space for N fermions = antisymmetric functions in L?([a, b]").

v

v

Hamilton operator

N
Zai Xl,...,XN).

Dirichlet boundary conditions at x = a and x = b.



Free energy and reduced density matrices

» 3 > 0 inverse temperature
» Thermodynamic limit

N — oo, a— —00, b= +00, —— — p.
a

b —

» Canonical partition function

Zu(B) = Tr exp(—BHy) = %/{ IR X) s

exp(—BHn)(x;y) integral kernel of exp(—SHn).
> Free energy

£(B,p) = —lim 5LN log Zn(8)-

» n-particle reduced density matrices

p,,N(xl, ey Xni YLy ey Yn) X / exp(—BHn)(x,x"; y,x")dx’

[a,b]N=n

proportionality constant fixed by

/ N (x;x)dxg -+ -dxy = N(N—1)--- (N —n+1)
[a.b1"



Results

Theorem (Free energy)

- Pl 1 epviry) _ L
f(8.0)= 1, + (/3 + 51081 =& *Y™)) = Slog (5, p).
20(3, p) principal eigenvalue of a transfer operator.

Free energy of independent harmonic oscillators + a correction term.

Theorem (Symmetry breaking)

(i) In the thermodynamic limit along a, b € p~'Z, all reduced density
matrices have uniquely defined limits

Pn(Xts ey Xn Y1y ey V) = Iimp,,N(xl,...,xn;yl,...,y,,).

The convergence is uniform on compact subsets of R" x R", and p" and
pn are continuous functions of x and y.
1

(i) The limit is periodic with respect to shifts by A = p~+,
on(a— Ao Ya—A) = pn(x1, ..oy Yn)

for all n € N and x,y € R". For every 0 ¢ \Z there is some n € N and
some x € R" such that p,(x — 0; x — 6) # pa(x; x): A is the smallest period.



Periodicity of the one-particle density

Limit state on fermionic observable algebra has smallest period A = p~!.

Question: periodicity visible at the level of the one-particle density?

Brascamp, Lieb '75: one-particle density is

p(x;x) = i F(x — kX) exp(f%)

k=—o00

F even, log-concave function, 26° = [\/2ptanh(8+/p/2)] . At low density
(A= p~' > o), one-particle density has smallest period A = p~*.

At high density, we do not know whether this is true.

Note A state can have a non-trivial period but constant one-particle density.
Example
YUy =---A 1[7170) A ]_[071) A A 1[,1’"“) A

One-particle density Y, 1}, ,41)(x) = 1, periodicity visible only at the level of
two-point correlation functions.



Energy as a sum of squares

Observation: when particles are labelled from left to right
a<xi<---<xy< b,

energy is a sum of squares

N
N .1
Ubarow) =p 3 Ly =m) + g0 m=a+ (=)

BAXTER ’63. Elementary computation:

—Zxk—XJ)JrPZ a+b
Jj<k
_Z — 1)xx — Z(N J+1)x +pz a—;—b)27

then complete the squares.

Remark: Boltzmann weight: a Gaussian times a characteristic function (of a
convex set). Starting point for BRASCAMP, LIEB '75.



Transfer matrix for the classical jellium

Partition function for the classical system:

b b N
Zn(B) x / dx - - / dxy exp(—BpZ(xj — mj)2)1(xl << x).
a a =1

Three easy steps:
1. change variables y; = x; — m;
2. define Gaussian measure p(dy) = exp(—pBpy?)dy

3. write indicator that particles are ordered as product of pair terms

N N
10a < <) =11 <y + N =[[ K01, %)
j=2

j=2

oy -1
Remember mj —mj_1 =A=p .

Partition function becomes

Zn(B) o /RN p(dyr) -+ p(dyw) F(y1)K(y1, y2) - - - K(yn—1, yn) G(yn)-

Functions F(y1) = 1(y1 + m1 > a) and G(yn) = 1(yn + mn < b) encode
boundary conditions. Representation used in Kunz's proof.



Path integrals |

Work in L?>(Weyl chamber) instead of antisymmetric wave functions.
Wn(a,b) ={x|a<x <---<xy< b},

Fermionic Hilbert space is isomorphic to L*(Wiy(a, b)). Hamiltonian becomes

2
Hy = Z (f%% + p(x; — mj)2) + %
J

1<j<N

Fermi statistics = Dirichlet boundary conditions at x; = xj1.
Apply Feynman-Kac formula in Weyl chamber. Path space

E ={v:[0,8] = R | v continuous}
lxy = Brownian bridge measure on E (not normalized). Non-colliding paths
Wy (a,b) == {(v1,...,w) € EY [Vt €[0,8]: a<(t) <--- < n(t) < b}.

Feynman-Kac formula:

_ _ N B (mi(t)—m;)2
e 7t (X; Y) X Pxyyy @ -+ @ Uxyyp (e P sty (0= m) dthﬁ(a,b)(V))




Path integrals Il

Zu(s) [

8
P @ Dl (e—p Mg (w(t)—mj)zdrlwﬁ(a b)(,y)) dxq - - - dxp.
Wy (a,b) ’

N

X Xz X3 Xa Xs e ¥
B
tT
0
a Xa Xa Xa Xe X
b

X1 X

Probability measure on non-colliding paths W, (a, b) C EV. Gaussian measure
conditioned on non-collision. Particle positions recovered as path starting
points x; = ;(0).



Transfer matrix for the quantum jellium

Step 1: change variables 7;(t) = v;(t) —
Step 2: Define Gaussian measure v on 1-particle path space

[vtanio = 3 [ ax [ pmtanyon(= [ n(era) .

Step 3: Transfer operator in L?(E,v) encoding non-collision:

(Ao = [ K OFOnae). Klmm) =1(ve: m(®) < m(®)+ ).

Partition function
Zn(B) x (F,KN7'G),

suitable F, G € [*(E,v). Operator K is compact (Hilbert-Schmidt), irreducible
= ||K]|| = largest eigenvalue z(/3, p) > 0 (Krein-Rutman / Perron-Frobenius).

Asymptotics of the partition function <« principal eigenvalue z (8, p) of K.
Infinite volume measure on E*: Shift-invariant, ergodic.

Theorems on free energy, existence and uniqueness of the limits of
correlation functions follow.



Symmetry breaking |

> It is enough to look at “diagonal” correlation functions p(x;x) /
expectations of multiplication operators. Instead of dealing with full
quantum state, look at probability measure [P on point configurations

w={x|j€Z}
Shifted configuration is
Tow = {x; + 0 |j €L}

» Correlation functions are factorial moment densities of P
/ pn(x;x)dxl---dx,,:]E[N,(N,fl)»»‘(N,fnJrl)],
Ix--x1

Ny = #wn |l =#{j| x; € I} number of particles in interval /.
Correlation functions determine measure P uniquely (moment problem).

> If measure P and shifted measure P o 79 are mutually singular, then there
must be some correlation function p, and some xi, ..., x, such that

pn(x1 —0,...; .o xa—0) # pa(x1, o5y Xn).
We prove Po 1y L P whenever 0 ¢ \Z.



Symmetry breaking Il

Label particles in infinite point configuration w as
s < xmp(w) < xo(w) €0 < x(w) < -
P limit along a, b € AZ. Preferred positions: half-integer multiples of A.
Lemma: ergodicity of measure for infinitely many paths =
21 1 1
lim_exp (i;\rn Z;(xk(w) — (k= 2))\)> =1 P-almost surely.

W.r.t. shifted measure P o 79, almost sure limit is instead exp(i27w0/)\).
Measure and shifted measure are mutually singular when 6 ¢ \Z.

Related to arguments in AIZENMAN, MARTIN '80, AIZENMAN, GOLDSTEIN,
LeBowiITZ ’01.



Conclusion

Symmetry is not limited to low temperature or low density.

Proofs combine standard tools from statistical mechanics: path integrals &
transfer matrices.
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