Invariants of ground state phases in one dimension

Sven Bachmann

Mathematisches Institut Ludwig-Maximilians-Universität München

Joint work with Yoshiko Ogata and Bruno Nachtergaele

Warwick Symposium on Statistical Mechanics: Many-Body Quantum Systems

What is a quantum phase transition?

A simple answer: A phase transition at zero temperature A slightly more precise answer: Consider:

- ightharpoonup A smooth family of Hamiltonians $H(s), s \in [0,1]$
- \triangleright The associated family of ground states $\Omega_i(s)$
- \triangleright A quantum phase transition occurs at singularities of $s\mapsto \Omega_i(s_c)$

In this talk:

- Quantum spin systems
- \triangleright Hamiltonians $H_{\Lambda}(s)$ are continuously differentiable
- hd Spectral gap above the ground state energy $\gamma_{\Lambda}(s)$ such that

$$\gamma_{\Lambda}(s) \geq \gamma(s) \begin{cases} > 0 & (s \neq s_c) \\ \sim C |s - s_c|^{\mu} & (s \rightarrow s_c) \end{cases} \text{ QPT}$$

Local vs topological order

Ordered phases \sim non-unique ground state

- ➤ The usual picture: Local order parameter distinguishes between possible ground states
 Example: Local magnetization in the quantum Ising model
- \triangleright 'Topological order': Local disorder, for any local A,

$$||P_{\Lambda}AP_{\Lambda} - C_A \cdot 1|| \le C|\Lambda|^{-\alpha}, \qquad C_A \in \mathbb{C},$$

 P_{Λ} : The spectral projection associated to the ground state energy The ground state space depends on the topology of the lattice Example: Ground state degeneracy in Kitaev's 2d model

Basic question: What is a ground state phase?

Automorphic equivalence

$$H_{\Lambda}(s) = \sum_{X \subset \Lambda} \Phi_X(s), \qquad s \in [0, 1]$$

with $s \mapsto \Phi_X(s)$ of class C^1 , and uniform spectral gap:

$$\gamma := \inf_{\Lambda \subset \Gamma, s \in [0,1]} \gamma_{\Lambda}(s) > 0$$

Define $\mathcal{S}_{\Gamma}(t)$: ground state space on Γ at s=t. Then there exists an automorphism $\alpha_{\Gamma}^{t_1,t_2}$ of \mathcal{A}_{Γ} such that

$$S_{\Gamma}(t_2) = S_{\Gamma}(t_1) \circ \alpha_{\Gamma}^{t_1,t_2}$$

 $\alpha_{\Gamma}^{t_1,t_2}$ is local: satisfies a Lieb-Robinson bound

Now: Invariants of the equivalence classes? Classification of phases?

Finitely correlated states

A special class of states on a spin chain $\mathcal{A}_{\mathbb{Z}}$ with local algebra \mathcal{A}

- ▷ A finite dimensional C*-algebra B
- $\quad \triangleright \ \, \text{A completely positive map} \, \, \mathbb{E} : \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B}$
- hd Two positive elements $e \in \mathcal{B}$ and $\rho \in \mathcal{B}^*$ such that

$$\mathbb{E}(1 \otimes e) = e, \qquad \rho \circ \mathbb{E}(1 \otimes b) = \rho(b)$$

Notation: $\mathbb{E}(A \otimes b) = \mathbb{E}_A(b)$. Finitely correlated state:

$$\omega(A_n \otimes \cdots \otimes A_m) := \rho(e)^{-1} \rho\left(\mathbb{E}_{A_n} \circ \cdots \circ \mathbb{E}_{A_m}(e)\right)$$

Exponential decay of correlations if $\sigma(\mathbb{E}_1) \setminus \{1\} \subset \{z \in \mathbb{C} : |z| < 1\}$

$$\omega(A \otimes 1^{\otimes l} \otimes B) = \rho(e)^{-1} \rho\left(\mathbb{E}_A \circ (\mathbb{E}_1)^l \circ \mathbb{E}_B(e)\right)$$

Finitely correlated states

 $\,\,\vartriangleright\,$ 'Finite correlation': The set of functionals on $\mathcal{A}_{\mathbb{N}}$ defined by

$$\omega_X(A) = \omega(X \otimes A),$$

with $X \in \mathcal{A}_{\mathbb{Z} \setminus \mathbb{N}}$, generates a finite dimensional linear space.

ho Purely generated FCS: Consider $\mathcal{B} = \mathcal{M}_k$ and

$$\mathbb{E}(A \otimes b) = V^*(A \otimes b)V$$

for $V: \mathbb{C}^k \to \mathbb{C}^n \otimes \mathbb{C}^k$.

ightharpoonup In a basis $\{e_{\mu}\}$ of \mathbb{C}^n : $V\chi=\sum_{\mu=1}^n e_{\mu}\otimes v_{\mu}^*\chi$ with $v_i\in\mathcal{M}_k$ i.e.

$$\mathbb{E}(A \otimes b) = \sum_{\mu,\nu=1}^{n} \langle e_{\mu}, A e_{\nu} \rangle \, v_{\mu} b v_{\nu}^{*} \quad \text{(MPS)}$$

Example: the AKLT model

- Affleck-Kennedy-Lieb-Tasaki, 1987
- $\triangleright \, \mathrm{SU}(2)$ -invariant, antiferromagnetic spin-1 chain
- ▶ Nearest-neighbor interaction

$$H_{[a,b]} = \sum_{x=a}^{b-1} \left[\frac{1}{2} \left(S_x \cdot S_{x+1} \right) + \frac{1}{6} \left(S_x \cdot S_{x+1} \right)^2 + \frac{1}{3} \right] = \sum_{x=a}^{b-1} P_{x,x+1}^{(2)}$$

where $P_{x,x+1}^{(2)}$ is the projection on the spin-2 space of $\mathcal{D}_1\otimes\mathcal{D}_1$

- \triangleright Uniform spectral gap γ of $H_{[a,b]}$, $\gamma > 0.137194$
- \triangleright Ground state is finitely correlated: $\mathcal{B} = \mathcal{M}_2$ and

$$(\mathcal{D}_1 \otimes \mathcal{D}_{1/2})V = V\mathcal{D}_{1/2}$$

Hamiltonians

Let
$$\mathbb{V}=(v_1,\ldots,v_n)\in B_{n,k}(p,q)$$
 and $\omega^{\mathbb{V}}$ be such that

- $\triangleright v_i \in \mathcal{M}_k$
- \triangleright spectral radius of $\mathbb{E}_1^{\mathbb{V}}$ is 1, and it is a non-degenerate eigenvalue
- $hd \sigma(\mathbb{E}_1^{\mathbb{V}}) \setminus \{1\} \subset \{z \in \mathbb{C} : |z| < 1\}$ trivial peripheral spectrum
- ho there are projections p,q such that $pe^{\mathbb{V}}p$ and $qp^{\mathbb{V}}q$ are invertible

Then there is a canonical Hamiltonian $H^{V,p,q}$ such that

- ▷ positive, finite range interaction
- uniform spectral gap above the ground state energy
- ground state spaces:

$$\mathcal{S}_{\mathbb{Z}} = \{\omega^{\mathbb{V}}\}, \quad \mathcal{S}_{[1,\infty)} \cong \mathcal{M}^*_{\dim(p)} \quad \mathcal{S}_{(-\infty,0]} \cong \mathcal{M}^*_{\dim(q)}$$

Invariants of gapped phases

Theorem. Consider $\mathbb{I} \in B_{n,k_i}(p_i,q_i)$ and $\mathbb{F} \in B_{n,k_f}(p_f,q_f)$ and the canonically associated Hamiltonians $H^{\mathbb{I},p_i,q_i},H^{\mathbb{F},p_f,q_f}$.

There is a continuous path $H(s), s \in [0, 1]$ such that

- 1. $H(0) = H^{\mathbb{I},p_i,q_i}$ and $H(1) = H^{\mathbb{F},p_f,q_f}$
- 2. H(s) are uniformly gapped
- 3. There is a unique ground state on \mathbb{Z}

if and only if $\dim(p_i) = \dim(p_f)$ and $\dim(q_i) = \dim(q_f)$.

In words: The pair $(\dim(p), \dim(q))$ is the invariant of the gapped phase with a unique state on \mathbb{Z} .

Corollary & Comments

Corollary. Each gapped phase contains a model with a pure product state in the thermodynamic limit

Remarks:

- \triangleright The theorem emphasizes the role of edge states in the non-trivial classification of gapped phases in d=1
- ⊳ No bulk-edge correspondence
- ▷ No symmetry requirements
- ▷ Conjecture: The theorem extends to arbitrary gapped models with a unique ground state in the thermodynamic limit
- $\,\vartriangleright\,$ The interaction length is constant and the smallest such l is $l \le (k^2-n+1)k^2$
- \triangleright The case of the AKLT model: belongs to the phase (2,2)

About the proof

Key:

$$\mathbb{V} = (v_1, \dots, v_n) \quad \longrightarrow \quad \mathbb{E}^{\mathbb{V}} \quad \longrightarrow \quad \omega^{\mathbb{V}} \quad \longrightarrow \quad H^{\mathbb{V}}$$
 and $\operatorname{Gap}(\mathbb{E}_1^{\mathbb{V}}) \quad \longrightarrow \quad \operatorname{Gap}(H^{\mathbb{V}})$

i.e. Construct a gapped path of Hamiltonians by constructing a path $\mathbb{V}(s)$ with the right properties

But: $\mathbb{V} \mapsto H^{\mathbb{V}}$ not always continuous!

The theorem reduces to a statement about the pathwise connectedness of a certain subspace of $(\mathcal{M}_k)^{\times n}$

Note:

$$\mathbb{E}_1^{\mathbb{V}}(b) = \sum_{\mu=1}^n v_{\mu} b v_{\mu}^*$$

the matrices v_{μ} are the Kraus operators for the CP map $\mathbb{E}_{1}^{\mathbb{V}}$.

Primitive maps

One way to enforce the spectral gap condition: Perron-Frobenius theory

- ▷ Irreducible positive map ⇒
 - 1. Spectral radius r is a non-degenerate eigenvalue
 - 2. Corresponding eigenvector e > 0
 - 3. Eigenvalues λ with $|\lambda| = r$ are $re^{2\pi i\alpha/\beta}$, $\alpha \in \mathbb{Z}/\beta\mathbb{Z}$
- \triangleright A primitive map is an irreducible map with $\beta = 1$

Lemma. A CP map with Kraus operators $\{v_1, \ldots, v_n\}$ is primitive iff there exists $m \in \mathbb{N}$ such that

span
$$\{v_{\mu_1} \cdots v_{\mu_m} : \mu_i \in \{1, \dots, n\}\} = \mathcal{M}_k$$

Note: *m* fixed!

Primitive maps

How to construct paths of primitive maps? Consider

$$Y_{n,k} := \left\{ \mathbb{V} : v_1 = \sum_{\alpha=1}^k \lambda_\alpha \left| e_\alpha \right\rangle \left\langle e_\alpha \right|, \text{and} \quad \left\langle v_2 e_\alpha, e_\beta \right\rangle \neq 0 \right\}$$

with the choice

$$(\lambda_1, \dots, \lambda_k) \in \Omega := \{\lambda_i \neq 0, \lambda_i \neq \lambda_j, \lambda_i / \lambda_j \neq \lambda_k / \lambda_l\}$$

Then,

$$|e_{\alpha}\rangle\langle e_{\beta}| \in \operatorname{span}\left\{v_{\mu_1}\cdots v_{\mu_m}: \mu_i \in \{1,2\}\right\}$$

for $m \ge 2k(k-1) + 3$.

Problem reduced to the pathwise connectedness of $\Omega\subset\mathbb{C}^k$ Use transversality theorem

Backbone of proof

- 1. Embed \mathbb{I}, \mathbb{F} into a common matrix algebra \mathcal{M}_k
- 2. Construct $V(s), s \in [0, 1]$ such that

$$\triangleright \ \mathbb{V}(0) = \mathbb{I}, \ \mathbb{V}(1) = \mathbb{F}$$
$$\triangleright \ \mathbb{V}(s) \in Y_{n,k} \text{ for } s \in (0,1)$$

At the edges $s \in \{0, 1\}$: perturb the Jordan blocks of v_1

3. If $\dim(p_i) = \dim(p_f)$, then $p_f = u^* p_i u$ and interpolate in $\mathrm{SU}(k)$ If $\dim(q_i) = \dim(q_f)$, then $q_f = w^* q_i w$ and interpolate in $\mathrm{SU}(k)$

Result: continuous $\mathbb{V}(s), p(s), q(s)$ generating a continuous $H(s) := H^{\mathbb{V}(s), p(s), q(s)}$ with uniform spectral gap

Note: If $\dim(p_i) \neq \dim(p_f)$ then $\dim(\mathcal{S}_{i,[0,\infty)}) \neq \dim(\mathcal{S}_{f,[0,\infty)})$: There is no automorphism, different phases

Local symmetries

Next question: What if H(s) all share a symmetry? Automorphic equivalence and local symmetries:

- ightharpoonup Lie group G, and π^g the action of G on \mathcal{A}_{Γ}
- $\triangleright G$ is a local symmetry of the interaction if

$$\pi^g(\Phi_X(s)) = \Phi_X(s)$$

for all $g \in G$, $X \subset \Gamma$ and $s \in [0,1]$

Then:

$$\alpha_{\Gamma}^{t_1,t_2}\circ\pi^g=\pi^g\circ\alpha_{\Gamma}^{t_1,t_2}$$

i.e. $\alpha_{\Gamma}^{t_1,t_2}$ is compatible with the symmetries

Edge representations

Let now $\Pi_{\Gamma}(s)$ be the subrepresentation of G on $\mathcal{S}_{\Gamma}(s)$

Proposition. Assume $H(s), s \in [0,1]$ is a smooth path of gapped Hamiltonians with G-invariant interactions. Then the representations $\Pi_{\Gamma}(t_1)$ and $\Pi_{\Gamma}(t_2)$ are equivalent for all $t_1, t_2 \in [0,1]$.

Follows from

$$\Pi_{\Gamma}(t_2) \left((\alpha_{\Gamma}^{t_1, t_2 *}(\omega)) (A) = \omega \left(\alpha_{\Gamma}^{t_1, t_2} \circ \pi^g(A) \right) \right.$$

$$= \omega \left(\pi^g \circ \alpha_{\Gamma}^{t_1, t_2}(A) \right) = (\alpha_{\Gamma}^{t_1, t_2 *} (\Pi_{\Gamma}(t_1)(\omega)) (A)$$

The representations Π_{Γ} are invariants of symmetric gapped phases Now; concrete observables?

The case of FCS chains

Unitary representation of G at one site:

$$U^g = e^{igS}$$

i.e. $\pi^g(A) = U^{g*}AU^g$ for $A \in \mathcal{A}$

Consider the FCS ground state ω of a G-invariant interaction

Theorem. In the GNS representation $(\mathcal{H}_{\omega}, \rho_{\omega}, \Omega_{\omega})$, the automorphism $\pi^g_{[1,\infty)}$ is unitarily implementable by $\mathcal{U}^g_{[1,\infty)}$, and

$$\mathcal{U}_{[1,\infty)}^g \in \rho_\omega(\mathcal{A}_{[1,\infty)})'' \cap \rho_\omega(\mathcal{A}_{(-\infty,0]})'.$$

Rigorous version of the formal $\exp\left(ig\sum_{x=1}^{\infty}S_x\right)$

The excess spin operator

- $\triangleright \ \mathcal{U}^g_{[1,\infty)}$ is an observable
- \triangleright Generator of $\mathcal{U}^g_{[1,\infty)}$: Excess spin operator
- ▷ In fact, we prove

$$\mathcal{U}_{[1,\infty)}^g = s - \lim_{L \to \infty} e^{ig\rho_\omega(S(L))}$$

where $S(L) \in \mathcal{A}_{[1,L^2]}$

- > Similar result for models with stochastic-geometric representation
- ▷ c.f. non-local string order parameter

$$O_{x,y} = (-1)^{y-x} \omega \left(S_x e^{i\pi \sum_{j=x+1}^{y-1} S^j} S_y \right)$$

used to describe 'dilute Neel order'

Bulk-edge correspondence

Symmetric FCS is generated by V such that

$$(U^g \otimes u^g)V = Vu^g$$
 i.e. $\mathbb{E}_{U^g}(u^g) = u^g$

where u^g is a representation of G on \mathbb{C}^k .

Simple computation:

$$\Pi_{[1,\infty)}^g(\omega)(A) = \operatorname{Tr}\left(Ad_{u_g^*}(\sigma_\omega)\mathbb{E}_A(1)\right)$$

The excess spin is observable in the correlation structure in the bulk The case of the AKLT model:

- ightharpoonup Symmetry: $G = \mathrm{SU}(2)$
- ho Auxiliary algebra $\mathcal{B}=\mathcal{M}_2,$ i.e. $\Pi_{[1,\infty)}^g$ is a spin 1/2 representation
- ▶ All models in that phase must carry a spin 1/2 at the edges, see Hagiwara et al., Observation of S = 1/2 degrees of freedom in an S = 1 linear chain Heisenberg antiferromagnet. PRL 65, 1990.

Conclusion

So far...

- ▷ Automorphic equivalence yields a good notion of a gapped ground state phase
- > Valid in any dimension
- ightarrow Invariants in d=1 without symmetry: dimensions of the edge ground state spaces
- \triangleright Invariants in any dimension with symmetry: G-representation on ground state spaces
- $\,\vartriangleright\,$ Invariants in d=1 with symmetry: The observable excess spin operators
- ▶ There is more to understand; e.g. the role of entanglement entropy?
- ... More details this afternoon!