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The indirect measurement problem

Our starting point is the continuous linear measurement model

M = AU + Eδ, δ > 0 (1)

where M,U and E are treated as random variables.
The unknown U takes values in H−τ (N) with some τ ∈ R.
We assume E to be Gaussian white noise taking values in
H−s(N), s > d/2.

The unknown is treated as a random variable since we have
only incomplete data of U.
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Bayes formula combines data and a priori information

The inverse problem is to find an estimate for U if we are given
a realisation m of the measurement M.

Bayes’ formula for discrete problem
Bayes’ formula gives us the posterior distribution π(uu | mk ):

π(un |mk ) = Cπpr (un)πε(mk | un)

= C exp
(
− 1

2δ2 ‖mk − Aun‖2`2 −
1
2
‖C−1/2

U un‖2`2
)
.

(2)

The result of Bayesian inversion is the posterior distribution, but
typically one looks at MAP or CM estimate.
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We don’t have Bayes’ formula for continuous problem

If we assume that that the noise takes values in L2 the MAP-
estimate of (2) Γ-converges to the following infinite-dimensional
minimisation problem:

argmin
u ∈ H r

{ 1
2δ2 ‖m − Au‖2L2 +

1
2
‖C−1/2

U u‖2L2

}
. (3)

Now if we think that the above is a MAP estimate of a Bayesian
problem we have to assume that U has formally the following
distribution

πpr (u) =
formally

c exp
(
− 1

2
‖C−1/2

U u‖2L2

)
.

Above we assume that CU is a 2r times smoothing covariance
operator.
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Does white noise belong to L2?

Formally

ε =
∞∑

j=−∞
〈ε, ψj〉ψj

where ψj form an orthonormal basis for L2. The Fourier
coefficients of white noise satisfy 〈ε,ek 〉 ∼ N(0,1), where
ek (t) = eikt . Hence

‖ε‖22 =
∞∑

k=−∞
|〈ε,ek 〉|2 <∞ with probability zero.

For the white noise we have
i) ε ∈ L2 with probability zero,
ii) ε ∈ H−s, s > d/2, with probability one.
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”The white noise paradox”

If we are working on a discrete world ‖εk‖`2 <∞ with all k ∈ R.
Hence the minimisation problem

uδn = argmin
u

{
‖Aun −mk‖2`2 + α‖C−1/2

U un‖2`2
}

is well defined. However we know that

lim
k→∞

‖εk‖`2 =∞.

The goal is to build a rigorous theory removing the apparent
paradox arising from the infinite L2-norm of the natural limit of
white Gaussian noise in Rk as k →∞.
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We can define new MAP estimate by omitting the
constant term ‖m‖2

L2

When m − Au ∈ L2 we can write

‖m − Au‖2L2 = ‖Au‖2L2 − 2〈m,Au〉L2 + ‖m‖2L2 .

Now omitting the constant term ‖m‖2L2 in (3) we get a new well
defined minimisation problem

uδ = argmin
u∈H r

{
‖Au‖2L2 − 2〈m,Au〉+ δ2‖C−1/2

U u‖2L2

}
.

The solution to the problem above is

uδ =
(

A∗A + δ2C−1
U

)−1
(A∗m)

where A is a pseudodifferential operator.
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Does omitting ‖m‖2
L2 =∞

cause any troubles?

The unknown function u.

Noiseless data m = Au

Example
We consider the problem

m = Au+εδ =

∫
Φ(· − y)u(y)dy+εδ

where u ∈ H1 is a piecewise
linear function, ε is white noise
and

A = F−1((1 + |n|2)−1(Fu)(n)).

We have u ∈ H1 and uδ ∈ H1 for
all δ > 0 so does uδ → u in H1

when δ → 0?
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Solution uδ does not converge to u in H1

We are interested in knowing what happens to the regularised
solution uδ in different Sobolev spaces when δ → 0.

Figure: Normalised errors c(s1)‖u − uδ‖Hs1 (T1) in logarithmic scale
with different values of s1. We observe that lim

δ→0
‖u − uδ‖H1(T1) 6= 0.
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Why are we interested in continuous white noise?

It is important to be able to connect discrete models to their
infinite-dimensional limit models.

In practice we do not solve the continuous problem but its
discretisation.
Discrete white noise is used in many practical inverse
problems as a noise model.
If the discrete model is an orthogonal projection of the
continuous model to a finite dimensional subspace it
guarantees that we can switch consistently between
different discretisations which is important for e.g. multigrid
methods.
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Crash course to generalised random variables

White noise E can be considered as a measurable map
E : Ω→ D′(N) where Ω is a probability space. Then white noise
E(y , ω) is a random generalised function for which:

pairings 〈E , φ〉D′×D are Gaussian random variables for all
test functions φ ∈ D = C∞0 (N),
we have EE = 0 and
the covariance operator CE = I where we define

E
(
〈E , φ〉D′×D〈E , ψ〉D′×D

)
= 〈CEφ, ψ〉D′×D for φ, ψ ∈ D.

Below we will write E ∼ N(0, I) as shorthand.
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Rigorous way of gaining conditional mean estimate

Assume that the unknown and the white noise are independent
and Gaussian

U ∼ N(0,CU), E ∼ N(0, I).

Then the posterior distribution, that is the conditional
distribution of u|m, is Gaussian and has the mean

uδ = CUA∗(ACUA∗ + δ2I)−1m.

This is equivalent to the MAP estimate defined above.

Note that in Gaussian case the MAP estimate coincide almost
surely with the CM estimate.
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Simple example in T1

Next we assume that U, E ∼ N(0, I). We know that the
realisations u, ε ∈ H−s, s > 1/2 a.s. The unknown U has the
formal distribution

πpr (u) =
formally

c exp
(
− 1

2
‖u‖2L2

)
.

Solving the CM/MAP estimate is linked to solving the
minimisation problem

uδ = argmin
u∈L2

{
‖Au‖2L2 − 2〈Au,m〉+ δ2‖u‖2L2

}
.

That is we are looking for approximation in L2 even though the
realisations of U are in L2 with probability zero.
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What can we say in a general case?

Let CU be 2r times smoothing, self-adjoint, injective and elliptic
pseudodifferential operator (e.g. CU = (I −∆)−r ). We assume
that U ∼ N(0,CU), that is we have a formal prior

πpr (u) =
formally

c exp
(
− 1

2
‖C−1/2

U u‖2L2

)
(4)

i.e. we are interested of finding an approximation uδ ∈ H r .

Above we assumed that the covariance operator CU ∈ Ψ−2r .
Now the question is in what Sobolev space H−τ does the prior
U takes values?
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Two definitions for covariance operator
if U takes values in H−τ we can define the covariance operator
of U two ways

1) CU : Hτ → H−τ

E
(
〈U, φ〉H−τ×Hτ 〈U, ψ〉H−τ×Hτ

)
= 〈CUφ, ψ〉H−τ×Hτ

where 〈·, ·〉H−τ×Hτ is a dual pairing.
2) BU : H−τ → H−τ

E
(
(U, φ)H−τ (U, ψ)H−τ

)
= (BUφ, ψ)H−τ ,

where (·, ·)H−τ stands for the inner product.

The connection between BU and CU is

BU = CU(I −∆)−τ : H−τ → H−τ .
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The prior U takes values in H−τ , where −τ < r − d/2

To guarantee that U ∈ H−τ we will choose −τ ∈ R so that

E
(
‖U‖2H−τ

)
<∞.

The above condition is equivalent with assumption that the
covariance operator BU is a trace class operator in H−τ . This is
true if −τ < r − d/2.

We have proven that when we are looking for an approximation
Uδ ∈ H r then the prior should take values in H−τ , where
−τ < r − d/2.
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What does this mean for our example?

An approximation uδ ∈ H1

For Gaussian smoothness prior
r = 1 but in two dimensional case
we get that −τ < 0.

The realisations of the prior don’t belong in L2.
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Theorem 1: Assumptions

We assume that
N is a d-dimensional closed manifold.
Operator CU is 2r times smoothing, self-adjoint, injective
and elliptic.
Unknown U is a generalised random variable taking values
in H−τ , τ > d/2− r with mean zero and covariance
operator CU .
E is white Gaussian noise taking values in H−s, s > d/2.

Consider the measurement

Mδ = AU + δE ,

where A ∈ Ψ−t , is an elliptic pseudodifferential operator of
order −t < min{0,−τ − s}. Assume that A : L2(N)→ L2(N) is
injective.
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Theorem 1: Convergence results

Take s1 ≤ r − s < r − d/2. Then the following convergence
takes place in Hs1(N) norm

lim
δ→0

Uδ(ω) = U(ω) a.s.

Above Uδ(ω) ∈ H r a.s.

We have the following estimates for the speed of convergence:
(i) If s1 ≤ −s − t then

‖Uδ(ω)− U(ω)‖Hs1 ≤ Cδ a.s.

(ii) If −s − t ≤ s1 ≤ r − s then

‖Uδ(ω)− U(ω)‖Hs1 ≤ Cδ1− s+t+s1
t+r a.s.
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Connection to Tikhonov regularisation

In deterministic framework one assumes that there exists a true
solution u ∈ H r . The regularised solution is given by

uδ = arg min
u∈H r

{
‖Au‖2L2 − 2〈m,Au〉+ α‖u‖2H r

}
where α = δκ, κ > 0.

This corresponds to our previous MAP estimate if we choose
κ = 2 and CU = (I −∆)−r .
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Convergence results in Tikhonov case

Take s1 ≤ min
{

r , 2
κ r +

(
2
κ − 1

)
t − s

}
then we get the following

convergence

lim
δ→0
‖uδ − u‖Hs1 = 0

and the speed of convergence

‖uδ − u‖Hs1 ≤ C max{δ
κ(r−s1)
2(t+r) , δ

1−κ(s+t+s1)
2(t+r) }.

Note that above u,uδ ∈ H r (N) with r ≥ 0.
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What can we say about the convergence
depending on κ?

The regularised solution

uδ = argmin
u∈H r

{
‖Au‖2L2 − 2〈m,Au〉+ δκ‖u‖2H r

}
can be written in a form

uδ = K−1A∗Au + K−1A∗δε
= unoiseless + unoise

where K = A∗A + δκ(I −∆)r .

The noise term is dominating if we choose κ ≥ 2.
We get convergence in H r when κ ≤ 1.

Note that in classical theory we get convergence when κ < 2.
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In a nutshell:
2-dimensional Gaussian smoothness prior

Inverse problem: M = AU + Eδ, E white noise.

MAP estimate: Using a modified Tikhonov regularisation with
penalty term ‖u‖H1 we get MAP estimate uMAP

δ ∈ H1.

Prior distribution: To get formally the above prior we assume
that U ∼ N(0,CU), where CU = (I −∆)−1.

CM estimate: The conditional distribution u|m has mean
uCM
δ = uMAP

δ ∈ H1.

Space of the prior: When CU = (I −∆)−1 we can show that
the prior U takes values in H−τ , τ > 0.

Theorem 1: We can prove convergence speed in spaces Hs1

where s1 < 0. Note that we don’t necessarily get convergence
in H1 or even in L2.
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