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Linear discrete Inverse Problems

We consider the linear discrete inverse problem of estimating
x ∈ Rn from

b = Ax + ε

where

I A is an m × n matrix, typically badly conditioned and of
ill-determined rank

I ε is additive noise, which we assume zero-mean white Gaussian

I x is a discretized signal

xj = f (tj), tj =
j

n
, 0 ≤ j ≤ n,



Priors as beliefs

Consider two prior models expressing our belief about the signal
before taking the data into account.

1. Prior model 1:
I We know that x0 = 0,
I We believe that the absolute value of the slope of f is bounded

by some m1 > 0.

2. Prior model 2:
I We know that x0 = xn = 0
I We believe that the curvature of f is bounded by some m2 > 0.



Formalization of prior beliefs

1. Prior model 1:
I Slope:

f ′(tj) ≈
xj − xj−1

h
, h =

1

n
,

I Prior information: We believe that

|xj − xj−1| ≤ hm1 with some uncertainty.

2. Prior model 2:
I Curvature:

f ′′(tj) ≈
xj−1 − 2xj + xj+1

h2
.

I Prior information: We believe that

|xj−1 − 2xj + xj+1| ≤ h2m2 with some uncertainty.



Assigning boundary conditions

Following the Bayesian paradigm, in both cases, we assume that xj
is a realization of a random variable Xj .
Boundary conditions:

1. Prior model 1: X0 = 0 with certainty. Probabilistic model for
Xj , 1 ≤ j ≤ n.

2. Prior model 2 X0 = Xn = 0 with certainty. Probabilistic
model for Xj , 1 ≤ j ≤ n − 1.



Priors as autoregressive models
1. First order prior:

Xj = Xj−1 + γWj , Wj ∼ N (0, 1), γ = hm1.

STD=γ
x

j−1

x
j

2. Second order prior:

Xj =
1

2
(Xj−1 + Xj+1) + γWj , Wj ∼ N (0, 1), γ =

1

2
h2 m2.

STD=γx
j−1

x
j+1

x
j



Matrix form: first order model

System of equations:

X1 = X1 − X0 = γW1

X2 − X1 = γW2

...
...

Xn − Xn−1 = γWn

L1 =


1
−1 1

. . .
. . .

−1 1

 ∈ Rn×n, X =


X1

X2
...
Xn

 , W =


W1

W2
...

Wn

 .

L1X = γW , W ∼ N (0, In),



Matrix form: second order model

System of equations:

X2 − 2X1 = X2 − 2X1 + X0 = γW1

X3 − 2X2 + X1 = γW2

...
...

−2Xn−1 − Xn−2 = Xn − 2Xn−1 + Xn−2 = γWn−1

L2 =


−2 1

1 −2 1
. . .

. . .

1 −2

 ∈ R(n−1)×(n−1), X =


X1

X2
...

Xn−1

 ,

L2X = γW , W ∼ N (0, In−1),



Testing a Prior

But
Γ−1 = LTL⇒ Γ =

(
LTL

)−1
= L−1L−T

Therefore,
LΓLT = L

(
L−1L−T

)
LT = In.

Conclusion: Given X ∼ N (x0, Γ),

W = L(X − x0) ∼ N (0, In).

This transform is called whitening of X , or Mahalanobis
transformation of X .
(Recall: a noise vector E ∼ N (0, In) is called white noise.)



Testing a Prior

Conversely:

W = L(X − x0)⇒ X = L−1W + x0.

Therefore, if W is white noise, then X ∼ N (x0, Γ).
This observation allows us to generate random draws from the
distribution N (x0, Γ):

Sampling from Gaussian densities

Repeat N times:

1. Draw a realization w ∼ N (0, In)

2. Set x = x0 + L−1w .



Random draws from priors

Generate m draws from the prior using the Matlab command
randn.

n = 100; % number of discretization intervals

t = (0:1/n:1);

m = 5; % number of draws

% First order model. Boundary condition X_0 = 0

L1 = diag(ones(1,n),0) - diag(ones(1,n-1),-1);

gamma = 1/n; % m_1 = 1

W = gamma*randn(n,m);

X = L1\W;



Plots of the random draws
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Adding structure

Assume that there is a reason to believe that the slope (or the
curvature) may be 10 times higher at isolated points.
If tk is such point, we replace the condition

Xk − Xk−1 = γWk

by the modified condition

Xk − Xk−1 = 10γWk .



In Matlab

n = 100; % number of discretization intervals

t = (0:1/n:1);

m = 5; % number of draws

k = 30; % position of the jump

L1 = diag(ones(1,n),0) - diag(ones(1,n-1),-1);

gamma = (1/n)*ones(n,1);

gamma(k) = 10*gamma(k);

W = diag(gamma)*randn(n,m);

X = L1\W;



Plots of the random draws
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The jumps (or kinks) are allowed, but not forced.



  Statistical Methods in Imaging

⊡ Fig. -

Random draws from variousMRF priors. Top row: white noise prior.Middle row: sparsity

prior or ℓ-prior with positivity constraint. Bottom row: total variation prior

The stochastic extension of (> .) is

Y = F(X) + E,

where Y , X and E are multivariate random vectors.
The form of the likelihood is determined not only by the assumed probability distri-

butions of Y , X, and E but also by the dependency between pairs of these variables. In the
simplest case X and E are assumed to bemutually independent and the probability density
of the noise vector known,

E ∼ πnoise(e).
resulting in a likelihood function of the form

π(y ∣ x) ∝ πnoise (y − F(x)) ,



  Statistical Methods in Imaging

⊡ Fig. -

Random draws from anisotropic Markov models. In the top row, the Markov model assumes

stronger dependency between neighboring pixels in the radial than in angular direction,

while in the bottom row the roles of the directions are reversed. See text for a more detailed

discussion

where Nj is the list of neighbor pixels of Xj , such as the four adjacent pixels in the model
(> .). In fact, the Hammersley–Clifford theorem (see []) states that prior distributions
of MRF models are of the form

πprior(x) ∝ exp
⎛⎝−

N∑
j= Vj(x)⎞⎠ ,

where the function Vj(x) depends only on x j and its neighbors.The simplest model in this
family is a Gaussian white noise prior, where Nj = / and Vj(x) = xj /(σ ), that is,

πprior(x) ∝ exp(− 
σ  ∥x∥) .

Observe that this prior assumes mutual independency of the pixels, which has qualitative
repercussions on the images based on it.

There is no theoretical reason to restrict the MRFs to Gaussian fields, and in fact, some
of the non-Gaussian fields have had a remarkable popularity and success in the imaging
context. Two non-Gaussian priors are particularly worth mentioning here, the ℓ-prior,
where Nj = / and Vj(x) = α∣x j∣, that is,

πprior(x) ∝ exp (−α∥x∥) , ∥x∥ = N∑
j= ∣x j ∣,



Hypermodels

If the bound on the slope (curvature) is not known

I we can model it also as a random variable θ.

I The prior takes on the form

Xk − Xk−1 = θ
1/2
k Wk

I The parameter θk is the variance of the Gaussian innovation

I θk quantifies the uncertainty in going from Xk−1 to Xk



Matrix form of hypermodels

In matrix-vector terms

LX = D1/2W

where
D = diag{θ1, θ2, . . . , θn}.

Since W is an n-variate standard normal, we can write the
probability density of X as

πprior(x) ∝ exp

(
−1

2
‖D−1/2LX‖2

)
.



Quantitative prior

If we have information about the

I location

I number

I expected amplitude

of the jumps, it should be encoded in the first order Markov model
by setting the corresponding θs.



Qualitative prior

If we only know that jumps may occur but no information about
how many, where and how big is available, then

I The variance of the innovation is unknown.

I The variance is modeled as a random variable

I The estimation of the variance of the Markov process is part
of the inverse problem

I The prior for the problem is the joint prior for X and Θ

πprior(x , θ) = πprior(x | θ)πhyper(θ)



Conditional smoothness prior

If we had the variance information, the original smoothness prior
for X would be determined. Since the variance vector is unknown,
we cannot ignore the normalizing factor

πprior (x | θ) =

(
det(LTD−1

θ L)

(2π)n

)1/2

exp

(
−1

2
‖D−1/2

θ Lx‖2

)
If L is invertible, there is an analytic expression for the determinant



I If L is not invertible, introduce

Zj = Xj − Xj−1, LX = Z

Then

πprior (z | θ) =

(
det(D−1

θ )

(2π)n

)1/2

exp

(
−1

2
‖D−1/2

θ z‖2

)

=
1

(2π)n/2
exp

−1

2
‖D−1/2

θ z‖2 − 1

2

n∑
j=1

log θj





Sparsity promoting priors

Assume that we expect a priori a smooth signal with few
discontinuities. Then:

I The jumps should be sudden thus the variances should be
independent

I There is no preference about the locations of the jumps, thus
the components should be identically distributed

I Only a few variances can be large, most should be close to
zero Therefore the hyperprior πhyper(θ) should be such that

I a few variances can be significantly large
I most of the variances are zero



Hyperpriors

The candidate probability densities for hyperpriors are

1. The gamma distribution

Θj ∼ Gamma(α, θ0), πhyper(θ) ∝
n∏

j=1

θα−1
j exp

(
− θj
θ0

)

with mean and variance αθ0 and αθ2
0

2. The inverse gamma distribution

Θj ∼ InvGamma(α, θ0), πhyper(θ) ∝
n∏

j=1

θ−α−1
j exp

(
−θ0

θj

)

with mean and variance θ0/(α− 1) and θ2
0/(α− 1)2(α− 2)

when α > 2.



Gamma vs Inverse Gamma
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Figure 2. One hundred random draws from the gamma distribution (left) and inverse gamma
distribution (right). The parameters are set so that the means and variance match. The mean is
indicated in the figures by a horizontal line.

and the inverse gamma distribution,

�j ∼ InvGamma(α, θ0), πhyper(θ) ∝
n∏

j=1

θ−α−1
j exp

(
− θ0

θj

)
. (10)

The mean and the variance of the gamma distribution are αθ0 and αθ2
0 , respectively, and those

of the inverse gamma distribution are θ0/(α − 1) and θ2
0

/
(α − 1)2(α − 2), when α > 2.

Figure 2 shows random draws from these two distributions. To make the comparison of
the random draws easier, thus to make it easier to capture similarities and differences between
the two hyperprior candidates, we have matched the parameters α and θ0 so that the two
distributions have the same mean and variance. Obviously, the realizations from the inverse
gamma distribution are smaller, in the average, than those from the gamma distribution, while
the outliers are fewer but more pronounced. This indicates that the inverse gamma distribution
favors solution with fewer but larger jumps than the gamma distribution.

We now consider how to express the likelihood model in terms of the new variable Z. For
simplicity, we assume that the data is contaminated by additive, zero mean Gaussian white
noise with variance σ 2, independent of the signal. By writing a stochastic extension of the
model (2),

B = AX + E, E ∼ N (0, σ 2I ), (11)

and expressing the random variable X in terms of Z,X = L−1Z, the density of B conditioned
on Z = z becomes

π(b|z) ∝ exp

(
− 1

2σ 2
‖b − AL−1z‖2

)
. (12)

Observe that π(b|z, θ) = π(b|z), i.e., the likelihood does not depend on the hyperparameter.
Then, according to Bayes’ formula, the posterior density of the pair (Z,�) conditioned

on the observation B = b becomes

π(z, θ |b) ∝ πhyper(θ)πprior(z|θ)π(b|z). (13)

Before addressing the issue of how to compute estimators based on the posterior density,
we discuss the extension of this model to the two-dimensional case, therefore to imaging
applications.

6



Assume the data are contaminated by additive zero-mean Gaussian
noise with covariance σ2I

B = AX + E , E ∼ N(0, σ2I )

leading to

π(b | z) ≈ exp

(
− 1

2σ2
‖b − AL−1z‖2

)
Note that

π(b | z , θ) = π(b | z),

i.e., the likelihood does not depend on the hyperparameters.
It follows from Bayes formula that the posterior of (Z ,Θ) given
B = b is

π(z , θ | b) ∝ πhyper(θ)πprior (z | θ)π(b | z)



MAP estimates computation

To calculate the MAP estimate

(zMAP, θMAP) = argmaxπ(z , θ | b)

we apply the following Iterative Alternating Scheme (IAS):

1. Initialize θ = θ0, k = 1

2. Update the estimate of the increments z :
zk = argmaxπ(z , θk−1 | b)

3. Update the variances θ: θk = argmaxπ(zk , θ | b).

4. Repeat from 2. until convergence



Gamma and inverse gamma hyperprior
If we denote the negative log-posterior by

F (z , θ | b) = − log(π(z , θ | b))

and use a gamma hyperprior then

F (z , θ | b) ' 1

2σ2
‖AL−1z − b‖2 +

1

2
‖D−1/2z‖2 +

1

θ0

n∑
j=1

θj −
(
α− 3

2

) n∑
j=1

log θj

while with the inverse gamma hyperprior

F (z , θ | b) ' 1

2σ2
‖AL−1z − b‖2 +

1

2
‖D−1/2z‖2 +

θ0

n∑
j=1

1

θj
−
(
α +

3

2

) n∑
j=1

log θj



The IAS algorithm

The efficiency of the alternating scheme comes form the fact that

I The functional to be minimized is quadratic in z

I The parameters θj are mutually independent

I There is an explicit formula for the minimizer with respect to θ

Next we will look at the two steps separately.



Updating z and θ

1. Updating z is tantamount to solving the linear system[
σ−1AL−1

D−1/2

]
z =

[
σ−1b

0

]
, x = L−1z .

2. Updating θj requires solving

∂

∂θj
F (z , θ | b) = 0, 1 ≤ j ≤ n.

When the hyperprior is the gamma distribution the solution is

θj = θ0

η +

√
z2
j

2θ0
+ η2

 , η =
1

2

(
α− 3

2

)
and when the hyperprior is the inverse gamma

θj =
1

α + 3/2

(
θ0 +

1

2
z2
j

)



Extension to 2D

Consider a gray scale image supported on unit square and
represent it as an n × n matrix. Recalling that the Kronecker
product of two matrices (A,B) is defined as

A⊗ B = [aijB],

representing the columns of the image matrix by xj ,

L1x =

 L
. . .

L


 x (1)

...

x (n)

 =

 Lx (1)

...

Lx (n)

 ,
that is,

L1 = In ⊗ L.



Extension to 2D

Similarly

L2x =


In
−In In

. . .
. . .

−In In


 x (1)

...

x (n)

 =


x (1)

x (2) − x (1)

...

x (n) − x (n−1)

 ,
that is,

L2 = L⊗ In.

Denote the vertical and horizontal jump vectors by

v = L1x , h = L2x .



and by V and H their stochastic extensions.

πprior(v , h | θ) =
1

(2π)N
exp

−1

2

N∑
j=1

v2
j + h2

j

θj
−

N∑
j=1

log θj


If the variance of the jumps is unknown, we model it as a random
variable ad use either a gamma or an inverse gamma hyperprior.



Challenges in 2D

[
V
H

]
= MX , M =

[
L1

L2

]
∈ B2N×N

M = QR = [Q1 Q2]

[
R1

0

]
R1X = QT

1

[
V
H

]
, QT

2

[
V
H

]
= 0

The second expression is a compatibility condition:

I if the vectors V and H come from an image, the circulation
around a vertex where 4 pixels meet must vanish



Likelihood in 2D

We write the likelihood as a singular Gaussian density in terms of
V and H

π(b | v , h) ∝ δ

(
QT

2

[
v
h

])
·

exp

(
− 1

2σ2
‖AR−1

1 QT
1

[
v
h

]
− b‖2

)
where the Dirac delta ensures that the support of the density is in
the subspace orthogonal to the range of Q2.



MAP in 2D

Due to the singularity of the posterior, the MAP is the maximizer
of the non-singular part restricted to the constraint subspace. In
the case of the gamma hyperprior we minimize

F (v , h, θ | b) ' 1

2σ2
‖AR−1

1 QT
1

[
v
h

]
− b‖2

+
1

2

N∑
j=1

v2
j + h2

j

θj
+

N∑
j=1

θj
θ0
− (α− 2)

N∑
j=1

log θj

subject to

QT
2

[
v
h

]
= 0



This is equivalent to minimizing

F (x , θ | b) ' 1

2σ2
‖Ax − b‖2

+
1

2

N∑
j=1

(L1x)2
j + (L2x)2

j

θj
+

N∑
j=1

θj
θ0
− (α− 2)

N∑
j=1

log θj

where
L1x = v , L2x = h.

In particular, updating (v , h) requires solving in the least squares
sense  σ−1A

D−1/2L1

D−1/2L2

 x =

 σ−1b
0
0

 .



Updating θ in 2D

The formula for updating θj for the gamma hyperprior

θj = θ0

η +

√
v2
j + h2

j

2θ0
+ η2

 η =
1

2
(α− 2)

and for the inverse gamma hyperprior

θj =
1

α + 2

(
θ0 +

1

2
(v2

j + h2
j )

)



TV and Perona Malik
TV penalty

TV (f ) =

∫
Ω
| 5 f |

The discrete counterpart of the total variation is

TV (x) =
N∑
j=1

√
v2
j + h2

j , v = L1x , h = L2x .

The TV-penalized solution of Ax = b is

x̂TV = argmin(‖Ax − b‖2 + δTV (x)), δ > 0.

while the Tikhonov regularized solution with a quadratic penalty is

x̂Tikh = argmin

‖Ax − b‖2 + δ

N∑
j=1

(v2
j + h2

j )

 ,



Write

TV (x) =
N∑
j=1

√
v2
j + h2

j =
N∑
j=1

v2
j + h2

j√
v2
j + h2

j

= ‖W 1/2
x Lx‖2

where

L =

[
L1

L2

]
, Wx = I2 ⊗ diag

 1√
(L1x)2

j + (L2x)2
j )


The nonlinear normal equations corresponding to TV regularization
are

ATAx + δLTWxLx = ATb

that can be seen as an asymptotic state of a nonlinear diffusion
equation

∂x

∂t
(t) = AT (Ax(t)− b) + δLTWx(t)Lx(t)

and use a time marching scheme to drive the initial state to a
steady state.



TV penalty and gamma

Alternatively, given initial guess x0 , let the kth iterate satisfy

ATAx + δLTW k−1Lx = ATb, W k−1 = Wxk−1 .

I This is equivalent to the fixed point iteration for TV penalty.

I This is also the IAS updating step with gamma hyperprior and
α = 2, δ =

√
2/σ0σ

2.

I The choice α = 2 + ε prevents prior variance from vanishing,
stabilizing IAS algorithm and TV penalty as well.



Perona-Malik and inverse gamma

If we let

Wx = I2 ⊗ diag

 1

1 + β
(

(L1x)2
j + (L2x)2

j

)


I the solution of the nonlinear normal equations is the
Perona-Malik regularized solution.

I The fixed point scheme is equivalent to the IAS for inverse
gamma hyperprior with β = 1/2θ0, and δ = (α + 2)θ0σ

2.



Quantification of uncertainty

I Sampling the posterior is a means of quantifying uncertainly
in the solution

I In the case of images the number of unknowns is (twice) the
number of pixels

I Using MCMC techniques may be unfeasible for such high
dimensions

I Sampling the posterior in a ROI reduces the complexity of the
problem



Sampling the ROI

I Let IROI be the set of indices of the pixels X ′ in the ROI.

I Partition X = [X ′;X”], Θ = [Θ′; Θ”]

I Given an estimate of (XMAP,ΘMAP) consider the conditional
posterior

π(x ′, θ′ | b, θ”MAP, θ”MAP) ∝ π(x , θ | b)x”=x”MAP,θ”=θ”MAP



MCMC for ROI

I Initialize: θ0 = θMAP, x0 = xMAP; k = 0

I Update x : Draw x ′+ from conditional distribution

π(x ′ | b, θk , x”MAP)

and set xk+1 = [x ′+; x”MAP].

I Update θ: draw θ′+ from the conditional distribution

π(θ′ | b, xk+1, θ”MAP)

and set θk+1 = [θ′+; θ”MAP]

I Continue until desired sample size is reached



Efficiency of scheme

I The conditional density is Gaussian, therefore each random
draw requires the solution of one linear system of the size of
the ROI

I The θj are independent, thus the draw of θ can be done
component by component

I More on sampling this afternoon and tomorrow



Computed examples

Inverse Problems 24 (2008) 034013 D Calvetti and E Somersalo

Figure 3. Original and blurred image. The cross in the bottom left corner of the blurred image
indicates the half-width of the Gaussian blur.

performed using Matlab in a single processor 2.13 GHz personal computer with 2.0 GB of
RAM.

Example 1. In the first computed example we consider a 256 × 256 gray scale image, shown
in the left panel of figure 3, which we want to restore from a blurred, noisy specimen shown in
the right panel. The half-width of the Gaussian kernel of the blurring operator is indicated in
the lower left corner, and white Gaussian noise which is 0.1% of the maximum of the noiseless
blurred image is added. The image is piecewise constant, with a constant background and two
objects, one ellipse and a rectangle, whose intensities are constant, one double the other. In
our computed examples, we use the same grid to generate the data and to solve the inverse
problem. In our restoration of the image we set up a Bayesian hypermodel with an inverse
gamma hyperprior with hyperparameters α = 3 and θ0 = 10−5, and in the computation of
the MAP estimate we update the image using both the GMRES and the CGLS-based iterative
approach. Due to the large dimensions of the problem, we use a matrix-free approach to the
iterative methods by performing the product in frequency space using the fast Fourier transform
(FFT) and its inverse (IFFT). In each iteration of the MAP algorithm, we allow a maximum
of 15 iteration steps with the GMRES or CGLS method, and we stop the outer iteration when
the estimate stabilizes, which occurs after five iterations with the GMRES updates, and after
seven with the CGLS. The completion of an outer iteration required 23 s with the GMRES
updates and 38 with the CGLS, of which 13 s were needed to compute the sparse Cholesky
factorization of MTM . To avoid that the imposition of zero boundary conditions on two of the
four boundary segments biases the computed result, at each iteration we change the segments
on which the boundary conditions are imposed, rotating them in a clockwise fashion. The
approximate MAP estimates of the image and of the prior variance obtained after 1, 3 and
5 iteration with the GMRES updates are displayed in figure 4, and those obtained after 1, 5
and 7 iterates with the CGLS updates in figure 5. The higher quality of the CGLS updates,
whose sensitivity to noise is further reduced due to the addition of the shift by the identity, is
noticeable. Increasing the number of CGLS iterations for the update of the image to 45 did
not change the final results, but increase the time to complete each outer iteration to 82 s.

To illustrate the convergence of the sequential minimization algorithm, in figure 6 we
have plotted the value of the objective function F(xk, θk|b) as a function of the iteration round
k and the norm of the residual error ‖xtrue − xk‖, where xtrue is the image used to generate
the data. In addition, to see how well the estimate corresponds to a minimum of the objective
function, we also calculate the norm of the gradient,

k �→ (‖∇xF (xk, θk|b)‖2 + ‖∇1/θF (xk, θk|b)‖2)1/2.
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Figure 4. Approximation of the MAP Estimate of the image (top row) and of the variance (bottom
row) after 1, 3 and 5 iteration of the cyclic algorithm when using the GMRES method to compute
the updated of the image at each iteration step.

Iteration 1 Iteration 3 Iteration 7
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Figure 5. Approximation of the MAP estimate of the image (top row) and of the variance (bottom
row) after 1, 3 and 5 iteration of the cyclic algorithm when using the CGLS method to compute
the updated of the image at each iteration step

The graphs displayed in figure 6 refer to the CGLS iteration with inverse gamma hyperprior.
The value of the objective function levels off after five iterations, and this could be the basis
for a stopping criterion. Note that after seven iterations, the norm of the estimation error
starts to grow again, typical of algorithms which exhibit semi-convergence. The speckling
phenomenon, by which individual pixel values close to the discontinuity start to diverge
is partly responsible for the growth of the error. This suggests that the iterations should be
stopped soon after the settling of the objective function. The fact that the norm of the derivative
is small already at the end of the first iterations which indicate that the sequential iteration
finds indeed a good approximation to a minimizer.
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Figure 4. Approximation of the MAP Estimate of the image (top row) and of the variance (bottom
row) after 1, 3 and 5 iteration of the cyclic algorithm when using the GMRES method to compute
the updated of the image at each iteration step.
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The graphs displayed in figure 6 refer to the CGLS iteration with inverse gamma hyperprior.
The value of the objective function levels off after five iterations, and this could be the basis
for a stopping criterion. Note that after seven iterations, the norm of the estimation error
starts to grow again, typical of algorithms which exhibit semi-convergence. The speckling
phenomenon, by which individual pixel values close to the discontinuity start to diverge
is partly responsible for the growth of the error. This suggests that the iterations should be
stopped soon after the settling of the objective function. The fact that the norm of the derivative
is small already at the end of the first iterations which indicate that the sequential iteration
finds indeed a good approximation to a minimizer.
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Figure 6. The value of the objective function (left), the norm of the estimation error (center) and
the norm of the gradient (right) as a function of the iteration round.

Figure 7. Original, blurred and noisy Shepp Logan phantom.

Iteration 7 Iteration 7

Figure 8. Approximation of the MAP estimate of the Shepp Logan phantom using a gamma (left)
and an inverse gamma (right) hyperprior.

Example 2. In this example we consider a 256 × 256 Shepp Logan phantom bordered with
a 20 pixel frame to avoid wrap-up artifacts when using the FFT to perform matrix-vector
products. Given the blurred and noisy specimen, obtained by convolving the original with
a Gaussian kernel and then adding to it white noise at the level of 0.1% of the maximum of
the blurred image, shown together with the original image in figure 7, we apply our Bayesian
hypermodel framework to restore the original image, with both the gamma and the inverse
gamma hyperprior. The hyperparameters in this case were α = 2.0001 and θ0 = 10−5 for
the gamma distribution and as in example 1 for the inverse gamma. At each iteration of
our MAP estimation algorithm, we compute an updated image using at most 15 steps of the
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Figure 9. The true image of example 3 (left) and the blurred noisy version of it (right). The image
profiles are computed along the horizontal and vertical line segments marked on the true image.

Iteration 10 Iteration 10

Figure 10. MAP estimates of the image and the variance using gamma hyperprior and CGLS
iterative solver. The ROI is marked in the variance image.

variant of CGLS algorithm described above. The cost of each update of the image and of its
variance is approximately 1 min. The final MAP estimates with the two different hyperpriors
are displayed in figure 8. The differences resulting from the hyperprior choice are rather
remarkable in this case. In fact, the estimate produced with the gamma hyperprior is less sharp
than one obtained with the inverse gamma. On the other hand, the inverse gamma hyperprior
tends to impose sharper changes in the gray scale intensity of the image, and it is more prone to
overshooting, causing small artifacts, or speckles. Although speckling artifacts are typically
so easy to identify to not be considered much of a problem, they can be rather unpleasant when
plotting the image, since they cause a big offset in the gray scale range. For this reason we
have set to zero any gray scale intensities returned as negative values by the MAP estimation
algorithm. This example suggests that the inverse gamma hyperprior is particularly suitable
for image segmentation applications. Since this is beyond the scope of this paper, we will not
discuss segmentation any further.

Example 3. The 128×128 gray scale image of this example contains two small circular blobs
inside a circular annulus. One blob is of uniform intensity, while the intensity of the second
one is a Gaussian with the peak on the boundary. Starting from the blurred and noisy specimen
shown, together with the original image, in figure 9, we compute the MAP estimate of the
image and the variance, shown in figure 10 with a gamma hyperprior with hyperparameters as
in the previous example, using the CGLS-based algorithm to update the image at each iteration.
The computation of each MAP estimation sweep requires between 6 and 9 s, including the
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