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Linear discrete Inverse Problems

We consider the linear discrete inverse problem of estimating
x € R" from

b=Ax+¢
where

» Ais an m X n matrix, typically badly conditioned and of
ill-determined rank

> ¢ is additive noise, which we assume zero-mean white Gaussian

> X is a discretized signal

5 =f(t), =12, 0<j<n,



Priors as beliefs

Consider two prior models expressing our belief about the signal
before taking the data into account.
1. Prior model 1:
» We know that xg = 0,
» We believe that the absolute value of the slope of f is bounded
by some m; > 0.
2. Prior model 2:
» We know that xg = x, =0
» We believe that the curvature of f is bounded by some m, > 0.



Formalization of prior beliefs

1. Prior model 1:

» Slope:

Xj — Xj-1 1

2 =1 h==
h n’

» Prior information: We believe that

f'(t;) ~

|xji — xj—1| < hmy with some uncertainty.

2. Prior model 2:

» Curvature:
Xj—1 = 2Xj + Xj11

f”(tj) ~ h2

» Prior information: We believe that

IXj—1 — 2xj + Xj41| < h*my with some uncertainty.



Assigning boundary conditions

Following the Bayesian paradigm, in both cases, we assume that x;
is a realization of a random variable X;.
Boundary conditions:
1. Prior model 1: Xy = 0 with certainty. Probabilistic model for
X, 1<j<n.

2. Prior model 2 Xy = X,, = 0 with certainty. Probabilistic
model for X;, 1 <j < n—1.



Priors as autoregressive models
1. First order prior:

)<j:)<j—1+7vvja VVJNN(Ovl)v v =hm.

2. Second order prior:

1 1
XJ'IE(XJ'—l—i_)(j-H)—i_VVVJ" M/jNN(()? 1), Y= 5/‘]2 ma.




Matrix form: first order model
System of equations:

X1=X1—Xo = YW
Xo—X1 = W,

Xnp—Xn1 = ’)’Wn

1 X1

-1 1 Xo

L1 = - RnX", = .
-1 1 Xn

|_1X :’}/W, WNN(Oaln)7



Matrix form: second order model
System of equations:

Xo —=2X1=Xo —=2X1+Xog = ’7W1
X3 —=2Xo+ X1 = W,

—2Xn1 = Xn2=Xp = 2Xy 1+ Xy = YW,

—2 1 X1
L2 = 1 -2 1 c R(”*l)x(”*l)’ X = )$2
1 -2 Xn—l

LoX =W, W ~ N(0,1,_1),



Testing a Prior

But
M=LTL=>r= (LT ="

Therefore,
LILT = L(L7'L-T)LT =1,

Conclusion: Given X ~ N (xo,),

W = L(X = x0) ~ N(0,1,).

This transform is called whitening of X, or Mahalanobis
transformation of X.
(Recall: a noise vector E ~ N(0,1,) is called white noise.)



Testing a Prior

Conversely:
W=L(X—-x)=X=L1W+x.

Therefore, if W is white noise, then X ~ N (xo, ).
This observation allows us to generate random draws from the
distribution N (xp, I'):

Sampling from Gaussian densities

Repeat N times:
1. Draw a realization w ~ N(0,1,)
2. Set x =xp+ L tw.




Random draws from priors

Generate m draws from the prior using the Matlab command

randn.

n = 100; % number of discretization intervals
t = (0:1/n:1);

m = 5; % number of draws

% First order model. Boundary condition X_0 = 0

L1 diag(ones(1,n),0) - diag(ones(l,n-1),-1);
gamma = 1/n; % m_1 =1

W = gamma*randn(n,m) ;

L1\W;

>
]



Plots of the random draws
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Adding structure

Assume that there is a reason to believe that the slope (or the
curvature) may be 10 times higher at isolated points.
If t, is such point, we replace the condition

X — X—1 = Wk
by the modified condition

X — Xe_1 = 109 W.



In Matlab

n = 100; % number of discretization intervals
t = (0:1/n:1);

m=5; % number of draws

k = 30; % position of the jump

L1 = diag(ones(1,n),0) - diag(ones(1l,n-1),-1);

gamma = (1/n)*ones(n,1);

gamma (k) = 10*gamma (k) ;

W diag(gamma)*randn(n,m) ;
X L1\W;



Plots of the random draws
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The jumps (or kinks) are allowed, but not forced.



B Fig. 21-2
Random draws from various MRF priors. Top row: white noise prior. Middle row: sparsity
prior or £'-prior with positivity constraint. Bottom row: total variation prior




B Fig. 211

Random draws from anisotropic Markov models. In the top row, the Markov model assumes
stronger dependency between neighboring pixels in the radial than in angular direction,
while in the bottom row the roles of the directions are reversed. See text for a more detailed
discussion



Hypermodels

If the bound on the slope (curvature) is not known

» we can model it also as a random variable 6.

v

The prior takes on the form

X — X1 = 0,° W,

v

The parameter 6 is the variance of the Gaussian innovation

v

0 quantifies the uncertainty in going from X, _1 to X



Matrix form of hypermodels

In matrix-vector terms
LX = DV?2w

where
D= diag{@l,ﬂg, e ,49,,}.

Since W is an n-variate standard normal, we can write the
probability density of X as

1 _
Tprior(X) o< exp (—2”0 1/2ny2> .



Quantitative prior

If we have information about the
> |ocation
> number
> expected amplitude

of the jumps, it should be encoded in the first order Markov model
by setting the corresponding 0s.



Qualitative prior

If we only know that jumps may occur but no information about
how many, where and how big is available, then

» The variance of the innovation is unknown.
» The variance is modeled as a random variable

» The estimation of the variance of the Markov process is part
of the inverse problem

» The prior for the problem is the joint prior for X and ©

71—prior(xa 6) = 7rprior(X ‘ e)ﬂ—hyper(e)



Conditional smoothness prior

If we had the variance information, the original smoothness prior
for X would be determined. Since the variance vector is unknown,
we cannot ignore the normalizing factor

1/2
det(LT D, L) 1, 1/
Trprior (X ‘ 0) = <(27‘r)’? exp <_2||D9 / LXH2>

If L is invertible, there is an analytic expression for the determinant



» If L is not invertible, introduce
Zi=X- X, LX=2

Then

det(D; 1)\ 2 1
e _
Trprior (Z ‘ ‘9) = <(2ﬂ_)0n> €Xp (2HD9 1/2ZH2>

1 —1 2,



Sparsity promoting priors

Assume that we expect a priori a smooth signal with few
discontinuities. Then:
> The jumps should be sudden thus the variances should be
independent
» There is no preference about the locations of the jumps, thus
the components should be identically distributed

» Only a few variances can be large, most should be close to
zero Therefore the hyperprior mhyper(€) should be such that
» a few variances can be significantly large
» most of the variances are zero



Hyperpriors

The candidate probability densities for hyperpriors are
1. The gamma distribution

° 0.
a—1 J
©j ~ Gamma(a, fy), Thyper(?) | |1 Hj exp (—9())
j=

with mean and variance afly and 63

2. The inverse gamma distribution
i 0
©j ~ InvGamma(a, fp), Thyper(#) H@Jfafl exp (_;)
j=1 I

with mean and variance /(o — 1) and 63/(a — 1)?(a — 2)
when a > 2.



Gamma vs Inverse Gamma
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Figure 2. One hundred random draws from the gamma distribution (left) and inverse gamma
distribution (right). The parameters are set so that the means and variance match. The mean is
indicated in the figures by a horizontal line.



Assume the data are contaminated by additive zero-mean Gaussian
noise with covariance o2/

B =AX + E, E ~ N(0,02))

leading to

~ 1 —1_y2
Note that
w(b|z,0)=mn(b]z),

i.e., the likelihood does not depend on the hyperparameters.
It follows from Bayes formula that the posterior of (Z,©) given
B=bis

(2,0 | b) X Thyper(0)Tprior(z | 0)m(b | 2)



MAP estimates computation

To calculate the MAP estimate

(zmap, Omap) = argmaxw(z,0 | b)

we apply the following Iterative Alternating Scheme (IAS):
1. Initialize 0 =6y, k=1
2. Update the estimate of the increments z:
zK = argmaxr(z, 01 | b)
3. Update the variances 0: 0k = argmaxn(z*,0 | b).

4. Repeat from 2. until convergence



Gamma and inverse gamma hyperprior

If we denote the negative log-posterior by
F(z.0 | b) = — log(r(z,0 | b))

and use a gamma hyperprior then

1 1
F(z,0|b) ~ T‘ZHAL_lz — b2+ 5y|D—1/22||2 +
1< 3\ ©
SR (a_ 2) 3" logh;
j=1 j=1
while with the inverse gamma hyperprior

1 _ 1. -
F(2,01b) = S 5|AL 2= b2+ 5DV +

n

1 3\ ©
fo 6j<a+2>;log9j

j=t



The IAS algorithm

The efficiency of the alternating scheme comes form the fact that
» The functional to be minimized is quadratic in z

» The parameters 6; are mutually independent
» There is an explicit formula for the minimizer with respect to 6

Next we will look at the two steps separately.



Updating z and 6

1. Updating z is tantamount to solving the linear system

o 1AL o7 lb 1
p-1/2 |Z= 0 , x=L"z

2. Updating 6; requires solving

0

ZF — 1<j<n
o, (z,0 ] b) =0, <j<n

When the hyperprior is the gamma distribution the solution is

2 1 3
0: =0 _J 2 _ = _ -
j o n+ 290+7I y 1N (a )

and when the hyperprior is the inverse gamma

b= sz (37



Extension to 2D

Consider a gray scale image supported on unit square and
represent it as an n X n matrix. Recalling that the Kronecker
product of two matrices (A, B) is defined as

A® B = [ajB],
representing the columns of the image matrix by x;,

L x(1) [ x(1)
L x() Lx(n)

that is,



Extension to 2D

Similarly
/
n (1)
I, x
[_2X =
(n)
1, I, X
that is,
L=L®I,.

Denote the vertical and horizontal jump vectors by

v =Lix, h = Lyx.

(1) (n=1)



and by V and H their stochastic extensions.
N

1 1
G 52

J=1

Tprior(v, h | 0) =

N
— Z log 0;
j=1

If the variance of the jumps is unknown, we model it as a random
variable ad use either a gamma or an inverse gamma hyperprior.



Challenges in 2D

MzaRzmloﬂ[?]

mxzof[zy QJ[Z}zO

The second expression is a compatibility condition:

» if the vectors V and H come from an image, the circulation
around a vertex where 4 pixels meet must vanish



Likelihood in 2D

We write the likelihood as a singular Gaussian density in terms of
V and H

7(b|v,h) o 5(@{“]>~

1 _ v
o (~5mslarial | | - o1?)

where the Dirac delta ensures that the support of the density is in
the subspace orthogonal to the range of Q..



MAP in 2D

Due to the singularity of the posterior, the MAP is the maximizer
of the non-singular part restricted to the constraint subspace. In

the case of the gamma hyperprior we minimize

Fv.ho]5) = ARy 101[ ]—bu2

_|_ h2 N N
+ % Z Z -2) Z log 0;
j=1 j=1

subject to

a[3] -



This is equivalent to minimizing

1
F(x,0|b) =~ 2—2\|Ax—b||2

" 72 L1X

where
Lix =v, Lrx = h.

In particular, updating (v, h) requires solving in the least squares
sense

o 1A o~ lb

D721 | x=1| 0

D=1/21, 0



Updating 6 in 2D

The formula for updating 6; for the gamma hyperprior

vZ + h? 1
Y Ie /s n=(a-2)

0 =100 n+ 204

and for the inverse gamma hyperprior

1 1, ., 5



TV and Perona Malik
TV penalty

TV(f>=/Q|vf|

The discrete counterpart of the total variation is

N
TV(X):ZW/VJ?—}—/'IJZ, v=Lix, h= Lpx.
=1

The TV-penalized solution of Ax = b is
Xry = argmin(||Ax — b2 + 6 TV(x)), &> 0.
while the Tikhonov regularized solution with a quadratic penalty is

N
Fraa = i 14682 5307 4 ).
Jj=1



Write

N N
X) = — 1/2 2
TV(x) J;\/ ;\/7] Wi Lx|

L= [ b ] W,y = b @ diag
V(L2 + (L2x)?)

The nonlinear normal equations corresponding to TV regularization
are
ATAx + 6L Wylx = ATb

that can be seen as an asymptotic state of a nonlinear diffusion
equation

Ox

—(t

5 (1)
and use a time marching scheme to drive the initial state to a
steady state.

= AT(Ax(t) — b) + LT Wiy Lx(t)



TV penalty and gamma

Alternatively, given initial guess x° , let the kth iterate satisfy

ATAx + LT Wk 11x = AT, WE1 = W 1.

X

» This is equivalent to the fixed point iteration for TV penalty.
» This is also the IAS updating step with gamma hyperprior and
a=2 0= \/2/0002.

» The choice & = 2 + € prevents prior variance from vanishing,
stabilizing IAS algorithm and TV penalty as well.



Perona-Malik and inverse gamma

If we let

1

Wy = b ® diag
148 ((le)} n (sz)})

» the solution of the nonlinear normal equations is the
Perona-Malik regularized solution.

» The fixed point scheme is equivalent to the IAS for inverse
gamma hyperprior with 3 = 1/26, and § = (a + 2)fy0?.



Quantification of uncertainty

» Sampling the posterior is a means of quantifying uncertainly
in the solution

» In the case of images the number of unknowns is (twice) the
number of pixels

> Using MCMC techniques may be unfeasible for such high
dimensions

» Sampling the posterior in a ROl reduces the complexity of the
problem



Sampling the ROI

» Let Iror be the set of indices of the pixels X’ in the ROI.

» Partition X = [X’; X"], © =[©"; 0]

» Given an estimate of (Xyap, ©Mmap) consider the conditional
posterior

ﬂ-(X/v o' ‘ b,0" map, 9”MAP) X TI'(X, 0 ‘ b)X”:X"l\/IAPﬁ":@”MAP



MCMC for ROI

» Initialize: 69 = Oyiap, x° = xyap; k=0

» Update x: Draw x/. from conditional distribution

(x| b, 6%, x" \iap)

k+1 _

and set x =[x} x"map]-

» Update #: draw ¢’ from the conditional distribution
(0" | b,x*", 0" vap)

and set OKT1 = [0/ ; 0" nviap]

» Continue until desired sample size is reached



Efficiency of scheme

» The conditional density is Gaussian, therefore each random
draw requires the solution of one linear system of the size of
the ROI

» The 0; are independent, thus the draw of 6 can be done
component by component

» More on sampling this afternoon and tomorrow



Computed examples
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Figure 3. Original and blurred image. The cross in the bottom left corner of the blurred image
indicates the half-width of the Gaussian blur.



lterative MAP estimation: GMRES
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Figure 4. Approximation of the MAP Estimate of the image (top row) and of the variance (bottom
row) after 1, 3 and 5 iteration of the cyclic algorithm when using the GMRES method to compute
the updated of the image at each iteration step.



lterative MAP estimation: CGLS
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Figure 5. Approximation of the MAP estimate of the image (top row) and of the variance (bottom
row) after 1, 3 and 5 iteration of the cyclic algorithm when using the CGLS method to compute
the updated of the image at each iteration step



Comparing hyperpriors

Q0

Figure 7. Original, blurred and noisy Shepp Logan phantom.
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Figure 8. Approximation of the MAP estimate of the Shepp Logan phantom using a gamma (left)
and an inverse gamma (right) hyperprior.



Uncertain boundaries
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Figure 9. The true image of example 3 (left) and the blurred noisy version of it (right). The image
profiles are computed along the horizontal and vertical line segments marked on the true image.
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Figure 10. MAP estimates of the image and the variance using gamma hyperprior and CGLS
iterative solver. The ROI is marked in the variance image.



