

Hierarchical Prior Models and Krylov-Bayes

Iterative Methods: Part 2

Daniela Calvetti

Case Western Reserve University

- D Calvetti, E Somersalo: Priorconditioners for linear systems. Inverse Problems 21 (2005) 13971418
- D Calvetti, F Pitolli, E Somersalo, B Vantaggi: Bayes meets Krylov: preconditioning CGLS for underdetermined systems http://arxiv.org/abs/1503.06844

In the mood for Bayes

In the Bayesian framework for linear discrete inverse problems we need to solve a linear system of equations

- The linear solver apparatus (least-squares solvers, iterative methods, etc) can be used to update z in the MAP calculation
- Conversely, the Bayesian framework can be very helpful to solve linear systems of equations
- More generally, the Bayesian approach can be used in the solution of nonlinear systems
- The Bayesian approach is particularly well-suited for under-determined linear systems

General setting

Consider the problem of estimating $x \in \mathbb{R}^{n}$ from

$$
b=\mathbf{F}(x)+\epsilon, \quad \mathbf{F}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

Here we focus the attention on the special case where

$$
\mathbf{F}(x)=\mathrm{A} x
$$

with A is an $m \times n$ matrix of rank m, typically badly conditioned and of ill-determined rank.

We solve the linear system with a Krylov subspace iterative method.

Bayesian solution of inverse problems

In the Bayesian framework for the solution of inverse problems,

- All unknown parameters are modeled as random variables and described in terms of their probability density functions;
- Here the unknowns are ϵ and x
- $\pi_{\text {noise }}(\epsilon)$ describes what we know about the statistics of the noise and defines the likelihood;
- $\pi_{\text {prior }}(x)$ expresses what we know about x before taking into consideration the data and is called the prior
- The solution of the inverse problem is $\pi(x \mid b)$ and is called the posterior.
It follows from Bayes' formula that

$$
\pi(x \mid b) \propto \pi_{\text {prior }}(x) \pi_{\text {noise }}(b-A x)
$$

The noise in a Bayesian way

The linear discrete inverse problem that we consider is $b=A x+\epsilon$.

- The noise term ϵ accounts for inaccuracies in the measurements as well as model uncertainties, i.e. discrepancy between reality and the model. (more on this tomorrow)
- We assume that $\epsilon \sim \mathrm{N}\left(0, I_{m}\right)$.
- If $\epsilon=\epsilon_{c} \sim \mathrm{~N}\left(\mu_{\epsilon}, \Gamma\right)$, we can proceed as follows:
- Compute a symmetric factorization of the precision matrix of ϵ $\Gamma^{-1}=G^{T} G$
- Make the change of variables

$$
\epsilon=G\left(\epsilon_{c}-\mu_{c}\right)=G(b-A x)-G \mu_{c}
$$

- In the linear system

$$
G b=G A x+\epsilon
$$

the noise is zero-mean white Gaussian.

The unknown in a Bayesian way

Assume that $x \sim \mathrm{~N}(0, C)$, where C is symmetric positive definite. It follows from Bayes formula that the posterior density is of the form

$$
\pi(x \mid b) \propto \exp \left(-\frac{1}{2}\|\mathrm{~A} x-b\|^{2}-\frac{1}{2} x^{T} C^{-1} x\right)
$$

Give a symmetric factorization of the precision matrix of x

$$
C^{-1}=B^{\top} B
$$

we can write the negative logarithm of the posterior, or Gibbs energy in the form

$$
G(x)=\|A x-b\|^{2}+\|B x\|^{2}=\left\|\left[\begin{array}{l}
A \\
B
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|^{2}
$$

MAP estimate

The Maximum a Posteriori (MAP) estimate of $x, x_{\text {MAP }}$ is the value of highest posterior probability, or equivalently, the minimizer of $G(x)$.
The value of $x_{\text {MAP }}$ is the least squares solution of the linear system

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right] x=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

or, equivalently, the solution of the square linear system

$$
\left(A^{\top} A+B^{\top} B\right) x=A^{\top} b .
$$

... and Tikhonov regularization

The latter are the normal equations associated with the problem

$$
\begin{equation*}
x_{\mathrm{MAP}}=\operatorname{argmin}\left\{\|A x-b\|^{2}+\lambda\|B x\|^{2}\right\} \tag{1}
\end{equation*}
$$

which is Tikhonov regularized solution with regularization parameter $\lambda=1$ and linear regularization operator B.

- The computation of Tikhonov regularized solution with B different from I requires attention: moreover, a suitable value of the regularization parameter λ must be chosen.
- This question has been studied extensively in the literature.

Regularization operator beyond Tikhonov

- The operator B brings into the solution additional information about x
- When the matrix A is underdetermined, the operator B boosts the rank of the matrix of the linear system actually solved.
- In Tikhonov regularization when n is large the introduction of B may lead to a very large linear system

Question: How can we retain the benefits of B while containing the computational costs?

The alternative: Krylov subspace methods

As an alternative to Tikhonov regularization consider solving the linear system

$$
b=\mathrm{A} x+\epsilon
$$

with an iterative solver using the matrix B as a right preconditioned. More specifically

- Consider the Conjugate Gradient for Least Squares method (CGLS)
- WLOG assume the initial approximate solution is $x_{0}=0$
- Define a termination rule based on the discrepancy

Standard CGLS method

At the k th iteration step the approximate solution x_{k} computed by the CGLS method satisfies

$$
x_{k}=\operatorname{argmin}\left\{\|b-\mathrm{A} x\| \mid x \in \mathscr{K}_{k}\right\},
$$

where the k th Krylov subspace is

$$
\mathscr{K}_{k}=\operatorname{span}\left\{\mathrm{A}^{\top} b,\left(\mathrm{~A}^{\top} \mathrm{A}\right) \mathrm{A}^{\top} b, \ldots,\left(\mathrm{~A}^{\top} \mathrm{A}\right)^{k} \mathrm{~A}^{\top} b\right\}
$$

The noise is additive, zero-mean white Gaussian, thus

$$
E\left\{\|\epsilon\|^{2}\right\}=m
$$

we stop iterating as soon as

$$
\|\mathrm{A} x-b\|^{2}<\tau m
$$

where $\tau=1.2$. Typically, $k_{\text {last }} \ll m$.

The question of the null space

- It follows from the canonical orthogonal decomposition in terms of fundamental subspaces that

$$
\mathbb{R}^{n}=\mathscr{N}(\mathrm{A}) \oplus \mathscr{R}\left(\mathrm{A}^{\top}\right)
$$

- In standard CGLS any contribution to the solution from the null space must be added separately
- The right CGLS priorconditioner implicitly selects null space components based on the information contained in the data with the belief about x.

CGLS with a whitened unknown

Assume that a prior we believe that $x \sim N(0, C)$. If

$$
C^{-1}=B^{\top} B
$$

then

$$
w=B x, \quad w \sim \mathrm{~N}\left(0, I_{n}\right)
$$

Make the change of variable from x to w in the linear system

$$
\begin{equation*}
A B^{-1} w=b \quad x=B^{-1} w \tag{2}
\end{equation*}
$$

let $\widetilde{A}=A B^{-1}$ and solve by CGLS for w. The j th iterate of the whitened problem satisfies

$$
w_{j}=\operatorname{argmin}\left\{\|\widetilde{\mathrm{A}} w-b\| \mid w \in \mathcal{K}_{j}\left(\widetilde{\mathrm{~A}}^{\top} b, \widetilde{\mathrm{~A}}^{\top} \widetilde{\mathrm{A}}\right)\right\} .
$$

Priorconditioning and the null space

The corresponding j th priorconditioned CGLS solution $\widetilde{x}_{j}=\mathrm{B}^{-1} w_{j}$ satisfies

$$
\widetilde{x}_{j} \in \operatorname{span}\left\{\mathrm{~B}^{-1}\left(\tilde{A}^{\top} \widetilde{A}\right)^{\ell} \widetilde{A}^{\top} b \mid 0 \leq \ell \leq j-1\right\} .
$$

It follows from

$$
\mathrm{B}^{-1} \widetilde{A}^{\top}=\mathrm{B}^{-1} \mathrm{~B}^{-\top} \mathrm{A}^{\top}=\mathrm{CA} \mathrm{~A}^{\top}
$$

that

$$
\mathrm{B}^{-1}\left(\widetilde{A}^{\top} \widetilde{\mathrm{A}}\right)^{\ell} \widetilde{\mathrm{A}}^{\top}=\left(\mathrm{CA}^{\top} \mathrm{A}\right)^{\ell} \mathrm{CA}^{\top}, \quad 0 \leq \ell \leq j-1
$$

Therefore

$$
\widetilde{x}_{j} \in \mathrm{C}\left(\mathscr{N}(\mathrm{~A})^{\perp}\right)
$$

hence \widetilde{x}_{j} is not necessarily orthogonal to the null space of A.

Analizing the Krylov subspaces with the GSVD

Theorem

Given (A, B) with $\mathrm{A} \in \mathbb{R}^{m \times n}, \mathrm{~B} \in \mathbb{R}^{n \times n}, m<n$, there is a factorization of the form

$$
\mathrm{A}=\mathrm{U}\left[\begin{array}{ll}
0_{m, n-m} & \Sigma_{\mathrm{A}}
\end{array}\right] \mathrm{X}^{-1}, \quad \mathrm{~B}=\mathrm{V}\left[\begin{array}{ll}
\mathrm{I}_{n-m} & \\
& \Sigma_{\mathrm{B}}
\end{array}\right] \mathrm{X}^{-1}
$$

called the generalized singular value decomposition, where $\mathrm{U} \in \mathbb{R}^{m \times m}$ and $\mathrm{V} \in \mathbb{R}^{n \times n}$ are orthogonal matrices, $\mathrm{X} \in \mathbb{R}^{n \times n}$ is invertible, and $\Sigma_{\mathrm{A}} \in \mathbb{R}^{m \times m}$ and $\Sigma_{\mathrm{B}} \in \mathbb{R}^{m \times m}$ are diagonal matrices.

The diagonal entries $s_{1}^{(\mathrm{A})}, \ldots, s_{m}^{(\mathrm{A})}$ and $s_{1}^{(\mathrm{B})}, \ldots, s_{m}^{(\mathrm{B})}$ of the matrices Σ_{A} and Σ_{B} are real, nonnegative and satisfy

$$
\begin{align*}
s_{1}^{(\mathrm{A})} & \leq s_{2}^{(\mathrm{A})} \leq \ldots \leq s_{m}^{(\mathrm{A})} \\
s_{1}^{(\mathrm{B})} & \geq s_{2}^{(\mathrm{B})} \geq \ldots \geq s_{m}^{(\mathrm{B})} \\
\left(s_{j}^{(\mathrm{A})}\right)^{2} & +\left(s_{j}^{(\mathrm{B})}\right)^{2}=1, \quad 1 \leq j \leq m . \tag{3}
\end{align*}
$$

thus $0<s_{j}^{(\mathrm{A})} \leq 1$ and $0<s_{j}^{(\mathrm{B})} \leq 1$. The ratios $s_{j}^{(\mathrm{A})} / s_{j}^{(\mathrm{B})}$ for $1 \leq j \leq m$ are the generalized singular values of (A, B).
If A has full rank, the diagonal entries of Σ_{A} are positive.

C-orthogonality

Theorem

If we partition the matrix $X \in \mathbb{R}^{n \times n}$ in GSVD above as

$$
X=\left[\begin{array}{ll}
X^{\prime} & X^{\prime \prime}
\end{array}\right], \quad X^{\prime} \in \mathbb{R}^{n \times(n-m)}, X^{\prime \prime} \in \mathbb{R}^{n \times m}
$$

it follows that

$$
\operatorname{span}\left\{\mathrm{X}^{\prime}\right\}=\mathscr{N}(\mathrm{A})
$$

and we can express \mathbb{R}^{n} as a C-orthogonal direct sum,

$$
\mathbb{R}^{n}=\operatorname{span}\left\{\mathrm{X}^{\prime}\right\} \oplus_{\mathrm{C}} \operatorname{span}\left\{\mathrm{X}^{\prime \prime}\right\}=\mathscr{N}(\mathrm{A}) \oplus_{\mathrm{C}} \operatorname{span}\left\{\mathrm{X}^{\prime \prime}\right\}
$$

Orthogonality and not

Corollary 1

$$
\mathscr{N}(\mathrm{A})^{\perp}=\mathscr{R}\left(\mathrm{A}^{\top}\right), \quad \mathscr{N}(\mathrm{A})^{\perp \mathrm{c}}=\operatorname{span}\left\{\mathrm{X}^{\prime \prime}\right\} .
$$

Corollary 2
If $\mathscr{R}\left(\mathrm{A}^{\top}\right)$ is an invariant subspace of the covariance matrix C , then the iterates \widetilde{x}_{j} are orthogonal to the null space of A.

Corollary 3
When $\mathrm{C}\left(\mathscr{R}\left(\mathrm{A}^{\top}\right)\right)$ is not C-orthogonal to $\mathscr{N}(\mathrm{A}), \widetilde{x}_{j}$ may have a component in the null space of A . This component is invisible to the data.

Priorconditionting and the Lanczos process

The first k residual vectors computed by CGLS normalized to have unit length $v_{0}, v_{1}, \ldots, v_{k-1}$ form an orthonormal basis for the Krylov subspace $\mathcal{K}_{k}\left(\mathrm{~A}^{\top} b, \mathrm{~A}^{\top} \mathrm{A}\right)$.
It can be shown that

$$
\mathrm{A}^{\top} \mathrm{A} V_{k}=V_{k} \mathrm{~T}_{k}-\frac{\sqrt{\beta_{k-1}}}{\alpha_{k-1}} v_{k} e_{k}^{\top} \cdot, \quad \mathrm{V}_{k}=\left[v_{0}, v_{1}, \ldots, v_{k-1}\right]
$$

It follows from the orthogonality of the v_{j} that the tridiagonal matrix T_{k} is the projection of $A^{\top} A$ onto the Krylov subspace $\mathcal{K}_{k}\left(\mathrm{~A}^{\top} b, \mathrm{~A}^{\top} \mathrm{A}\right)$.

$$
V_{k}^{\top}\left(\mathrm{A}^{\top} \mathrm{A}\right) V_{k}=\mathrm{T}_{k}
$$

The Lanczos tridiagonal matrix

The k th CGLS iterate can be expressed as

$$
x_{k}=V_{k} y_{k},
$$

where y_{k} solves the $k \times k$ linear system

$$
\mathrm{T}_{k} y=\left\|r_{0}\right\| e_{1}
$$

Thus the k th CGLS iterate x_{k} is the lifting of y_{k} via V_{k}.
The eigenvalues of T_{k} are the Ritz values of $\mathrm{A}^{\top} \mathrm{A}$ and approximate of the eigenvalues of $A^{\top} A$.

Ritz values and convergence rate

Theorem

For all $k, 1 \leq k \leq r$, where r is the rank of A , there exists $\xi_{k}, \lambda_{1} \leq \xi_{k} \leq \lambda_{r}$ such that the norm of the residual vector satisfies

$$
\left\|r_{k}\right\|^{2}=\frac{1}{\xi_{k}^{2 k+1}} \sum_{i=1}^{n}\left[\prod_{j=1}^{k}\left(\lambda_{i}-\theta_{j}^{(k)}\right)^{2}\right]\left(r_{0}^{\top} q_{i}\right)^{2}
$$

where q_{i} is the eigenvector of $\mathrm{A}^{\top} \mathrm{A}$ corresponding to the eigenvalue λ_{i}, and $\theta_{j}^{(k)}$ is the j th eigenvalue of the tridiagonal matrix T_{k}.

The quality of the eigenvalues approximations in the projected problem affects the number of iterations needed to meet the stopping rule.

A simple deconvolution problem

Forward model: Deconvolution problem with few data,

$$
g(t)=\int_{0}^{1} a(t-s) f(s) d s, \quad a(t)=\left(\frac{J_{1}(\kappa t)}{\kappa t}\right)^{2}
$$

Discretize:

$$
g(t) \approx \frac{1}{n} \sum_{k=1}^{n} a\left(t-s_{k}\right) f\left(s_{k}\right), \quad 1 \leq j \leq n
$$

Discrete noisy observations at $t_{1}, \ldots, t_{m}, m \ll n$.

$$
b_{\ell}=g\left(t_{\ell}\right)+\varepsilon_{\ell}, \quad 1 \leq \ell \leq m,
$$

or, in matrix notation, $A \in \mathbb{R}^{m \times n}$,

$$
b=A x+\varepsilon, \quad x_{k}=f\left(s_{k}\right) .
$$

Computed examples: Deconvolution

Prior: Define the precision matrix C^{-1} as

$$
\mathrm{C}^{-1}=\mathrm{B}^{\top} \mathrm{B}, \quad \mathrm{~B}=\beta\left[\begin{array}{rrrrr}
\alpha & & & \\
-1 & 2 & -1 & & \\
& & \ddots & & \\
& & -1 & 2 & -1 \\
& & & & \alpha
\end{array}\right]
$$

where $\alpha>0$ is chosen so that prior variance is as uniform as possible over the interval.

Parameters: Set $n=150, m=6$.

Basis vectors

The six basis vectors that span $\mathscr{R}\left(\mathrm{A}^{\top}\right)$ (dashed line), and the vectors that span $\mathrm{C}\left(\mathscr{R}\left(\mathrm{A}^{\top}\right)\right)$ (solid line).

Approximate solutions

Iterations with low additive noise $\left(\sigma=5 \times 10^{-5}\right)$ without prior conditioner (left) and with preconditioner.

Observations

- Every vector whose support consists of points where all six basis functions of $\mathscr{R}\left(\mathrm{A}^{\top}\right)$ vanish is in the null space $\mathscr{N}(\mathrm{A})$
- Consequently, plain CGLS produces approximate solutions that are zero at those points
- The basis functions of $\mathrm{C}\left(\mathscr{R}\left(\mathrm{A}^{\top}\right)\right)$ are non-zero everywhere
- Consequently, priorconditioned CGLS has no blind spots
- The price to pay is that priorconditioned CGLS requires more iterations

Spectral approximation

Spectral approximation: Plain CGLS (left) and preconditioned CGLS (right). The grey band on the right is the spectral interval of the non-preconditioned matrix $\mathrm{A}^{\top} \mathrm{A}$.

Convergence history and null space contributions

Left: Convergence rates of the two algorithms. The dashed line marks the stopping criterion. Right: Component of the computed solution in the null space measured as

$$
\nu_{k}=\frac{\left\|\mathrm{P} \tilde{x}_{k}\right\|}{\left\|\tilde{x}_{k}\right\|}, \quad \mathrm{P}: \mathbb{R}^{n} \longrightarrow \perp \mathcal{N}(\mathrm{~A}) .
$$

Computed examples: X-ray tomography

Image size: $N=160 \times 160$ pixels. 20 illumination angles, 60 parallel beams per illumination angle.

Correlation priors

Matèrn-Whittle correlation priors: Define the precision matrix as

$$
C^{-1}=-I_{n} \otimes D-D \otimes I_{n}+\frac{1}{\lambda^{2}} I_{N}
$$

where $\mathrm{D} \in \mathbb{R}^{n \times n}$ is the three-point finite difference approximation of the one-dimensional Laplacian with Dirichlet boundary conditions,

$$
\mathrm{D}=\frac{1}{n^{2}}\left[\begin{array}{rrrr}
-2 & 1 & & \\
1 & -2 & \ddots & \\
& \ddots & & 1 \\
& & 1 & -2
\end{array}\right]
$$

and $\lambda>0$ is the correlation length.

Basis functions

Basis vector with no priorconditioning (upper left) and with priorconditioning. Correlation length $2,4,8,16$ and 32 pixels.

Observations

- Every image whose support is on pixels not touched by a ray is in the null space of A
- \Rightarrow plain CGLS iterates will be zero at those pixels
- Preconditioning makes the rays fuzzy, illuminating the dark pixels
- Reconstruction will be slightly blurred, but has fewer geometric artifacts
- Number of iterations needed will increase.

Computed solutions

Reconstructions with plain CGLS (left) and priorconditioned CGLS (right).

Converge history and spectral approximation

Convergence and spectral approximation.

