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Inverse Problems in the Bayesian Framework

Two classical ways of understanding probability:

I Frequentist’s definition: Probability can be understood in
terms of frequencies in repeated experiments

I Bayesian definition: Probability is a subject’s expression of
degree of belief.

Bayesian probability = subjective probability



Bayesian Subjective Probability

Bayesian probability:

I Expresses a subject’s level of belief

I Asserts that randomness is not the object’s but the subject’s
property

I May be subjective, but needs to be defendable (“Dutch book
argument”)

Note: Subjective is not the same as arbitrary.



Subjective Probability and Inverse Problems

Basic principles:

I If a value of a variable is not known, the variable is modeled
as a random variable

I The information about the distribution of values is encoded in
probability distributions

I From the point of view of modeling, it is immaterial whether
the lack of information is contingent (imperfect measurement
device, insufficient sampling of data) or fundamental
(quantum physical description of an observable)

Notations:

I Variables: x , y , b, θ . . .

I Random variables: X , Y , B, Θ . . .

I Realizations: X = x , Y = y , B = b, Θ = θ, . . .



Modeling error

“All models are wrong; some are useful” (George EP Cox)

Noise model:
y = f (x) + n, n = “noise”

where y , x and n are realizations of Y , X and N.

I The variable Y represents observed data (“reality”)

I The variable X represent the model variable, may or may not
represent a physical quantity

I Reality and model are not identical, therefore ...

I The noise N must account for measurement noise, but also
for the discrepancy between the model and the reality.



Modeling error

I Model discrepancy = the difference between the model and
“reality”.

I The fallacy of identifying model and reality is sometimes
referred to as the inverse crime.

I To quantify the model discrepancy, we replace here “reality”
with a “pretty good” model.

A “pretty good model”

I is a computational model that to best of our understanding
approximates the reality

I may be computationally expensive

I is in practice replaced by a less expensive, and less accurate
model.



Model Case: Electrical Impedance Tomography (EIT)
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EIT: Forward Problem vs. Inverse Problem



Motivation: EIT Beyond Imaging

EIS combined with mammographic tomosynthesis

x

y

z

e 

1 cm

x

y e 

The impedance spectrum below 10 kHz of benign and malignant
lesions are significantly different2.

2Jossinet J (1996) Variability of impedivity in normal and pathological
breast tissue. Med. Biol. Eng. Comput. 34:346-50.



Quantitative Imaging with Structural Prior
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3McGivney D, Calvetti D and Somersalo E (2012) Quantitative imaging
with electrical impedance spectroscopy. Phys. Med. Biol. 57 7289.



PDE Model for EIT

Conservation of charge:

∇ · (σ∇u) = 0 in Ω.

Current feed through electrodes e`, 1 ≤ ` ≤ L,

J` =

∫
e`

σ
∂u

∂n
dS ,

L∑
`=1

J` = 0.

σ
∂u

∂n

∣∣∣∣
∂Ω\∪e`

= 0.

Electrode voltages with contact impedances z`,(
u + z`σ

∂u

∂n

) ∣∣∣∣
e`

= U`.



Variational Form

B((v ,V ), (u,U)) =

∫
Ω
σ∇v · ∇udx

+
L∑
`=1

1

z`

∫
e`

(v − V`)(u − U`)dS =
L∑
`=1

V`J`,

with ground condition,
L∑
`=1

U` = 0, (1)

Discretize using finite elements.



FEM Approximation

u(x) =
N∑
j=1

ujψj(x), σ(x) = σ0 +
K∑
j=1

θjχj(x).

Define

x =

[
u
U

]
∈ RN+L.

FEM approximation of the variational form:

Aθx = y =

[
0
J

]
.



Observation Model

Given the current vector J ∈ RL, measure the voltage vector
U ∈ RL:

b = U + e = Bx + e = BA−1
θ y + e,

where e is the observation noise, and

B =
[

0 IL
]
.

Concisely: For a given fixed current feed J,

b = f N(θ) + e, e ∼ N (0,C).



Inverse Problem in the Bayesian Setting

Prior density:
θ ∼ N (0, Γ).

Likelihood with Gaussian observation noise:

b | θ ∼ N (f N(θ),C).

Posterior density:

π(θ | b) ∝ exp

(
−1

2
‖b − f N(θ)‖2

C −
1

2
‖θ‖2

Γ

)
,

where we use the notation ‖z‖2
M = zTM−1z .



Discretization Error

I The FEM approximation converges to the solution of the PDE
in H1(Ω) as N →∞.

I A dense mesh increases the computational burden of solving
the inverse problem

⇒ Trade-off between accuracy and computational complexity.



Fine vs. Coarse Mesh

Fine Mesh Coarse Mesh

Number of elements: Ne = 4579, ne = 1024
Number of nodes: Nn = 2675, nn = 545



Design Guidelines

We assume to have

I A forward solver in both fine and coarse mesh

I An inverse solver in the coarse mesh only

Goal: A high precision inverse solver

I Requiring few forward solutions in the fine mesh

I Requiring few inverse solutions in the coarse mesh

I Producing an estimate of the conductivity with quantified
uncertainty.



Numerical Approximation Error

Fine mesh vs. coarse mesh model:

AN
θ x = yN , An

θx = yn,

where AN ∈ RN×N , An ∈ Rn×n, n < N.
Noiseless observation models:

bN = BN
(
AN
θ

)−1
yN = f N(θ), bn = Bn

(
An
θ

)−1
yn = f n(θ),

Noisy observation in terms of the coarse mesh model:

b = f N(θ) + e = f n(θ) +
{
f N(θ)− f n(θ)

}
+ e.



Modeling Error

Coarse grid model:

b = f n(θ) + m + e,

where the modeling error m is defined as

m = FN,n(θ) = f N(θ)− f n(θ).

Observations:

I For a known θ, the modeling error can be evaluated

I As θ is unknown, in the Bayesian framework, m must be
modeled as a random variable M

I The statistics of M depends on the random variable Θ.



Modeling Error is Highly Structured
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Mean and Covariance of the Modeling Error

Why not inflate the variance of e to mask the modeling error?
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I Modeling error is not zero mean, and exhibits high level
cross-talk between channels.

I Dominant noise with high quality data.



Solution in the Bayesian Framework4

M = FN,n(Θ) = f N(Θ)− f n(Θ).

If Θ ∼ πΘ then M ∼ πM , where

πM = FN,n
∗ πΘ, (push-forward),

P
{
M ∈ A

}
=

∫
(FN,n)−1(A)

πΘ(θ)dθ =

∫
A
FN,n
∗ πΘ(m)dm,

or, assuming that FN,n is a diffeomorphism,

FN,n
∗ πΘ(m) =

∣∣∣∣∂(FN,n)−1

∂m
(m)

∣∣∣∣πΘ((FN,n)−1(m)).

4Kaipio JP and Somersalo E (2007) Statistical inverse problems: discretization,
model reduction and inverse crimes. J. Comp. Appl. Math. 198 (2007) 493–504.



Enhanced error model

I Approximate πM by a Gaussian density,

πM ∼ N (m,Σ),

I Estimate the mean m and covariance Σ using the prior density
of Θ,

I Neglect the interdependency of Θ and M in the coarse model
(not necessary5).

5Calvetti D and Somersalo E (2005) Statistical compensation of boundary
clutter in image deblurring. Inverse Problems 21: 1697–1714.



Off-line Prior Sampling Approximation

1. Generate a sample of realizations of θ ∼ πprior = N (0, Γ),{
θ1, θ2, . . . , θK

}
,

2. Compute a sample of model error vectors,

m` = FN,n(θ`), 1 ≤ ` ≤ K ,

and sample mean and covariance,

m =
1

K

K∑
`=1

m`, Σ =
1

K

K∑
`=1

(m` −m)(m` −m)T.

3. Compute the posterior estimates of θ from the enhanced error
model,

b = f n(θ) + E , E ∼ N (m,C + Σ),

where it is assumed that E is independent of θ.



Prior and MAP Estimate

Prior model

θ ∼ N (0, Γ), Γj` = γ exp

(
−
|xj − x`|

λ

)
,

where λ > 0 is the correlation length, γ is the prior marginal pixel
variance.
MAP estimate:

θ̂ = argmin
{
‖b −m − f n(θ)‖2

C+Σ + ‖θ‖2
Γ

}
,

solved by using a Gauss-Newton optimization.



Draws from Prior Density

True θ Distribution
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MAP estimates

True θ Distribution
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Enhanced error model computed with K = 2 500 draws from the
prior density.



Variance Reduction

Given π(θ) = πprior, we used

πM = FN,n
∗ πprior ≈ N (m,Σ),

to obtain the update

πprior → πpost(θ | b;πM , f
n).

Question:Using updated information about θ, can we effectively
update the error model leading to an updated posterior for θ?



Bayesian Approach: Updating Beliefs

Iterative algorithm:

I Initial belief = prior: Set π0
Θ(θ) = πprior(θ), set j = 0.

I Estimate πjM = FN,n
∗ πjΘ.

I Estimate the posterior density,

πj+1
Θ (θ) = πpost(θ | b;πjM , f

n).

I Update j ← j + 1 and iterate from 2.

Effective implementation: Ensemble Kalman Filtering (EnKF)6

6Evensen G 1994 Sequential data assimilation with a nonlinear
quasi-geostrophic model using Monte Carlo methods to forecast error statistics,
J Geophys Res 99 10143 – 10162



Bayesian Filtering and Dynamic Inverse Problems

Sequential observations:

Bt = g
(
Θt

)
+ Et , t = 1, 2, . . .

State evolution model:

Θt+1 = G (Θt) + Vt+1, t = 0, 1, . . .

Update

π(θt | Dt)→ π(θt+1 | Dt)→ π(θt+1 | Dt+1),

where
Dt =

{
b1, b2, . . . , bt

}
.



Ensemble Kalman Filtering (EnKF)

1. Generate a prior sample,

S0 =
{
θ1

0, θ
2
0, . . . , θ

k
0

}
, θ` ∼ πprior

and set t = 0.

2. Propagate the sample,

θ̂jt+1 = G (θjt) + v jt+1, j = 0, 1, . . . , k

Compute the empirical mean and covariance, θt+1, Γt+1.

3. Parametric bootstrap of the data bt+1,

bjt+1 = bt+1 + w j
t+1, w j

t+1 ∼ N (0,C), 1 ≤ j ≤ k .

4. Update the sample St → St+1,

θjt+1 = argmin
{
‖bjt+1 − f n(θ)‖2

C + ‖θ − θ̂jt+1‖
2
Γt+1

}
.



Application to Modeling Error Update

I Observation model: Update the likelihood,

Bt = f n(Θ) + Mt + E , Mt ∼ FN,n
∗ πtΘ,

while the realization is
Bt = b.

I Propagation model
Θt+1 = Θt .



Iterative Updating of Modeling Error

1. Initialize: Draw a sample of size k from the prior density,

S 0
k =

{
θ0

1, . . . , θ
0
k

}
, θ0

j ∼ πprior.

Set m = 0 ∈ Rm, Σ = 0 ∈ Rm×m. Set t = 0.

2. Generate bootstrap data,

b` = b −m + w`, w` ∼ N (0,C + Σ), 1 ≤ ` ≤ k.

3. Update the sample,

S t+1
k =

{
θt+1

1 , . . . , θt+1
k

}
,

θt+1
j = argmin

{
‖bj−f n(θ)‖2

C+Σ+‖θ−θ̂tj ‖2
Γ

}
, θ̂tj ∼ πprior, 1 ≤ j ≤ k.



Iterative Updating of Modeling Error

4. Compute the new model error sample,

mt+1
j = FN,n(θt+1

j ), 1 ≤ j ≤ k,

and the corresponding mean and covariance,

mt+1 =
1

k

k∑
j=1

mt+1
j , Σt+1 =

1

k

k∑
j=1

(mt+1
j −mt+1)(mt+1

j −mt+1)T.

5. Update the cumulative model error mean and covariance,

m+ =
T

T + 1
m +

1

t + 1
mt+1,

Σ+ =
t

t + 1
Σ +

1

t + 1
Σt+1 +

t

(t + 1)2
(m −mt+1)(m −mt+1)T.

6. If the model error mean and covariance satisfy the convergence
criterion, stop, else, increase t by one, set m = m+ and Σ = Σ+,
and continue from Step (ii).



Convergence, k = 5 vs. k = 20
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Effect of Sample Size
k = 2 k = 5

k = 10 k = 20

k = 50 Sampling-based
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