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Dynamic model

Forward model

dx
e f(t,x,0), x(0)= xo, (1)

v

x = x(t) € R" is the state vector,

v

6 € R¥ is the unknown, or poorly known parameter vector,
f:R x R" x Rk - R" is the model function

Xxg possibly unknown, or poorly unknown initial value.

v

v



Observation model

Data: discrete noisy observations, may depend on the parameter
vector:

bj = g(x(tj),e) +n, h<t<..., (2)

» g :R” x R¥ = R is the observation function

> n;j is the observation noise

The inverse problem: Estimate the state vector and the
parameter vector, (x(t),0), based on the observations.



Two motivational problem

The dynamical system of acetate metabolism in brain by PET scan
data:

%(t) = Kic(t) — (ko + k3)my(t)

%(t) = kymy(t) — ksmy(t)

Observation: Noisy measurements of

c(tj), m(t)) = Voc(ty) + mu(t)) + ma(t;).
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HIV-1 strain competition assay
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HIV-1 strain competition assay

Cae
Cai

Ci
CA_Be
CaBi
Va
Vis
Co

)‘COT - (kA VA + kB VB + T]kAkB VAVB)C
kaVaC — kgVBCarc — rCac

rCae — 0A Cai
kB VBC - kAVACBe — rCBe
rCBe — (5]3 CBi

nkaksVaVaC + kaVa Ce + ks VB Cac — rCage
rCaBe — 0AB CaBi

pa Cai + pap Cagi — cVa

peCoi + pDCaABi — cVB

—A\G T,



Metabolic pathway of skeletal muscle
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The discrete time Markov models framework

Evolution model:

Xit1 = F(X;,0)+ Vi,

» F is a known propagation model
» Vi1 is an innovation process
» 0 is a parameter: assumed known now, later to be estimated.

The observation model
Y; = G(Xj) + W,

the observation noise W; independent of X;.
Update scheme for posterior densities given accumulated data:

7(x; | Dj) — 7(xj41 | Dj) — 7(xj41 | Djt1)



Bayesian filtering

1. Propagation step: Chapman-Kolmogorov formula
nOg D) = [ g | D)l | D))o
= [ w011 I)nts | D)o
2. Analysis step: Bayes’ formula conditional on D;

m(xji+1 | Div1) = 7(x41 | yj+1, Dj)
T(¥j+1 | Xj+1, D) (X541 | Dj)
= 7(yj+1 | Xi+1)m (X541 | Dj),

K

Combining:

(o1 | Dy) x wlyiaa |5 [ 7 )0 | D))



Bayesian filtering

Assume that the current distribution is represented in terms of a
sample
11 2 2 N N
5 =05, w), O wi), -, 067, wi) )

The particle version (Monte Carlo integration):

1 | Dya) o men | 3ea) [ mloan [ )mCs | D))o

is approximated by

N

T(Xjt1 | Dj1) o< m(yjsa | Xj41) Z wi'm (X1 | X7).
n=1



Example: Gaussian innovation and noise
Assuming the propagation model
Xir1 = F(X) + Vit1, Vi ~ A(0,Tj11),
we have
e |g) x oxp (30001~ FO6) T A Gg1 ~ FO5)))
Similarly, the observation model
Yi=G(Xj) + W, W;~.#(0,%))

gives the likelihood

0 1) o exp (=305~ G920 - 6s) ).



Sampling Importance Resampling (SIR)

Layered sampling: Forn=1,2,... N,
1. Draw a candidate particle X ; from m(xj+1 | x[");
2. Compute the relative likelihood g/ ; = m(yj+1 | X/, 1);
3. Resample with replacement from

~1 ~1 ~2 ~2 N N
{(Xj-i-l’ Wj+1)v (Xj+1, VVJ'+1), RN (Xj+17 Wj-H)}?
where the probability weights are defined as

n
Wn _ gj+1
j+1 — n

Zgj-',-l




Sampling Importance Resampling (SIR)

Data thinning:
» Most particles >~<J”_~_1 may have vanishingly small likelihood.
» Few candidate particles are sampled over and over: The new

sample consists mostly copies of few candidate particles.

> The density is poorly sampled.



Improvement: Auxiliary particles

Before resampling, calculate an auxiliary predictor:

X0,y = F(x)).

We write

N

m(Xj41 | Djt1) o Z wi' (i1 | X741
n=1

7T(yj+1 | Xj+1)

—n (1 [ X7)
71-(ijrl ‘ Xj]—’—l) ’ 7

— g
=&j+1

The quantity gﬂrl is a predictor of how well the auxiliary particle
would explain the data.



Survival of the Fittest (SOF)

Given the initial probability density mo(xo),
1. Initialization: Draw the particle ensemble from mo(xp):

So = {(XO17 Wl),(Xg, Wg),...,(xév, Wé\l)}’
1
wp = wg = :WéV:N.

Set j = 0.
2. Propagation: Compute the predictor:

Xiy1=F(x'"), 1<n<N.



Survival of the Fittest (SOF)

3. Survival of the fittest: For each n:
(a) Compute the fitness weights

g1 = w' m(yjt1 [ Xih1), &1 ¢ S gn

(b) Draw indices with replacement ¢, € {1,2,..., N} using
probabilities
P{¢, =k} = gJ-kH;

(c) Reshuffle



Survival of the Fittest (SOF)

4. Innovation: For each n: Proliferate

n __ —n n
Xji+1 = Xjt1 T Vi1

5. Weight updating: For each n, compute

ro_ e ga) L Wi
+1 — 7/ | =n \ i+1 ~— 5
" T(yj+1 | XJ"7+1)7 a 2on WﬂH

6. If j < T, increase j + j + 1 and repeat.



Estimating parameters: Sequential Monte Carlo

For the discrete time model, the propagation (and possibly the
likelihood) may depend on the unknown 6,

Xj+1 = F(XJ7 9)

Monte Carlo integral for posterior update:

T(Xj41,0 | Djy1) o< w(yjs | Xj41,0)

< [ 7021 1,007 |0, D)(0 | D))

Sample update:

N
n=1"

= T, 5= {007, W)}

where .} is drawn from 7(x;, 0 | Dj).



Auxiliary parameter particles

Given the current parameter sample,
(0}, le)./ (9}, WJ-2), . (9N W-N),

estimate the mean and covariance,

N N
0 => wio],  C=> w0 —0)(
n=1

n=1



Auxiliary parameter particles

Approximate the marginal probability density 7(6 | D;) of ¢ by a
Gaussian mixture model,

N
n(0 ] D) ~ Y _wi A (010],5°C)),
n=1
for which we define the auxiliary particle by

0; = ab + (1 — a)b;,

where a is a shrinkage factor, 0 < a < 1 and a’+ s2 =1 to avoid
artificial diffusion.



Auxiliary parameter particles

Left as an exercise:

and



Auxiliary parameter particles
Approximate

7(Xj+1,0 | Djt1)

N
o S WPy | X, O)m (i | Xf, )4 (6 ].,5°C)),
n=1

which we write as

m(Xjt1,0 | Djy1 ZW (¥4 [ XF1as J)

=g

w1 | 5,001 (01 8, °C)),

" 7T(Y1+1 \ XJ+1>9)

where the coefficient gﬁu is the fitness of the predictor

(%F11:07) = (FO,07).67).



Survivial of the Fittest — Sequential Monte Carlo (SOF —
SMC)

1. Initialization: Draw the particle ensemble from mo(xo, 6):

SO:{(X&v067W&)7(X379%’W8) (XO,GOaWéV)

H,—/

1
1 _ 2 _ _

Compute the parameter mean and covariance:



Survivial of the Fittest — Sequential Monte Carlo (SOF —
SMC)

2. Propagation: Shrink the parameters
n _
0 =abl +(1—a)f;, 1<n<N,
by a factor 0 < a < 1. Compute the state predictor:

— an
Xj’?—i—l:F(Xflvej)? 1<n<N.



Survivial of the Fittest — Sequential Monte Carlo (SOF —
SMC)

3. Survival of the fittest: For each n:
(a) Compute the fitness weights

_ —n
gj’z}—l = anﬂ'()’j+1 | Xf+179j)7 gj’h — S g

(b) Draw indices with replacement ¢, € {1,2,..., N} using
probabilities P{/, = k} = gf{ ;;

(c) Reshuffle

0

—n N —t, pbn =n ~ln
(X7i1,0;) < (X50:6,"), XN X1y, 1<n <N



Survivial of the Fittest — Sequential Monte Carlo (SOF —
SMC)

4. Proliferation: For each n:
(a) Proliferate the parameter by drawing

071 ~ N(@;,sij), 2 =1-—a%
(b) Repropagate and add innovation:

n _ n pn n
X1 = F(x,071) + g



Survivial of the Fittest — Sequential Monte Carlo (SOF —
SMC)

5. Weight updating: For each n, compute

(Y41 | X7 100741) e Wil g

Wit1 = 1=
’ m(yjar | X0y, 07) - 2 Wi

6. If j < T, update

a4 AT
n
J+1 Z +191+1a J+1 Z +1 J+1 91+1)(9j+1_ j+1),

increase j <— j + 1 and repeat.



Propagation and innovation

The problem we are addressing assumes

d
d% = f(t,x,0), x(0) = xo,

while the discrete propagation is written as
X1 = F(,0) + viga.

Questions:
1. How do we propagate?
2. What is the innovation?



Propagation and innovation

Naive propagation scheme

Xj+1 = X + AtF(x;, 0),
which is used for SDE schemes (Euler-Maruyama) has several
problems:

» The systems are typically stiff, leading to prohibitively small
step size to guarantee stability

» The innovation needs to be related to approximation error.



Propagation and innovation

A more sophisticated solution: Use a standard stiff solver such as
odelbs.

Error proportional to approximation accuracy.
Problem:

» Variable time step: some particles require longer integaration

» The slowest particle determines the propagation speed.



Histogram of propagation times: An example
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Stiffness and syncronization

For systems which are inherently stiff, we use a good stiff solver:
Xj+1 = F™**(x;,0) = F(x;,0) + approximation error,

where the approximation error is due to numerical integration.
If the stiffness of the systems varies a lot with the parameter values
prescribing a fixed accuracy may be a problems because

» The time for the particles propagation may vary widely;
» The slowest particle determines the propagation speed

» We cannot take full advantage of parallel and vectorized
computing environment.



Linear Multistep Methods

Given r past values,

Un,Uny1,y-..,Unyr—1,

write . ,
Z Qjunyj =h Z Bif (Un+j, tatf),
j=0 j=0

and determine the coefficients o, 8; from a condition that the
formula is accurate for a polynomial.

» Adams methods: a, =1, a,_1 = =1, aj =0 for j < r — 1.
» Backwards Differentiation Formulas:
Bo=pP1=...=Br-1=0.
For stiff problems: AM1-AM4, BDF1 — BDF4.



Stability regions:Adams-Bashford (explicit)

ABI (forward Euler) AB3
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Stability regions:Adams-Moulton (implicit)

AMI (trapezoidal)

AM3
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Stability regions: BDF (implicit)

BDF1 (backward Euler)
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Higher Order Method Error Control (HOMEC)

> up+, = candidate solution at time t,;, computed by the
LMM of order p,

> U,+, = solution at t,y, given by the higher order method.

» u = exact solution with initial value u(t,) = up

Unir = u(tne,)+ LAPTE + O(hPT2)
L/l\n—i-r = U(tn+r) + O(hp+2)

as h — 0, where ¢ is some vector depending on the solution u(t) of
the ODE system but not on h.
Subtracting and neglecting higher order terms:

1 o -
ChPH Upyr — Ungr



Prescribe time, not accuracy

Thus, to improve the performance of the algorithm we
» Propagate each particle with fixed propagation time.
» Estimate the numerical accuracy for each particle

» Set the jth particle innovation variance proportional to the
integration error.

This yields the innovation covariance matrix
Vi1 ~ N(0, 1),
where for 1 </ < d,
M1 = diag(y) +el, v =72(uj1 — Ga)?,

with 7 > 1.



SOF with error estimate innovation

Given the initial probability density mo(xo),
1. Initialization: Draw the particle ensemble from mo(xp):

So = {(x&,Wl),(xg,Wg),...,(xév,wév)},
1
1_ 2: pr— N:i‘
Wo =W = ... = wp =
Set j = 0.

2. Propagation: Compute the predictor using LMM:

Xl =V(x"h), 1<n<N.



3. Survival of the fittest: For each n:
(a) Compute the fitness weights

- g1
gl =w' n(yje1 | X)), & & =i
Zn j+1

(b) Draw indices with replacement ¢, € {1,2,..., N} using
probabilities
P{¢, =k} = gJ-kH;

(c) Reshuffle



4. Innovation: For each n:
(a) Using error estimate, estimate '], ; = Ij11(x7);
(b) Dra\{v Vi1~ N(o, M)
(c) Proliferate
X1 =X + Vi

5. Weight updating: For each n, compute

ron | x0hn) .
PR EIL B R
T(yj+1 | Xj+1) >on Wit1

6. If j < T, increase j < j + 1 and repeat from (ii).

The parameter estimation SMC can be also carried out
concurrently.



Extensions to EnKF

Assuming that the current density 7T(XJ', 0] Dj) is represented in
terms of an ensemble

= () (58) - ()}

the state prediction ensemble is obtained by

)S&IIJZF<JIJ’91>+V+1"7_12 N

following the state evolution equation and setting the innovation
variance as for the particle filter.
Assume a linear observation model.



Combining state and parameter vectors

Compute the prediction ensemble statistics by defining the state
and parameter vectors

Xn

1l

erl‘rllj: J;_n‘J 5 n:1,2,...,N.
J

The prediction ensemble mean is
N
_ 1 n
i+l T Ny > 2y
n=1

and the prior covariance matrix is

N
[ :L zh o=z )z —=Z0 . T
A VA E : S L)\ S

n=1



When an observation y;;1 arrives, an observation ensemble is
generated by parametric bootstrapping

n _ n
Yit1 = Yj+1 T Wi

where w/, | ~ N(0, D) is a realization of the noise. In the case of
a linear observation the combined posterior ensemble is obtained as

n __n . n . n _
Zoryin = Foay + Ke (i1 = Gazlay) . n=12..N
where the Kalman gain K11 is
T T -t
Kiv1 =T 116Gy (Gj+1rj+1|jGj+1 + D) :

The posterior means and covariances for the states and parameters
are computed using the posterior ensemble statistics.



A simple example motivated by acetate metabolism

dxq X1

P o) - v

dt ( ) 1X1 + Kk

dxp X1 X2
— = V. -V

dt 1X1—|—k1 2X2+k2
dxs Xo

B v N (xa —

dt 2X2 + ko (X3 CO)

with known parameters A and ¢y and input function

d(t) = Ao + A(t — to) exp(—(t — to)/7)
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Time series for V,

Time series for kl
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Time series for Vl Time series for kl
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The humble and lowly skeletal muscle




and its metabolism
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Stiffness and many unknown parameters

Problem: follow the time courses of metabolites and intermediates
in skeletal model cellular metabolism model over 100 minutes.

» State vector: 38 concentrations, 30 in tissue, 8 in blood;
» Evolution model: nonlinear system of ODEs;
» Number of unknown parameters: 44+52.

» The stiffness of the underlying ODE system reflects the
difference in time constants of the different reactions and
transports.



Numerical test

» Data: Noisy measurements of 8 concentrations in blood at 11
time instances.

» Propagation: use implicit time integrators BDF2 (and BDF3)
with fixed time step h = 0.01 or 0.6 seconds.

» Ensemble size: N=250.

> Fix 44 parameters corresponding to facilitators and estimate
remaining 52 (max flux and affinity)

» Initial ensemble: cloud of parameters values not centered
around true values and corresponding initial values which
support steady state.

» At each time step we inflate the covariance matrix by 20%.



Spatio-temporal prior

» We want to favor solutions with moderate rates of change.

» Exponential a priori bound:
M=251C(t) < C(tjg) < MAFC(L)
for M > 1 and Atj 1 = tj;1 — tj, which implies

(M)ll = [x(tj11) = Xjj| < (log M)At 1.

| log )
J

> We set
X(t41) ~ N (Xj1j V2 (Atj41)? L)

with M =20 and v = log M/2.



Estimation of blind components
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Estimation of parameters
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Predictive skill of the filter

Question: How well does a dynamical system identified by the
estimated parameters describe predict other protocols?
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Lactate
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