Sampling Methods for Uncertainty Quantification in Inverse Problems

John Bardsley

University of Montana

University of Warwick, June 2015

Outline

- Introduce the problem of interest: inverse problems
- Case 1: Linear inverse problems and posterior sampling using optimization
 - Hierarchical models.
- Case 2: Nonlinear inverse problems and posterior sampling using optimization
 - Randomize-then-Optimize (RTO).
- Numerical Tests.

General Statistical Model

Consider the linear, Gaussian statistical model

$$\mathbf{y} = \mathbf{A}\mathbf{u} + \boldsymbol{\epsilon},$$

where

- $\mathbf{y} \in \mathbb{R}^m$ is the vector of observations;
- $\mathbf{u} \in \mathbb{R}^n$ is the vector of unknown parameters;
- $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^m$, with $m \ge n$;
- $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, i.e., $\boldsymbol{\epsilon}$ is i.i.d. Gaussian with mean 0 and variance σ^2 .

Synthetic Examples

Data \mathbf{y} examples:

Corresponding true images \mathbf{u} :

Naive Solutions: $\mathbf{u}_{naive} = \mathbf{A}^{-1}\mathbf{y}$

Corresponding true images **u**:

Properties of the model matrix A

It is typical in inverse problems that if the matrix **A** has SVD

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^n \sigma_i \mathbf{u}_i \mathbf{v}_i^T,$$

- the σ_i 's get very close to 0 as $i \to n$;
- and the $\{\mathbf{u}_i, \mathbf{v}_i\}$'s become increasingly oscillatory as $i \to n$.

Properties of the model matrix A

It is typical in inverse problems that if the matrix **A** has SVD

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^n \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$

- the σ_i 's get very close to 0 as $i \to n$;
- and the $\{\mathbf{u}_i, \mathbf{v}_i\}$'s become increasingly oscillatory as $i \to n$.

Then the naive solution can then be written

$$\mathbf{A}^{-1}\mathbf{y} = \mathbf{A}^{-1}(\mathbf{A}\mathbf{u} + \boldsymbol{\epsilon})$$

= $\mathbf{u} + \mathbf{A}^{-1}\boldsymbol{\epsilon}$
= $\mathbf{u} + \sum_{i=1}^{n} \left(\frac{\mathbf{u}_{i}^{T}\boldsymbol{\epsilon}}{\sigma_{i}}\right)\mathbf{v}_{i}$
large *i* terms dominate

Naive Solutions: $\mathbf{u}_{naive} = \mathbf{A}^{-1}\mathbf{y}$

Corresponding true images **u**:

The Fix: Regularization

Bayes Law and Regularization

Bayes' Law:

 $p(\mathbf{u}|\mathbf{y}, \lambda, \delta) \propto p(\mathbf{y}|\mathbf{u}, \lambda) p(\mathbf{u}|\delta)$. likelihood posterior prior

Bayes Law and Regularization

And we assume that the prior has the form

$$p(\mathbf{u}|\delta) \propto \exp\left(-\frac{\delta}{2}\mathbf{u}^T \mathbf{L} \mathbf{u}\right),$$

Bayes Law and Regularization

The maximizer of the posterior density is

$$\mathbf{u}_{\text{MAP}} = \arg\min_{\mathbf{u}} \left\{ \frac{\lambda}{2} \|\mathbf{A}\mathbf{u} - \mathbf{y}\|^2 + \frac{\delta}{2} \,\mathbf{u}^T \mathbf{L} \mathbf{u} \right\}$$

which is the regularized solution \mathbf{u}_{α} with $\alpha = \delta/\lambda$.

$$\alpha = 2.5 \times 10^{-4}$$
 $\alpha = 1.05 \times 10^{-4}$.

Aside: Develop Your Mathematical Taste

Some Early Inspiration: Algorithms, Numerics & Bayes

- 1. Vogel
 - Computational Methods for Inverse Problems, SIAM 2002.
- 2. Haario
 - University of Montana Computational Statistics course, Spring 2006.
- 3. Calvetti & Somersalo
 - A Gaussian hypermodel to recover blocky objects, Inverse Problems, 2007.
 - Intro to Bayesian Scientific Computing, Springer, 2007.
 - Hierarchical Regularization for Edge-Preserving Reconstruction of PET Images, with D. Calvetti and E. Somersalo, Inverse Problems, **26(3)**, 2010, 035010.
- 4. Rue & Held
 - Gaussian Markov Random Fields, CRC Press, 2005. Alternate/equivalent to Calvetti & Somersalo, talk 1.

Modeling the Prior $p(\mathbf{u}|\delta)$

Gaussian Markov Random field (GMRF) priors

The neighbor values for u_{ij} are below (in black)

$$\mathbf{u}_{\partial_{ij}} = \{u_{i-1,j}, u_{i,j-1}, u_{i+1,j}, u_{i,j+1}\}$$

$$= \left[\begin{array}{cc} u_{i,j+1} \\ u_{i-1,j} & u_{ij} \\ u_{i,j-1} \end{array} \right].$$

Gaussian Markov Random field (GMRF) priors

The neighbor values for u_{ij} are below (in black)

$$\mathbf{u}_{\partial_{ij}} = \{u_{i-1,j}, u_{i,j-1}, u_{i+1,j}, u_{i,j+1}\}$$

$$= \left[\begin{array}{cc} u_{i,j+1} \\ u_{i-1,j} & u_{ij} \\ u_{i,j-1} \end{array} \right].$$

Then we assume

$$u_{i,j}|\mathbf{u}_{\partial_{i,j}} \sim \mathcal{N}\left(\bar{u}_{\partial_{i,j}}, \frac{1}{\delta n_{ij}}\right),$$

where $\bar{u}_{\partial_{i,j}} = \frac{1}{n_{ij}} \sum_{(r,s) \in \partial_{ij}} u_{rs}$ and $n_{ij} = |\partial_{ij}|$.

Gaussian Markov Random field (GMRF) priors

This leads to the prior

$$p(\mathbf{u}|\delta) \propto \delta^n \exp\left(-\frac{\delta}{2}\mathbf{u}^T \mathbf{L} \mathbf{u}\right),$$

where if r = (i, j) after column-stacking 2D arrays

$$[\mathbf{L}]_{rs} = \begin{cases} 4 & s = r, \\ -1 & s \in \partial_r, \\ 0 & \text{otherwise.} \end{cases}$$

NOTE: $\mathbf{L} = 2\mathbf{D}$ discrete unscaled neg-Laplacian. Recall the MAP estimator

$$\mathbf{u}_{\alpha} = \arg\min_{\mathbf{u}} \left\{ \frac{1}{2} \|\mathbf{A}\mathbf{u} - \mathbf{y}\|^2 + \frac{\alpha}{2} \, \mathbf{u}^T \mathbf{L} \mathbf{u} \right\}$$

$$\alpha = 2.5 \times 10^{-4}$$

2D Intrinsic GMRF Increment Models (ala Calvetti & Somersalo) For a 2D signal, suppose

$$\begin{aligned} u_{i+1,j} - u_{ij} &\sim \mathcal{N}(0, (w_{ij}^h \delta)^{-1}), & i = 1, \dots, n-1, \ j = 1, \dots, n \\ u_{i,j+1} - u_{ij} &\sim \mathcal{N}(0, (w_{ij}^v \delta)^{-1}), & i = 1, \dots, n, \ j = 1, \dots, n-1 \end{aligned}$$

2D Intrinsic GMRF Increment Models (ala Calvetti & Somersalo) For a 2D signal, suppose

$$u_{i+1,j} - u_{ij} \sim \mathcal{N}(0, (w_{ij}^h \delta)^{-1}), \quad i = 1, \dots, n-1, \ j = 1, \dots, n$$
$$u_{i,j+1} - u_{ij} \sim \mathcal{N}(0, (w_{ij}^v \delta)^{-1}), \quad i = 1, \dots, n, \ j = 1, \dots, n-1$$

Then the density function for \mathbf{u} has the form

$$p(\mathbf{u}|\delta) \propto \delta^{(n^2-1)/2} \exp\left(-\frac{\delta}{2} \sum_{i=1}^{n-1} \sum_{j=1}^{n} w_{ij}^h (u_{i+1,j} - u_{ij})^2\right) \times \exp\left(-\frac{\delta}{2} \sum_{i=1}^{n} \sum_{j=1}^{n-1} w_{ij}^v (u_{i,j+1} - u_{ij})^2\right)$$
$$= \delta^{(n^2-1)/2} \exp\left(-\frac{\delta}{2} \mathbf{u}^T (\mathbf{D}_h^T \mathbf{\Lambda}_h \mathbf{D}_h + \mathbf{D}_v^T \mathbf{\Lambda}_v \mathbf{D}_v) \mathbf{u}\right),$$

2D Intrinsic GMRF Increment Models (ala Calvetti & Somersalo) For a 2D signal, suppose

$$u_{i+1,j} - u_{ij} \sim \mathcal{N}(0, (w_{ij}^h \delta)^{-1}), \quad i = 1, \dots, n-1, \ j = 1, \dots, n$$
$$u_{i,j+1} - u_{ij} \sim \mathcal{N}(0, (w_{ij}^v \delta)^{-1}), \quad i = 1, \dots, n, \ j = 1, \dots, n-1$$

Then the density function for \mathbf{u} has the form

$$p(\mathbf{u}|\delta) \propto \delta^{(n^2-1)/2} \exp\left(-\frac{\delta}{2} \sum_{i=1}^{n-1} \sum_{j=1}^{n} w_{ij}^h (u_{i+1,j} - u_{ij})^2\right) \times \exp\left(-\frac{\delta}{2} \sum_{i=1}^{n} \sum_{j=1}^{n-1} w_{ij}^v (u_{i,j+1} - u_{ij})^2\right)$$
$$= \delta^{(n^2-1)/2} \exp\left(-\frac{\delta}{2} \mathbf{u}^T (\mathbf{D}_h^T \mathbf{\Lambda}_h \mathbf{D}_h + \mathbf{D}_v^T \mathbf{\Lambda}_v \mathbf{D}_v) \mathbf{u}\right),$$

$$\begin{split} \mathbf{D}_h &= \mathbf{I} \otimes \mathbf{D}, \ \mathbf{D}_v = \mathbf{D} \otimes \mathbf{I}, \ \mathbf{D} \text{ is a 1D difference matrix}, \\ \mathbf{\Lambda}_h &= \text{diag}(\text{vec}(\{w_{ij}^h\}_{ij=1}^{n-1})), \ \mathbf{\Lambda}_v = \text{diag}(\text{vec}(\{w_{ij}^v\}_{ij=1}^{n-1})). \end{split}$$

2D IGMRF Increment Models

The matrix $\mathbf{D}_{h}^{T} \mathbf{\Lambda}_{h} \mathbf{D}_{h} + \mathbf{D}_{v}^{T} \mathbf{\Lambda}_{v} \mathbf{D}_{v}$ is a discretization of

$$-\frac{d}{ds}\left(w_h(s,t)\frac{d}{ds}\right) - \frac{d}{dt}\left(w_v(s,t)\frac{d}{dt}\right)$$

Left: $w_{ij}^h = w_{ij}^v = 1$ for all ij. Right: $w_{ij}^h = w_{ij}^v = 0.01$ for ij on the circle boundary.

Summary Table

Statistical Assumption	PDE	Reg. Matrix
$u_{ij} \mathbf{u}_{\partial_{ij}} \sim \mathcal{N}(\overline{x}_{\partial_{ij}}, (n_{ij}w_{ij})^{-1})$	$ \begin{array}{c} -\frac{\partial}{\partial s} \left(w(s,t) \right) \frac{\partial x}{\partial s} \right) \\ -\frac{\partial}{\partial t} \left(w(s,t) \right) \frac{\partial x}{\partial t} \right) \end{array} $	$\mathbf{D}_{h}^{T}\mathbf{\Lambda}\mathbf{D}_{h} \ +\mathbf{D}_{v}^{T}\mathbf{\Lambda}\mathbf{D}_{v}$

Caveat:

- These discretizations are grid dependent since I have not scaled **D**, **D**_h, and **D**_v by step size.
- Even with step size, these break down in the infinite limit, but you could square them to overcome this.

IGMRF Edge-Preserving Reconstruction

- 0. Set $\Lambda_h = \Lambda_v = \mathbf{I}$.
- 1. Define $\mathbf{L} = \mathbf{D}_h^T \mathbf{\Lambda} \mathbf{D}_h + \mathbf{D}_v^T \mathbf{\Lambda} \mathbf{D}_v$, where
- 2. Compute the solution \mathbf{u}_{α} of

$$(\mathbf{A}^T\mathbf{A} + \alpha\mathbf{L})\mathbf{u} = \mathbf{A}^T\mathbf{y}$$

using PCG with $\underline{\alpha}$ obtained using GCV. 3. Set

$$oldsymbol{\Lambda}(\mathbf{x}_lpha) = ext{diag}\left(rac{1}{\sqrt{(\mathbf{D}_h \mathbf{u}_lpha)^2 + (\mathbf{D}_v \mathbf{u}_lpha)^2 + eta \mathbf{1}}}
ight)$$

and return to Step 1.

NOTE: This is just the lagged-diffusivity iteration.

Numerical Results

2D Laplace Increment Models (Anisotropic TV)

For a 2D signal, suppose

$$u_{i+1,j} - u_{ij} \sim \text{Laplace}(0, \delta^{-1}), \quad i = 1, \dots, n-1, \ j = 1, \dots, n$$

 $u_{i,j+1} - u_{ij} \sim \text{Laplace}(0, \delta^{-1}), \quad i = 1, \dots, n, \ j = 1, \dots, n-1$

2D Laplace Increment Models (Anisotropic TV)

For a 2D signal, suppose

$$u_{i+1,j} - u_{ij} \sim \text{Laplace}(0, \delta^{-1}), \quad i = 1, \dots, n-1, \ j = 1, \dots, n$$

 $u_{i,j+1} - u_{ij} \sim \text{Laplace}(0, \delta^{-1}), \quad i = 1, \dots, n, \ j = 1, \dots, n-1$

Then the density function for ${\bf u}$ has the form

$$p(\mathbf{u}|\delta) \propto \exp\left(-\delta \sum_{i=1}^{n-1} \sum_{j=1}^{n} |u_{i+1,j} - u_{ij}|\right) \times \\ \exp\left(-\delta \sum_{i=1}^{n} \sum_{j=1}^{n-1} |u_{i,j+1} - u_{ij}|\right) \\ = \exp\left(-\delta(\|\mathbf{D}_h \mathbf{u}\|_1 + \|\mathbf{D}_v \mathbf{u}\|_1)\right),$$

where $\mathbf{D}_h = \mathbf{I} \otimes \mathbf{D}$ and $\mathbf{D}_v = \mathbf{D} \otimes \mathbf{I}$.

Very similar (computationally & theoretically) to TV.

Sampling vs. Computing the MAP

Extending the Bayesian Connection

Uncertainty in λ and δ : $\lambda \sim p(\lambda)$ and $\delta \sim p(\delta)$. Then

 $p(\mathbf{u}, \lambda, \delta | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{u}, \lambda) p(\lambda) p(\mathbf{u} | \delta) p(\delta),$

is the Bayesian posterior

Extending the Bayesian Connection

Uncertainty in λ and δ : $\lambda \sim p(\lambda)$ and $\delta \sim p(\delta)$. Then

$$p(\mathbf{u}, \lambda, \delta | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{u}, \lambda) p(\lambda) p(\mathbf{u} | \delta) p(\delta),$$

is the Bayesian posterior, where

$$p(\mathbf{y}|\mathbf{x},\lambda) \propto \lambda^{n/2} \exp\left(-\frac{\lambda}{2} \|\mathbf{A}\mathbf{u} - \mathbf{y}\|^2\right),$$
$$p(\mathbf{u}|\delta) \propto \delta^{n/2} \exp\left(-\frac{\delta}{2}\mathbf{u}^T \mathbf{L}\mathbf{u}\right).$$

$$\begin{array}{l} p(\lambda) & \propto & \lambda^{\alpha_{\lambda}-1} \exp(-\beta_{\lambda}\lambda) \\ p(\delta) & \propto & \delta^{\alpha_{\delta}-1} \exp(-\beta_{\delta}\delta), \end{array}$$

where $\alpha_{\lambda} = \alpha_{\delta} = 1$ and $\beta_{\lambda} = \beta_{\delta} = 10^{-4}$, and hence

mean =
$$\alpha/\beta = 10^4$$
, var = $\alpha/\beta^2 = 10^8$.

The Full Posterior Distribution

 $p(\mathbf{u}, \lambda, \delta | \mathbf{y}) \propto \text{the posterior}$

$$\lambda^{n/2+\alpha_{\lambda}-1}\delta^{n/2+\alpha_{\delta}-1}\exp\left(-\frac{\lambda}{2}\|\mathbf{A}\mathbf{u}-\mathbf{y}\|^{2}-\frac{\delta}{2}\mathbf{u}^{T}\mathbf{L}\mathbf{u}-\beta_{\lambda}\lambda-\beta_{\delta}\delta\right).$$

The Full Posterior Distribution

 $p(\mathbf{u}, \lambda, \delta | \mathbf{y}) \propto \text{the posterior}$

$$\lambda^{n/2+\alpha_{\lambda}-1}\delta^{n/2+\alpha_{\delta}-1}\exp\left(-\frac{\lambda}{2}\|\mathbf{A}\mathbf{u}-\mathbf{y}\|^{2}-\frac{\delta}{2}\mathbf{u}^{T}\mathbf{L}\mathbf{u}-\beta_{\lambda}\lambda-\beta_{\delta}\delta\right)$$

By conjugacy, each conditional distribution lives in the same family as the prior/hyper-prior distribution:

$$\begin{split} \mathbf{u} | \lambda, \delta, \mathbf{y} &\sim N \left((\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \lambda \mathbf{A}^T \mathbf{y}, (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \right), \\ \lambda | \mathbf{u}, \delta, \mathbf{y} &\sim \Gamma \left(n/2 + \alpha_{\lambda}, \frac{1}{2} \| \mathbf{A} \mathbf{u} - \mathbf{y} \|^2 + \beta_{\lambda} \right), \\ \delta | \mathbf{u}, \lambda, \mathbf{y} &\sim \Gamma \left(n/2 + \alpha_{\delta}, \frac{1}{2} \mathbf{u}^T \mathbf{L} \mathbf{u} + \beta_{\delta} \right). \end{split}$$

An MCMC Method for sampling from $p(\mathbf{u}, \lambda, \delta | \mathbf{y})$

We could compute the MAP, but instead, let's sample from the posterior

An MCMC Method for Sampling from $p(\mathbf{u}, \delta, \lambda | \mathbf{y})$.

- **0**. δ_0 , and λ_0 , and set k = 0;
- **1**. Sample $\mathbf{u}|\lambda_k, \delta_k, \mathbf{y}$:

$$\mathbf{u}^{k} \sim N\left((\lambda_{k} \mathbf{A}^{T} \mathbf{A} + \delta_{k} \mathbf{L})^{-1} \lambda_{k} \mathbf{A}^{T} \mathbf{y}, (\lambda_{k} \mathbf{A}^{T} \mathbf{A} + \delta_{k} \mathbf{L})^{-1} \right);$$

- 2. Sample $\lambda |\mathbf{u}_k, \delta_k, \mathbf{y}$: $\lambda_{k+1} \sim \Gamma\left(n/2 + \alpha_\lambda, \frac{1}{2} \|\mathbf{A}\mathbf{u}^k - \mathbf{y}\|^2 + \beta_\lambda\right);$ 3. Sample $\delta |\mathbf{u}_k, \lambda_k, \mathbf{y}$: $\delta_{k+1} \sim \Gamma\left(n/2 + \alpha_\delta, \frac{1}{2}(\mathbf{u}^k)^T \mathbf{L}\mathbf{u}^k + \beta_\delta\right);$
- 4. Set k = k + 1 and return to Step 1.

Sampling vs. Computing the MAP

A One-dimensional example

True Image and Blurred, Noisy Data

Mean and 95% Confidence Images

Deblurring with periodic boundary conditions

Deblurring with Neumann boundary conditions

But wait! Correlation in the δ -chain increases as $n \to \infty$ Work with S. Agapiou, O. Papaspiliopoulos, & Andrew Stuart

$$n = 50$$

n = 100

But wait! Correlation in the δ -chain increases as $n \to \infty$ Work with S. Agapiou, O. Papaspiliopoulos, & Andrew Stuart

n = 500

n = 1000

One fix, Marginalization: $p(\lambda, \delta | \mathbf{y}) = \int_{\mathbb{R}^n} p(\mathbf{u}, \lambda, \delta | \mathbf{y}) d\mathbf{u}$ Thanks Sergios!

$$p(\mathbf{u}, \lambda, \delta | \mathbf{y}) \propto \exp\left(-\frac{1}{2}(\mathbf{u} - \mathbf{m})^T (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})(\mathbf{u} - \mathbf{m})\right) \times \lambda^{n/2 + \alpha} \delta^{n/2 + \alpha} \exp\left(-\beta \lambda - \beta \delta\right) \times \exp\left(-\frac{1}{2}\mathbf{y}^T (\lambda \mathbf{I} - \lambda^2 \mathbf{A}(\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \mathbf{A}^T)\mathbf{y}\right)$$

٠

where $\mathbf{m} = (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \lambda \mathbf{A}^T \mathbf{y}.$

One fix, Marginalization: $p(\lambda, \delta | \mathbf{y}) = \int_{\mathbb{R}^n} p(\mathbf{u}, \lambda, \delta | \mathbf{y}) d\mathbf{u}$ Thanks Sergios!

$$p(\mathbf{u}, \lambda, \delta | \mathbf{y}) \propto \exp\left(-\frac{1}{2}(\mathbf{u} - \mathbf{m})^T (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})(\mathbf{u} - \mathbf{m})\right) \times \lambda^{n/2 + \alpha} \delta^{n/2 + \alpha} \exp\left(-\beta \lambda - \beta \delta\right) \times \exp\left(-\frac{1}{2}\mathbf{y}^T (\lambda \mathbf{I} - \lambda^2 \mathbf{A} (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \mathbf{A}^T)\mathbf{y}\right).$$

where
$$\mathbf{m} = (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \lambda \mathbf{A}^T \mathbf{y}$$
. Then
 $p(\lambda, \delta | \mathbf{y}) \propto |\det(\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})|^{1/2} \lambda^{n/2 + \alpha} \delta^{n/2 + \alpha} \exp(-\beta \lambda - \beta \delta) \times \exp\left(-\frac{1}{2} \mathbf{y}^T (\lambda \mathbf{I} - \lambda^2 \mathbf{A} (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \mathbf{A}^T) \mathbf{y}\right),$

One fix, Marginalization: $p(\lambda, \delta | \mathbf{y}) = \int_{\mathbb{R}^n} p(\mathbf{u}, \lambda, \delta | \mathbf{y}) d\mathbf{u}$ Thanks Sergios!

$$p(\mathbf{u}, \lambda, \delta | \mathbf{y}) \propto \exp\left(-\frac{1}{2}(\mathbf{u} - \mathbf{m})^T (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})(\mathbf{u} - \mathbf{m})\right) \times \lambda^{n/2 + \alpha} \delta^{n/2 + \alpha} \exp\left(-\beta \lambda - \beta \delta\right) \times \exp\left(-\frac{1}{2} \mathbf{y}^T (\lambda \mathbf{I} - \lambda^2 \mathbf{A} (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \mathbf{A}^T) \mathbf{y}\right).$$

where
$$\mathbf{m} = (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \lambda \mathbf{A}^T \mathbf{y}$$
. Then
 $p(\lambda, \delta | \mathbf{y}) \propto |\det(\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})|^{1/2} \lambda^{n/2 + \alpha} \delta^{n/2 + \alpha} \exp(-\beta \lambda - \beta \delta) \times \exp\left(-\frac{1}{2} \mathbf{y}^T (\lambda \mathbf{I} - \lambda^2 \mathbf{A} (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \mathbf{A}^T) \mathbf{y}\right),$

and hence,

$$p(\delta|\mathbf{y},\lambda) \propto |\det(\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})|^{1/2} \delta^{n/2+\alpha} \times \\ \exp\left(\frac{\lambda^2}{2} \mathbf{y}^T \mathbf{A} (\lambda \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \mathbf{A}^T \mathbf{y} - \beta \delta\right).$$

MCMC Method with Marginalization (w/ Kevin Joyce)

Another MCMC Method for Sampling from $p(\mathbf{u}, \delta, \lambda | \mathbf{y})$.

- **0**. δ_0 , and λ_0 , and set k = 0;
- **1**. Sample $\mathbf{u}|\lambda_k, \delta_k, \mathbf{y}$:

$$\mathbf{u}^{k} \sim N\left((\lambda_{k} \mathbf{A}^{T} \mathbf{A} + \delta_{k} \mathbf{L})^{-1} \lambda_{k} \mathbf{A}^{T} \mathbf{y}, (\lambda_{k} \mathbf{A}^{T} \mathbf{A} + \delta_{k} \mathbf{L})^{-1} \right);$$

- 2. Sample $\lambda |\mathbf{u}_k, \delta_k, \mathbf{y}$: $\lambda_{k+1} \sim \Gamma\left(n/2 + \alpha_\lambda, \frac{1}{2} \|\mathbf{A}\mathbf{u}^k - \mathbf{y}\|^2 + \beta_\lambda\right);$
- **3**. Sample $\delta | \lambda_k, \mathbf{y}$ (e.g., using Metropolis-Hastings):

$$p(\delta|\mathbf{y},\lambda_k) \propto |\det(\lambda_k \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})|^{1/2} \delta^{n/2+\alpha} \times \exp\left(\frac{\lambda_k^2}{2} \mathbf{y}^T \mathbf{A} (\lambda_k \mathbf{A}^T \mathbf{A} + \delta \mathbf{L})^{-1} \mathbf{A}^T \mathbf{y} - \beta \delta\right);$$

4. Set k = k + 1 and return to Step 1.

Chain and auto-correlation plots of λ and δ

The conditional density for $\mathbf{u}|\lambda_k, \delta_k, \mathbf{y}$ can be written in the form

$$p(\mathbf{u}|\lambda_k, \delta_k, \mathbf{y}) \propto \exp\left(-\frac{1}{2} \left\| \begin{bmatrix} \lambda_k^{1/2} \mathbf{A} \\ (\delta_k \mathbf{L})^{1/2} \end{bmatrix} \mathbf{u} - \begin{bmatrix} \lambda_k^{1/2} \mathbf{y} \\ \mathbf{0} \end{bmatrix} \right\|^2 \right)$$

The conditional density for $\mathbf{u}|\lambda_k, \delta_k, \mathbf{y}$ can be written in the form

$$p(\mathbf{u}|\lambda_k, \delta_k, \mathbf{y}) \propto \exp\left(-\frac{1}{2} \left\| \begin{bmatrix} \lambda_k^{1/2} \mathbf{A} \\ (\delta_k \mathbf{L})^{1/2} \end{bmatrix} \mathbf{u} - \begin{bmatrix} \lambda_k^{1/2} \mathbf{y} \\ \mathbf{0} \end{bmatrix} \right\|^2 \right)$$

From here on out, we define:

$$\mathbf{J}_{k} = \left[\begin{array}{c} \lambda_{k}^{1/2} \mathbf{A} \\ (\delta_{k} \mathbf{L})^{1/2} \end{array} \right], \quad \text{and} \quad \bar{\mathbf{y}}_{k} = \left[\begin{array}{c} \lambda_{k}^{1/2} \mathbf{y} \\ \mathbf{0} \end{array} \right].$$

Note then that

$$\frac{1}{2} \|\mathbf{J}_k \mathbf{u} - \bar{\mathbf{y}}_k\|^2 = \frac{\lambda_k}{2} \|\mathbf{A}\mathbf{u} - \mathbf{y}\|^2 + \frac{\delta_k}{2} \mathbf{u}^T \mathbf{L} \mathbf{u}$$

For large-scale problems, you can use optimization

$$\mathbf{u}^k = rg\min_{oldsymbol{\psi}} \|\mathbf{J}_k oldsymbol{\psi} - (ar{\mathbf{y}}_k + oldsymbol{\epsilon}) \|^2, \quad oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

For large-scale problems, you can use optimization

$$\mathbf{u}^k = rg\min_{oldsymbol{\psi}} \|\mathbf{J}_k oldsymbol{\psi} - (ar{\mathbf{y}}_k + oldsymbol{\epsilon}) \|^2, \quad oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

Note \mathbf{u}^k is a random variable defined by

$$\mathbf{u}^{k} = (\mathbf{J}_{k}^{T}\mathbf{J}_{k})^{-1}\mathbf{J}_{k}^{T}(\bar{\mathbf{y}}_{k} + \boldsymbol{\epsilon}), \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

For large-scale problems, you can use optimization

$$\mathbf{u}^k = rg\min_{oldsymbol{\psi}} \|\mathbf{J}_k oldsymbol{\psi} - (ar{\mathbf{y}}_k + oldsymbol{\epsilon}) \|^2, \quad oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

Note \mathbf{u}^k is a random variable defined by

$$\mathbf{u}^k = (\mathbf{J}_k^T \mathbf{J}_k)^{-1} \mathbf{J}_k^T (\bar{\mathbf{y}}_k + \boldsymbol{\epsilon}), \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

QR-rewrite: if $\mathbf{J}_k = \mathbf{Q}_k \mathbf{R}_k$, with $\mathbf{Q}_k \in \mathbb{R}^{m \times n}$, $\mathbf{R}_k \in \mathbb{R}^{n \times n}$,

then

$$\begin{aligned} \mathbf{u}^k &= \mathbf{R}_k^{-1} \mathbf{Q}_k^T (\bar{\mathbf{y}}_k + \boldsymbol{\epsilon}), \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ &\stackrel{\text{def}}{=} \mathbf{F}_k^{-1} \left(\mathbf{v}_k \right), \quad \mathbf{v}_k \sim \mathcal{N}(\mathbf{Q}_k^T \bar{\mathbf{y}}_k, \mathbf{I}). \end{aligned}$$

Proof that

$$\mathbf{u}^{k} \sim N\left((\lambda_{k}\mathbf{A}^{T}\mathbf{A} + \delta_{k}\mathbf{L})^{-1}\lambda_{k}\mathbf{A}^{T}\mathbf{y}, (\lambda_{k}\mathbf{A}^{T}\mathbf{A} + \delta_{k}\mathbf{L})^{-1}\right)$$

What we know:

•
$$\mathbf{v}_k \sim \mathcal{N}(\mathbf{Q}_k^T \bar{\mathbf{y}}_k, \mathbf{I}) \Longrightarrow p_{\mathbf{v}_k}(\mathbf{v}_k) \propto \exp\left(-\frac{1}{2} \|\mathbf{v}_k - \mathbf{Q}_k^T \bar{\mathbf{y}}_k\|^2\right);$$

•
$$\mathbf{F}_k^{-1}(\mathbf{v}_k) = \mathbf{R}_k^{-1}\mathbf{v}_k.$$

Proof that

$$\mathbf{u}^{k} \sim N\left((\lambda_{k}\mathbf{A}^{T}\mathbf{A} + \delta_{k}\mathbf{L})^{-1}\lambda_{k}\mathbf{A}^{T}\mathbf{y}, (\lambda_{k}\mathbf{A}^{T}\mathbf{A} + \delta_{k}\mathbf{L})^{-1}\right)$$

What we know:

•
$$\mathbf{v}_k \sim \mathcal{N}(\mathbf{Q}_k^T \bar{\mathbf{y}}_k, \mathbf{I}) \Longrightarrow p_{\mathbf{v}_k}(\mathbf{v}_k) \propto \exp\left(-\frac{1}{2} \|\mathbf{v}_k - \mathbf{Q}_k^T \bar{\mathbf{y}}_k\|^2\right);$$

• $\mathbf{F}^{-1}(\mathbf{v}_k) = \mathbf{P}^{-1}\mathbf{v}_k$

•
$$\mathbf{F}_k^{-1}(\mathbf{v}_k) = \mathbf{R}_k^{-1}\mathbf{v}_k.$$

$$p(\mathbf{u}^{k}) = \underbrace{(2\pi)^{-n/2} |\det(\mathbf{R})| \exp\left(-\frac{1}{2} ||\mathbf{R}_{k}\mathbf{u}^{k} - \mathbf{Q}_{k}^{T}\bar{\mathbf{y}}||^{2}\right)}_{= (2\pi)^{-n/2} |\det(\mathbf{J}_{k}^{T}\mathbf{J}_{k})|^{1/2} \exp\left(-\frac{1}{2} ||\mathbf{R}_{k}\mathbf{u}^{k} - \mathbf{Q}_{k}^{T}\bar{\mathbf{y}}||^{2}\right)}$$

Proof that

$$\mathbf{u}^k \sim N\left((\lambda_k \mathbf{A}^T \mathbf{A} + \delta_k \mathbf{L})^{-1} \lambda_k \mathbf{A}^T \mathbf{y}, (\lambda_k \mathbf{A}^T \mathbf{A} + \delta_k \mathbf{L})^{-1}\right)$$

What we know:

•
$$\mathbf{v}_k \sim \mathcal{N}(\mathbf{Q}_k^T \bar{\mathbf{y}}_k, \mathbf{I}) \Longrightarrow p_{\mathbf{v}_k}(\mathbf{v}_k) \propto \exp\left(-\frac{1}{2} \|\mathbf{v}_k - \mathbf{Q}_k^T \bar{\mathbf{y}}_k\|^2\right);$$

• $\mathbf{F}^{-1}(\mathbf{v}_k) = \mathbf{P}^{-1}\mathbf{v}_k$

•
$$\mathbf{F}_k^{-1}(\mathbf{v}_k) = \mathbf{R}_k^{-1}\mathbf{v}_k.$$

$$p(\mathbf{u}^{k}) = \underbrace{(2\pi)^{-n/2} |\det(\mathbf{R})| \exp\left(-\frac{1}{2} ||\mathbf{R}_{k}\mathbf{u}^{k} - \mathbf{Q}_{k}^{T}\bar{\mathbf{y}}||^{2}\right)}_{= (2\pi)^{-n/2} |\det(\mathbf{J}_{k}^{T}\mathbf{J}_{k})|^{1/2} \exp\left(-\frac{1}{2} ||\mathbf{R}_{k}\mathbf{u}^{k} - \mathbf{Q}_{k}^{T}\bar{\mathbf{y}}||^{2}\right)}$$

Thus as desired, we have

$$\mathbf{u}^{k} \sim \mathcal{N}\left((\mathbf{J}_{k}^{T}\mathbf{J}_{k})^{-1}\mathbf{J}_{k}^{T}\bar{\mathbf{y}}_{k}, (\mathbf{J}_{k}^{T}\mathbf{J}_{k})^{-1} \right)$$

$$\stackrel{\text{dist}}{=} \mathcal{N}\left((\lambda_{k}\mathbf{A}^{T}\mathbf{A} + \delta_{k}\mathbf{L})^{-1}\lambda_{k}\mathbf{A}^{T}\mathbf{y}, (\lambda_{k}\mathbf{A}^{T}\mathbf{A} + \delta_{k}\mathbf{L})^{-1} \right).$$

Now Consider a Nonlinear Statistical Model

Now assume the non-linear, Gaussian statistical model

$$\mathbf{y} = \mathbf{A}(\mathbf{u}) + \boldsymbol{\epsilon},$$

where

- $\mathbf{y} \in \mathbb{R}^m$ is the vector of observations;
- $\mathbf{u} \in \mathbb{R}^n$ is the vector of unknown parameters;
- $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^m$, with $m \ge n$, is nonlinear;
- $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \lambda^{-1}\mathbf{I})$, i.e., $\boldsymbol{\epsilon}$ is i.i.d. Gaussian with mean 0 and variance $\lambda^{-1} = \sigma^2$.

Assume λ (and later δ) are known, so we will only discuss sampling **u**!

Toy example

Consider the following nonlinear, two-parameter **pre-whitened** model.

$$y_i = u_1(1 - \exp(-u_2 x_i)) + \epsilon, \quad \epsilon \sim N(0, \sigma^2), \quad i = 1, 2, 3, 4, 5,$$

with $x_i = 2i - 1$, $\sigma = 0.0136$, and $\mathbf{y} = [.076, .258, .369, .492, .559].$

GOAL: estimate a probability distribution for $\mathbf{u} = (u_1, u_2)$.

Toy example continued: the Bayesian posterior $p(\theta_1, \theta_2 | \mathbf{y})$

What is the Posterior Density Function $p(\mathbf{u}|\mathbf{y})$?

The likelihood function has the form

$$p(\mathbf{y}|\mathbf{u}) \propto \exp\left(-\frac{\lambda}{2}\|\mathbf{A}(\mathbf{u}) - \mathbf{y}\|^2\right)$$

Given the prior $p(\mathbf{u})$, the posterior density then has the form

 $p(\mathbf{u}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{u})p(\mathbf{u}).$

What is the Posterior Density Function $p(\mathbf{u}|\mathbf{y})$?

The likelihood function has the form

$$p(\mathbf{y}|\mathbf{u}) \propto \exp\left(-\frac{\lambda}{2}\|\mathbf{A}(\mathbf{u}) - \mathbf{y}\|^2\right)$$

Given the prior $p(\mathbf{u})$, the posterior density then has the form

 $p(\mathbf{u}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{u})p(\mathbf{u}).$

Assumption: we assume that the posterior has least squares form

$$p(\mathbf{u}|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\|\bar{\mathbf{A}}(\mathbf{u}) - \bar{\mathbf{y}}\|^2\right).$$

1. If $p(\mathbf{u})$ is uniform, $\bar{\mathbf{A}} = \lambda^{1/2}\mathbf{A}$ and $\bar{\mathbf{y}} = \lambda^{1/2}\mathbf{y}.$

What is the Posterior Density Function $p(\mathbf{u}|\mathbf{y})$?

The likelihood function has the form

$$p(\mathbf{y}|\mathbf{u}) \propto \exp\left(-\frac{\lambda}{2}\|\mathbf{A}(\mathbf{u}) - \mathbf{y}\|^2\right)$$

Given the prior $p(\mathbf{u})$, the posterior density then has the form

 $p(\mathbf{u}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{u})p(\mathbf{u}).$

Assumption: we assume that the posterior has least squares form

$$p(\mathbf{u}|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\|\bar{\mathbf{A}}(\mathbf{u}) - \bar{\mathbf{y}}\|^2\right).$$

1. If $p(\mathbf{u})$ is uniform, $\bar{\mathbf{A}} = \lambda^{1/2} \mathbf{A}$ and $\bar{\mathbf{y}} = \lambda^{1/2} \mathbf{y}$. 2. If $p(\mathbf{u}) \propto \exp\left(-\frac{\delta}{2}(\mathbf{u} - \mathbf{u}_0)^T \mathbf{L}(\mathbf{u} - \mathbf{u}_0)\right)$, then $\bar{\mathbf{A}}(\mathbf{u}) = \begin{bmatrix} \lambda^{1/2} \mathbf{A}(\mathbf{u}) \\ (\delta \mathbf{L})^{1/2} \mathbf{u} \end{bmatrix}$ and $\bar{\mathbf{y}} = \begin{bmatrix} \lambda^{1/2} \mathbf{y} \\ (\delta \mathbf{L})^{1/2} \mathbf{u}_0 \end{bmatrix}$.

Extension of optimization-based approach to nonlinear problems: Randomized maximum likelihood

An obvious extension to nonlinear problems is as follows:

$$\mathbf{u} = rg\min_{oldsymbol{\psi}} \|ar{\mathbf{A}}(oldsymbol{\psi}) - (ar{\mathbf{y}} + oldsymbol{\epsilon}) \|^2, \quad oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

Comment: This is randomized maximum likelihood.

Problem: It is an open question what the probability of \mathbf{u} is.

One solution: Tan Bui-Thanh, Ghattas, et. al., "A Randomized MAP Algorithm for Large-Scale Bayesian Inverse Problems."

Extension to nonlinear problems

As in the linear case, we create a nonlinear mapping

$$\mathbf{u} = \mathbf{F}^{-1}(\mathbf{v}), \quad \mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}).$$

Extension to nonlinear problems

As in the linear case, we create a nonlinear mapping

$$\mathbf{u} = \mathbf{F}^{-1}(\mathbf{v}), \quad \mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}).$$

First, define

$$\mathbf{u}_{\text{MAP}} = \arg\min_{\mathbf{u}} \|\bar{\mathbf{A}}(\mathbf{u}) - \bar{\mathbf{y}}\|^2,$$

then first-order optimality yields

$$\mathbf{J}(\mathbf{u}_{\mathrm{MAP}})^T(\bar{\mathbf{A}}(\mathbf{u}_{\mathrm{MAP}}) - \bar{\mathbf{y}}) = \mathbf{0}.$$

Nonlinear Mapping, Cont. (w/ Solonen)

 u_{MAP} is a solution of the nonlinear equation

$$\mathbf{J}(\mathbf{u}_{\mathrm{MAP}})^T \bar{\mathbf{A}}(\mathbf{u}) = \mathbf{J}(\mathbf{u}_{\mathrm{MAP}})^T \bar{\mathbf{y}}.$$

Nonlinear Mapping, Cont. (w/ Solonen)

 $\mathbf{u}_{\mathrm{MAP}}$ is a solution of the nonlinear equation

$$\mathbf{J}(\mathbf{u}_{\mathrm{MAP}})^T \bar{\mathbf{A}}(\mathbf{u}) = \mathbf{J}(\mathbf{u}_{\mathrm{MAP}})^T \bar{\mathbf{y}}.$$

QR-rewrite: this equation can be equivalently expressed

$$\mathbf{Q}^T \bar{\mathbf{A}}(\mathbf{u}) = \mathbf{Q}^T \bar{\mathbf{y}},$$

where $\mathbf{J}(\mathbf{u}_{\text{MAP}}) = [\mathbf{Q}, \bar{\mathbf{Q}}]\mathbf{R}$, with $\mathbf{Q} \in \mathbb{R}^{m \times n}$, $\bar{\mathbf{Q}} \in \mathbb{R}^{m \times (m-n)}$, and $\mathbf{R} \in \mathbb{R}^{m \times n}$ upper-triangular.

Nonlinear Mapping, Cont. (w/ Solonen)

 $\mathbf{u}_{\mathrm{MAP}}$ is a solution of the nonlinear equation

$$\mathbf{J}(\mathbf{u}_{\mathrm{MAP}})^T \bar{\mathbf{A}}(\mathbf{u}) = \mathbf{J}(\mathbf{u}_{\mathrm{MAP}})^T \bar{\mathbf{y}}.$$

 ${\bf QR}\mbox{-rewrite:}$ this equation can be equivalently expressed

$$\mathbf{Q}^T \bar{\mathbf{A}}(\mathbf{u}) = \mathbf{Q}^T \bar{\mathbf{y}},$$

where $\mathbf{J}(\mathbf{u}_{\text{MAP}}) = [\mathbf{Q}, \bar{\mathbf{Q}}]\mathbf{R}$, with $\mathbf{Q} \in \mathbb{R}^{m \times n}$, $\bar{\mathbf{Q}} \in \mathbb{R}^{m \times (m-n)}$, and $\mathbf{R} \in \mathbb{R}^{m \times n}$ upper-triangular.

Nonlinear mapping: define $\mathbf{F} \stackrel{\text{def}}{=} \mathbf{Q}^T \bar{\mathbf{A}}$ and

$$\begin{aligned} \mathbf{u} &= \mathbf{F}^{-1} \left(\mathbf{Q}^T (\bar{\mathbf{y}} + \boldsymbol{\epsilon}) \right), \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ &\stackrel{\text{def}}{=} \mathbf{F}^{-1} \left(\mathbf{v} \right), \quad \mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n). \end{aligned}$$

PDF for $\mathbf{u} = \mathbf{F}^{-1}(\mathbf{v})$, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I})$

First, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I})$ implies $p_{\mathbf{v}}(\mathbf{v}) \propto \exp\left(-\frac{1}{2} \|\mathbf{v} - \mathbf{Q}^T \bar{\mathbf{y}}\|^2\right)$.

PDF for $\mathbf{u} = \mathbf{F}^{-1}(\mathbf{v})$, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I})$

First, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I})$ implies $p_{\mathbf{v}}(\mathbf{v}) \propto \exp\left(-\frac{1}{2} \|\mathbf{v} - \mathbf{Q}^T \bar{\mathbf{y}}\|^2\right)$.

Next we need $\frac{d}{d\mathbf{u}}\mathbf{F}(\mathbf{u}) \in \mathbb{R}^{n \times n}$ to be invertible. Then

$$\begin{aligned} p_{\mathbf{u}_{MAP}}(\mathbf{u}) &\propto \left| \det \left(\frac{d}{d\mathbf{u}} \mathbf{F}(\mathbf{u}) \right) \right| p_{\mathbf{v}}(\mathbf{F}(\mathbf{u})) \\ &= \left| \det \left(\mathbf{Q}^T \mathbf{J}(\mathbf{u}) \right) \right| \exp \left(-\frac{1}{2} \| \mathbf{Q}^T (\bar{\mathbf{A}}(\mathbf{u}) - \bar{\mathbf{y}}) \|^2 \right) \end{aligned}$$

PDF for $\mathbf{u} = \mathbf{F}^{-1}(\mathbf{v})$, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I})$

First, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I})$ implies $p_{\mathbf{v}}(\mathbf{v}) \propto \exp\left(-\frac{1}{2} \|\mathbf{v} - \mathbf{Q}^T \bar{\mathbf{y}}\|^2\right)$.

Next we need $\frac{d}{d\mathbf{u}}\mathbf{F}(\mathbf{u}) \in \mathbb{R}^{n \times n}$ to be invertible. Then

$$\begin{aligned} p_{\mathbf{u}_{\mathrm{MAP}}}(\mathbf{u}) &\propto \left| \det \left(\frac{d}{d\mathbf{u}} \mathbf{F}(\mathbf{u}) \right) \right| p_{\mathbf{v}}(\mathbf{F}(\mathbf{u})) \\ &= \left| \det \left(\mathbf{Q}^T \mathbf{J}(\mathbf{u}) \right) \right| \exp \left(-\frac{1}{2} \| \mathbf{Q}^T (\bar{\mathbf{A}}(\mathbf{u}) - \bar{\mathbf{y}}) \|^2 \right) \\ &= \left| \det \left(\mathbf{Q}^T \mathbf{J}(\mathbf{u}) \right) \right| \exp \left(\frac{1}{2} \| \bar{\mathbf{Q}}^T (\bar{\mathbf{A}}(\mathbf{u}) - \bar{\mathbf{y}}) \|^2 \right) \\ &\qquad \exp \left(-\frac{1}{2} \| \bar{\mathbf{A}}(\mathbf{u}) - \bar{\mathbf{y}} \|^2 \right) \\ &= c(\mathbf{u}) p(\mathbf{u} | \mathbf{y}). \end{aligned}$$

Theorem (RTO probability density)

Let $\bar{\mathbf{A}} : \mathbb{R}^n \to \mathbb{R}^m$, $\bar{\mathbf{y}} \in \mathbb{R}^m$, and assume

- $\bar{\mathbf{A}}$ is continuously differentiable;
- $\mathbf{J}(\mathbf{u}) \in \mathbb{R}^{m \times n}$ is rank n for every \mathbf{u} ;
- $\mathbf{J}(\mathbf{u}_{MAP}) = \mathbf{Q}\mathbf{R} \text{ and } \mathbf{F} \stackrel{\text{def}}{=} \mathbf{Q}^T \bar{\mathbf{A}};$
- $\mathbf{Q}^T \mathbf{J}(\mathbf{u})$ is invertible for all relevant \mathbf{u} .

Then the random variable

$$\mathbf{u} = \mathbf{F}^{-1}(\mathbf{v}), \quad \mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}),$$

has probability density function

 $p_{\mathbf{u}_{\mathrm{MAP}}}(\mathbf{u}) \propto c(\mathbf{u})p(\mathbf{u}|\mathbf{y}),$

where

$$c(\mathbf{u}) = \left| \det(\mathbf{Q}^T \mathbf{J}(\mathbf{u})) \right| \exp\left(\frac{1}{2} \|\bar{\mathbf{Q}}^T(\bar{\mathbf{y}} - \bar{\mathbf{A}}(\mathbf{u}))\|^2\right).$$

Interpretation

Note that

$$\underbrace{e^{-\frac{1}{2}\|\bar{\mathbf{f}}(\boldsymbol{\theta})-\bar{\mathbf{y}}\|^{2}}_{\text{the posterior density}} = \underbrace{e^{-\frac{1}{2}\|\mathbf{Q}^{T}(\bar{\mathbf{f}}(\boldsymbol{\theta})-\bar{\mathbf{y}})\|^{2}}_{\text{the part we capture}} \times \underbrace{e^{-\frac{1}{2}\|\bar{\mathbf{Q}}^{T}(\bar{\mathbf{f}}(\boldsymbol{\theta})-\bar{\mathbf{y}})\|^{2}}_{\text{the part we miss}},$$

and the RTO density looks like
$$p_{\boldsymbol{\theta}_{\text{MAP}}}(\boldsymbol{\theta}) \propto \underbrace{\left|\mathbf{Q}^{T}\mathbf{J}(\boldsymbol{\theta})\right| \exp\left(\frac{1}{2}\|\bar{\mathbf{Q}}^{T}\bar{\mathbf{y}}-\bar{\mathbf{Q}}^{T}\bar{\mathbf{f}}(\boldsymbol{\theta})\|^{2}\right)}_{\text{captures the deviation from the posterior}} \underbrace{p(\boldsymbol{\theta}|\mathbf{y})}_{\text{posterior}}.$$

Optimization Comes In During Implementation

Randomize-the-Optimize for computing $\mathbf{u} = \mathbf{F}^{-1}(\mathbf{v})$

- 1. Compute a random draw from $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- 2. Solve

$$\mathbf{u} = \arg\min_{\boldsymbol{\psi}} \left\{ \ell(\boldsymbol{\psi}, \boldsymbol{\epsilon}) \stackrel{\text{def}}{=} \| \mathbf{Q}^T (\mathbf{A}(\boldsymbol{\psi}) - (\bar{\mathbf{y}} + \boldsymbol{\epsilon})) \|^2 \right\}.$$

3. Reject **u** when $\mathbf{Q}^T(\bar{\mathbf{y}} + \boldsymbol{\epsilon})$ is not in the range of $\mathbf{Q}^T \mathbf{A}(\cdot)$.

NOTE the presence of \mathbf{Q} in the least squares!

Metropolis-Hastings using RTO

Given \mathbf{u}^{k-1} and proposal $\mathbf{u}^* \sim p_{\mathbf{u}_{MAP}}(\mathbf{u})$, accept with probability

$$r = \min\left(1, \frac{p(\mathbf{u}^*|\mathbf{y})p_{\mathbf{u}_{\text{MAP}}}(\mathbf{u}^{k-1})}{p(\mathbf{u}^{k-1}|\mathbf{y})p_{\mathbf{u}_{\text{MAP}}}(\mathbf{u}^*)}\right)$$
$$= \min\left(1, \frac{p(\mathbf{u}^*|\mathbf{y})c(\mathbf{u}^{k-1})p(\mathbf{u}^{k-1}|\mathbf{y})}{p(\mathbf{u}^{k-1}|\mathbf{y})c(\mathbf{u}^*)p(\mathbf{u}^*|\mathbf{y})}\right)$$
$$= \min\left(1, \frac{c(\mathbf{u}^{k-1})}{c(\mathbf{u}^*)}\right).$$

For numerical reasons, use

$$r = \min\left(1, \exp\left(\ln c(\mathbf{u}^{k-1}) - \ln c(\mathbf{u}^*)\right)\right).$$
Metropolis-Hastings using RTO, Cont.

The RTO Metropolis-Hastings Algorithm

- 1. Choose \mathbf{u}^0 and number of samples N. Set k = 1.
- 2. Compute an RTO sample $\mathbf{u}^* \sim p_{\mathbf{u}_{\text{MAP}}}(\mathbf{u})$.
- 3. Compute the acceptance probability

$$r = \min\left(1, \frac{c(\mathbf{u}^{k-1})}{c(\mathbf{u}^*)}\right).$$

- 4. Draw $u \sim U(0, 1)$. If u < r, $\mathbf{u}^k = \mathbf{u}^*$, else $\mathbf{u}^k = \mathbf{u}^{k-1}$.
- 5. If k < N, set k = k + 1 and return to Step 2.

BOD, Good: $A(u) = u_1(1 - \exp(-u_2 x))$

- $\mathbf{x} = 20$ linearly spaced observations in $1 \le x \le 9$;
- $\mathbf{y} = \mathbf{A}(\mathbf{u}) + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ with $\sigma = 0.01$; • $\mathbf{u} = (1, 0.1)$.

MONOD: $\mathbf{A}(\mathbf{u}) = u_1 \mathbf{x} / (u_2 + \mathbf{x})$ Solonen, Laine, Haario

- $\mathbf{x} = (28, 55, 83, 110, 138, 225, 375)$
- $\mathbf{y} = (0.053, 0.060, 0.112, 0.105, 0.099, 0.122, 0.125).$

Autocorrelation plots for θ_1 for good and bad BOD

Electrical Impedance Tomography Seppänen, Solonen, Haario, Kaipio

$$\nabla \cdot (\boldsymbol{\theta} \nabla \varphi) = 0, \quad \vec{r} \in \Omega$$
$$\varphi + z_{\ell} \boldsymbol{\theta} \frac{\partial \varphi}{\partial \vec{n}} = y_{\ell}, \quad \vec{r} \in e_{\ell}, \ \ell = 1, \dots, L$$
$$\int_{e_{\ell}} \boldsymbol{\theta} \frac{\partial \varphi}{\partial \vec{n}} dS = I_{\ell}, \quad \ell = 1, \dots, L$$
$$\boldsymbol{\theta} \frac{\partial \varphi}{\partial \vec{n}} = 0, \quad \vec{r} \in \partial \Omega \setminus \cup_{\ell=1}^{L} e_{\ell}$$

- $\theta = \theta(\vec{r}) \& \varphi = \varphi(\vec{r})$: electrical conductivity & potential.
- $\vec{r} \in \Omega$: spatial coordinate.
- e_{ℓ} : area under the ℓ th electrode.
- z_{ℓ} : contact impedance between ℓ th electrode and object.
- $y_{\ell} \& I_{\ell}$: amplitudes of the electrode potential and current.
- \vec{n} : outward unit normal
- L: number of electrodes.

EIT, Forward/Inverse Problem

Forward Problem: Use finite elements to discretize the PDE, and compute the potential distribution φ and the electrode potential $\mathbf{y} = (y_1, \dots, y_L)$ given the discrete conductivity distribution $\boldsymbol{\theta} = (\theta_1, \dots, \theta_N)$, the contact impedances z_{ℓ} , and the current pattern I_{ℓ} . This defines the forward mapping

$$\mathbf{y} = \mathbf{f}(\boldsymbol{\theta}).$$

Inverse Problem: Given electrode potential measurements \mathbf{y} , construct the posterior density

$$p(\boldsymbol{\theta}|\mathbf{y}) \propto \exp\left(-\frac{1}{2\sigma^2}\|\mathbf{y} - \mathbf{f}(\boldsymbol{\theta})\|^2 + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \mathbf{L}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)\right).$$

Gaussian process prior $p(\boldsymbol{\theta}) \propto \exp\left(-\frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \mathbf{L}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)\right)$

$$[\mathbf{L}^{-1}]_{ij} = a \exp\left\{-\frac{\|\vec{r}_i - \vec{r}_j\|_2^2}{2b^2}\right\} + c\delta_{ij}$$

- $\vec{r_i} = (x_i, y_i)$ is the spatial coordinate: $\theta_i = \theta(\vec{r_i})$.
- a, b and c are parameters controlling the variance and spatial smoothness of θ .
- the correlation length ℓ the distance for which $\mathbf{L}^{-1}(i, j)$ drops to 1% of the $\mathbf{L}^{-1}(i, i) = \operatorname{var}(\gamma_i)$ - is given by

$$\ell = b\sqrt{2\ln(100) - 2\ln(1 + c/a)}.$$

RTO Metropolis-Hastings applied to EIT example True Conductivity = Realization from Smoothness Prior

Upper images: truth & conditional mean. Lower images: 99% c.i.'s & profiles of all of the above.

RTO Metropolis-Hastings applied to EIT example True Conductivity = Internal Structure #1

Upper images: truth & conditional mean. Lower images: 99% c.i.'s & profiles of all of the above.

RTO Metropolis-Hastings applied to EIT example True Conductivity = Internal Structure #2

Upper images: truth & conditional mean. Lower images: 99% c.i.'s & profiles of all of the above.

Conclusions

OPEN QUESTIONS:

- Are we using posterior samples to measure uncertainty in the best possible way?
- How do we do uncertainty quantification for TV?
- How does RTO behave in the infinite limit?

Conclusions

OPEN QUESTIONS:

- Are we using posterior samples to measure uncertainty in the best possible way?
- How do we do uncertainty quantification for TV?
- How does RTO behave in the infinite limit?

HAVE FUN!