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Our setting

G = (V ,E ) a simple graph, and fix a starting vertex v0 ∈ V .

We consider continuous time random walks X = {Xt}t∈R+ started
at v0:

same as usual simple random walk, except time between jumps is a
standard exponential random variable
Xt denotes the vertex you’re on at time t

Define

cover time

τcov = the first time all vertices are visited at least once

hitting time

τhit(x , y) = the first time walk started at x visits y
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Effective resistance

For any x , y ∈ V , imagine all the edges are unit resistors and we
connect the ends of a battery to x and y .

Then, define

Reff(x , y) = effective resistance between x and y

We can compute Reff(x , y) by solving for a function f : V → R such
that

∆f (z) =


1 if z = x
−1 if z = y
0 otherwise

Then Reff(x , y) = f (y)− f (x).

Commute time identity:

Eτhit(x , y) + Eτhit(y , x)

2
= |E | · Reff(x , y).
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Gaussian free field: definition

For a graph G = (V ,E ), the Gaussian free field (GFF) η is a
multivariate Gaussian:

coordinates ηv indexed by v ∈ V , with ηv0 = 0

for f ∈ RV with fv0 = 0,

[probability of f ] ∝ exp

−1

2

∑
(x ,y)∈E

(fx − fy )2


equivalently,

E (ηx − ηy )2 = Reff(x , y) (note: Eη2
x = Reff(x , v0))
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Gaussian free field: example

Below is a realization of the GFF on a discrete 2D lattice:
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Gaussian free field: example

Let {Bt}t≥0 be a Brownian motion. GFF of a path is

η = (0 = B0,B1, . . . ,Bn) .
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Local times

Reminder: G = (V ,E ) a graph and Xt a continuous time random
walk.

For x ∈ V and s ∈ R+, define local time

Ls(x) =
1

deg(x)

∫ s

0
1 (Xs′ = x) ds ′

=
1

deg(x)
(time spent by r.w. at x up to time s) .
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Return times

For any t > 0, define

τ+(t) = inf{s ≥ 0 : Ls(v0) ≥ t}
= first time that v0 accumulates local time t.

Remark: τ+
(

1
deg(v0)

)
is like the return time of a discrete time

random walk.

We have
Eτ+(t) = 2|E | · t.

(Analogous to expected return time being equal to inverse stationary
probability.)

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 10 / 27



Return times

For any t > 0, define

τ+(t) = inf{s ≥ 0 : Ls(v0) ≥ t}
= first time that v0 accumulates local time t.

Remark: τ+
(

1
deg(v0)

)
is like the return time of a discrete time

random walk.

We have
Eτ+(t) = 2|E | · t.

(Analogous to expected return time being equal to inverse stationary
probability.)

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 10 / 27



Return times

For any t > 0, define

τ+(t) = inf{s ≥ 0 : Ls(v0) ≥ t}
= first time that v0 accumulates local time t.

Remark: τ+
(

1
deg(v0)

)
is like the return time of a discrete time

random walk.

We have
Eτ+(t) = 2|E | · t.

(Analogous to expected return time being equal to inverse stationary
probability.)

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 10 / 27



Generalized 2nd Ray-Knight theorem

Theorem (Generalized Second Ray-Knight Theorem)

Let X be a continuous time random walk, and let η and η′ be GFFs with
X and η independent. Then, for any t > 0,{

Lτ+(t)(x) +
1

2
η2
x

}
x∈V

law
=

{
1

2

(
η′x +

√
2t
)2
}

x∈V
.

Above theorem due to Eisenbaum-Kaspi-Marcus-Rosen-Shi.
Similar/related theorems by Ray, Knight, Dynkin, Le Jan, Sznitman, and
others.
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Part II: Application to cover times
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Gaussian isoperimetric inequality

Theorem (Borell and Sudakov-Tsirelson)

Let η = {ηi}i∈I be any centered multivariate Gaussian with Eη2
i ≤ σ2 for

each i . Let
X = sup

i∈I
ηi .

Then,
P (|X − EX | > s · σ) ≤ 2 (1− Φ(s)) ,

where Φ is the Gaussian CDF.

In other words, the maximum (or minimum) of a Gaussian process is at
least as concentrated as a Gaussian.
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Fluctuations of the GFF

Define
R = max

x ,y∈V
Reff(x , y) ≥ max

x∈V
Eη2

x

M = E max
v∈V

ηv = −E min
v∈V

ηv .

Thus, maxv∈V ηv has mean M and fluctuations of order
√
R.

In many cases,
√
R � M.

e.g. complete graph, discrete torus, regular trees
doesn’t hold for case of a path
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Connection to cover times

Theorem (generalized Ray-Knight){
Lτ+(t)(x) +

1

2
η2
x

}
x∈V

law
=

{
1

2

(
η′x +

√
2t
)2
}

x∈V

Main observation (Ding-Lee-Peres):

2|E | · t ≈

τ+(t) < τcov ⇐⇒ one of the Lτ+(t)(x) is 0

“⇐⇒ ” one of the
(
η′x +

√
2t
)

is small

“⇐⇒ ” E minx∈V η
′
x < −

√
2t

Theorem (Ding-Lee-Peres)

Eτcov � |E | ·
(
−E min

x∈V
η′x

)2

= |E | ·M2.
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Statement of the concentration bound

Theorem (Z., following conjecture of Ding)

There are universal constants c and C such that

P
(∣∣∣τcov − |E |M2

∣∣∣ ≥ |E |(√λR ·M + λR)
)
≤ Ce−cλ

for any λ ≥ C.

Recall:

max
x ,y∈V

Eτhit(x , y) � |E | · R and Eτcov � |E | ·M2.

Thus,

Eτcov ∼ |E | ·M2 whenever max
x ,y∈V

Eτhit(x , y)� Eτcov.

(Ding proved for trees and bounded degree graphs.)
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Upper bound (following Ding-Lee-Peres)

Ax = Lτ+(t)(x) +
1

2
η2
x , Bx =

1

2

(
η′x +

√
2t
)2
.

Suppose P
(
Lτ+(t)(x) = 0 for some x

)
is large.

Then,

P

(
min
x∈V

Ax < R

)
≥ P

(
Lτ+(t)(x) = 0 for some x

)
· P
(
η2
x < R

)︸ ︷︷ ︸
≥0.5

is large, so

P

(
min
x∈V

Bx < R

)
= P

(
min
x∈V

Ax < R

)
is large, which means

√
2t can’t be much more than M.

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 17 / 27



Upper bound (following Ding-Lee-Peres)

Ax = Lτ+(t)(x) +
1

2
η2
x , Bx =

1

2

(
η′x +

√
2t
)2
.

Suppose P
(
Lτ+(t)(x) = 0 for some x

)
is large. Then,

P

(
min
x∈V

Ax < R

)
≥ P

(
Lτ+(t)(x) = 0 for some x

)
· P
(
η2
x < R

)︸ ︷︷ ︸
≥0.5

is large,

so

P

(
min
x∈V

Bx < R

)
= P

(
min
x∈V

Ax < R

)
is large, which means

√
2t can’t be much more than M.

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 17 / 27



Upper bound (following Ding-Lee-Peres)

Ax = Lτ+(t)(x) +
1

2
η2
x , Bx =

1

2

(
η′x +

√
2t
)2
.

Suppose P
(
Lτ+(t)(x) = 0 for some x

)
is large. Then,

P

(
min
x∈V

Ax < R

)
≥ P

(
Lτ+(t)(x) = 0 for some x

)
· P
(
η2
x < R

)︸ ︷︷ ︸
≥0.5

is large, so

P

(
min
x∈V

Bx < R

)
= P

(
min
x∈V

Ax < R

)
is large,

which means
√

2t can’t be much more than M.

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 17 / 27



Upper bound (following Ding-Lee-Peres)

Ax = Lτ+(t)(x) +
1

2
η2
x , Bx =

1

2

(
η′x +

√
2t
)2
.

Suppose P
(
Lτ+(t)(x) = 0 for some x

)
is large. Then,

P

(
min
x∈V

Ax < R

)
≥ P

(
Lτ+(t)(x) = 0 for some x

)
· P
(
η2
x < R

)︸ ︷︷ ︸
≥0.5

is large, so

P

(
min
x∈V

Bx < R

)
= P

(
min
x∈V

Ax < R

)
is large, which means

√
2t can’t be much more than M.

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 17 / 27



Lower bound (following Ding)

Ax = Lτ+(t)(x) +
1

2
η2
x , Bx =

1

2

(
η′x +

√
2t
)2
.

Suppose
√

2t < M − C
√
R.

Then

P

(
min
x∈V

η′x +
√

2t < 0

)
= P

(
min
x∈V

η′x < −M + C
√
R

)
is large (for C large, think e.g. C = 10)... and

η′x +
√

2t < 0 for some x “ =⇒ ” Lτ+(t)(x) = 0.

Important missing step: how to make “ =⇒ ” rigorous.
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Concentration of cover times: recap

The transition point of whether

Lτ+(t)(x) > 0 for all x ∈ V

occurs around
√

2t ≈ M =⇒ t ≈ 1
2M

2.

τ+(t) is concentrated around its expectation 2|E | · t as long as
R � t, so

τcov ≈ τ+

(
1

2
M2

)
≈ |E | ·M2.

But still need “important missing step”.
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Part III: Stochastic domination in the generalized 2nd
Ray-Knight theorem
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Stochastic domination in the second Ray-Knight theorem

Theorem (variant of theorem of Lupu, conjectured by Ding)

We have{√
Lτ+(t)(x) : x ∈ V

}
� 1√

2

{
max

(
η′x +

√
2t, 0

)
: x ∈ V

}
,

where � denotes stochastic domination.

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 21 / 27



A graph refinement

Random walk step can be simulated by random walk on refined graph:

Refined walk visits x a Geom(n) number of times before going to y or z
with equal probability =⇒ time spent at x is still exponential
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A graph refinement

The GFFs are also related in a natural way: effective resistances (= GFF
covariances) are multiplied by n.
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Metric graphs

The limiting object as n→∞ is known as a metric graph.

In the limit:

random walk is a “Brownian motion on edges”.

GFF has same law as original graph (up to scaling), with Brownian
bridges on edges
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Proof of stochastic domination

Artificially construct a coupling of random walk X and GFFs η and η′ on
the metric graph so that{

Lτ+(t)(x) +
1

2
η2
x

}
x∈V

=

{
1

2

(
η′x +

√
2t
)2
}

x∈V
.

Let
U = {set on which Lτ+(t)(x) > 0}.

Claim: U is (a.s.) connected.

η′x +
√

2t = 0 forces Lτ+(t)(x) = 0

η′x +
√

2t can’t change signs on U and is positive at x = v0
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Some open questions

Theorem (generalized Ray-Knight){
Lτ+(t)(x) +

1

2
η2
x

}
x∈V

law
=

{
1

2

(
η′x +

√
2t
)2
}

x∈V

Only known proofs are by moment calculations. Can we give an
explicit coupling?

Can be understood relatively well when graph is a path or tree. What
about a cycle?

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 26 / 27



References

J. Ding. Asymptotics of cover times via Gaussian free fields:
Bounded-degree graphs and general trees. Annals of Probability 42
(2), 464–496 (2014).

J. Ding, J. Lee, and Y. Peres. Cover times, blanket times, and
majorizing measures. Annals of Mathematics 175 (3), 1409–1471
(2012).

T. Lupu. From loop clusters and random interlacement to the free
field. Preprint arXiv:1402.0298.

M. B. Marcus and J. Rosen. Markov Processes, Gaussian Processes,
and Local Times. Cambridge Studies in Advanced Mathematics 100.
Cambridge Univ. Press (2006).

A. Zhai. Exponential concentration of cover times. Preprint
arXiv:1407.7617.

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 27 / 27


	Part I: Preliminaries
	Part II: Application to cover times
	Part III: Stochastic domination in the generalized 2nd Ray-Knight theorem

