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o Effective resistance and Gaussian free fields
o Ray-Knight theorems

o Part Il: Application to cover times

@ Part IlI: Stochastic domination in the generalized 2nd Ray-Knight
theorem

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 2/27



Part I: Preliminaries
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Our setting

e G =(V,E) asimple graph, and fix a starting vertex vy € V.
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Our setting

e G =(V,E) asimple graph, and fix a starting vertex vy € V.
e We consider continuous time random walks X = {X;};cgr+ started
at vg:
e same as usual simple random walk, except time between jumps is a

standard exponential random variable
e X; denotes the vertex you're on at time t
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Our setting

e G =(V,E) asimple graph, and fix a starting vertex vy € V.
e We consider continuous time random walks X = {X;};cgr+ started
at vo:
e same as usual simple random walk, except time between jumps is a
standard exponential random variable
e X; denotes the vertex you're on at time t

@ Define
e cover time

Teov = the first time all vertices are visited at least once
o hitting time

Thit(X, y) = the first time walk started at x visits y
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Effective resistance

@ For any x,y € V, imagine all the edges are unit resistors and we
connect the ends of a battery to x and y.
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Effective resistance

@ For any x,y € V, imagine all the edges are unit resistors and we
connect the ends of a battery to x and y. Then, define

Reff(x,y) = effective resistance between x and y
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Effective resistance

@ For any x,y € V, imagine all the edges are unit resistors and we
connect the ends of a battery to x and y. Then, define

Reff(x,y) = effective resistance between x and y

@ We can compute Ref(x, y) by solving for a function f : V — R such

that
1 if z=x

0 otherwise

Then Resi(x,y) = f(y) — f(x).
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Effective resistance

@ For any x,y € V, imagine all the edges are unit resistors and we
connect the ends of a battery to x and y. Then, define

Reff(x,y) = effective resistance between x and y

@ We can compute Ref(x, y) by solving for a function f : V — R such

that
1 if z=x

0  otherwise
Then Rerr(x,y) = f(y) — f(x).
o Commute time identity:

E i ) E i )
Thit(X Y);L Thie(y, %) _ |E] - Refe(x, ).
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Gaussian free field: definition
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Gaussian free field: definition

For a graph G = (V, E), the Gaussian free field (GFF) 7 is a
multivariate Gaussian:

@ coordinates 7, indexed by v € V, with n,, =0
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Gaussian free field: definition

For a graph G = (V, E), the Gaussian free field (GFF) 7 is a
multivariate Gaussian:

@ coordinates 7, indexed by v € V, with n,, =0
e for f € RY with fro, =0,

[probability of f] o exp | —= Z (fx—fy)2
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Gaussian free field: definition

For a graph G = (V, E), the Gaussian free field (GFF) 7 is a
multivariate Gaussian:

@ coordinates 7, indexed by v € V, with n,, =0
e for f € RY with fro, =0,

[probability of f] o exp | —= Z (fx—fy)2

@ equivalently,

E(nx —ny)° = Reri(x,y)  (note: En2 = Refr(x, vo))
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Gaussian free field: example

Below is a realization of the GFF on a discrete 2D lattice:
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Gaussian free field: example

Let {B:}+>0 be a Brownian motion. GFF of a path is

T)Z(OZBo,Bl,...,Bn).
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Local times

@ Reminder: G = (V, E) a graph and X; a continuous time random
walk.
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Local times

@ Reminder: G = (V, E) a graph and X; a continuous time random
walk.

@ For x € V and s € RT, define local time

1 s
Lo(x) = 1(Xo = x)ds'
)= e /0 ( X
L (time spent by r.w. at to time s)
= i w. at x u i .
deg(x) p Yy p
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@ For any t > 0, define

mH(e) = infls > 0 £4(v0) = t}

= first time that vy accumulates local time t.
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@ For any t > 0, define
77(t) = inf{s > 0: Ls(vo) > t}

= first time that vy accumulates local time t.

@ Remark: 71 (ﬁ(vo)) is like the return time of a discrete time

random walk.
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@ For any t > 0, define

7H(t) =inf{s > 0: Ls(wv) > t}
= first time that vy accumulates local time t.

@ Remark: 71 (ﬁ(vo)) is like the return time of a discrete time

random walk.
@ We have
Ert(t) =2|E|-t.

(Analogous to expected return time being equal to inverse stationary
probability.)

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 10 / 27



Generalized 2nd Ray-Knight theorem

Theorem (Generalized Second Ray-Knight Theorem)

Let X be a continuous time random walk, and let n and ' be GFFs with
X and 7 independent. Then, for any t > 0,

1, law 1 / 2
{£T+(t)(X) T+ EUX} = {2 (77X = \/Z) }XEV .

xeV
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Generalized 2nd Ray-Knight theorem

Theorem (Generalized Second Ray-Knight Theorem)

Let X be a continuous time random walk, and let n and ' be GFFs with
X and 7 independent. Then, for any t > 0,

1, law 1 / 2
{£T+(t)(X) T+ EUX} = {2 (77X = \/Z) }XEV .

xeV

Above theorem due to Eisenbaum-Kaspi-Marcus-Rosen-Shi.
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Generalized 2nd Ray-Knight theorem

Theorem (Generalized Second Ray-Knight Theorem)

Let X be a continuous time random walk, and let n and ' be GFFs with
X and 7 independent. Then, for any t > 0,

1, law 1 / 2
{£T+(t)(X) T+ EUX} = {2 (77X = \/Z) }XEV .

xeV

Above theorem due to Eisenbaum-Kaspi-Marcus-Rosen-Shi.
Similar/related theorems by Ray, Knight, Dynkin, Le Jan, Sznitman, and
others.
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Part Il: Application to cover times
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Gaussian isoperimetric inequality

Theorem (Borell and Sudakov-Tsirelson)

Let n = {ni}ic/ be any centered multivariate Gaussian with En? < o2 for
each i. Let
X = supn;.
i€l
Then,
P(IX —EX|>s-0) <2(1—-9(s)),

where ® s the Gaussian CDF.

In other words, the maximum (or minimum) of a Gaussian process is at
least as concentrated as a Gaussian.
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Fluctuations of the GFF

@ Define

R = max Reg(x > max En?
max, e ( ’Y)—xev Mx

ey = —E
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Fluctuations of the GFF

@ Define

R = max Reg(x > max En?
max, e ( ’Y)—xev Mx

ey = —E

e Thus, max,cy 1, has mean M and fluctuations of order v/R.
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Fluctuations of the GFF

@ Define

R = max Reg(x > max En?
max, e ( ’Y)—xev Mx

ey = —E

e Thus, max,cy 1, has mean M and fluctuations of order v/R.

e In many cases, VR < M.

e e.g. complete graph, discrete torus, regular trees
e doesn’t hold for case of a path
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Connection to cover times

Theorem (generalized Ray-Knight)

{£T+(t)(X) + %nﬁ}xev z {% (nx + \/_) }

xeV
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Connection to cover times

Theorem (generalized Ray-Knight)

{£T+(t)(x) + Enx}x - {5 (nx —+ \/ﬂ) }Xev

eV

Main observation (Ding-Lee-Peres):

TH(t) <Teow <> oneof the L +(4)(x)is 0
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Connection to cover times

Theorem (generalized Ray-Knight)

{£T+(t)(x) + Enx}x - {5 (nx —+ \/ﬂ) }Xev

eV

Main observation (Ding-Lee-Peres):

21E[ -t~ 7H(t) <Teov <=  one of the L +(4)(x)is 0
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Connection to cover times

Theorem (generalized Ray-Knight)

{£T+(t)(x) + Enx}x - {5 (nx —+ \/ﬂ) }Xev

eV

Main observation (Ding-Lee-Peres):

21E[-t = 7H(t) <Teov <=  one of the L +(4)(x)is 0
“<=" one of the (1} + V2t) is small
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Connection to cover times

Theorem (generalized Ray-Knight)

{£T+(t)(x) + Enx}x - {5 (nx —+ \/ﬂ) }Xev

eV

Main observation (Ding-Lee-Peres):

21E[-t = 7H(t) <Teov <=  one of the L +(4)(x)is 0
“<=" one of the (1} + V2t) is small
“e=" Emincey 1, < —V2t
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Connection to cover times

Theorem (generalized Ray-Knight)

{£T+(t)(x) + Enx} = {5 (nx + \/ﬂ) }Xev

xeV

Main observation (Ding-Lee-Peres):

21E[-t = 7H(t) <Teov <=  one of the L +(4)(x)is 0
“<=" one of the (1} + V2t) is small
“e=" Emincey 1, < —V2t

Theorem (Ding-Lee-Peres)

2
Ercov =< |E| - (—E min n;) = |E| - M.
xeV
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Statement of the concentration bound

Theorem (Z., following conjecture of Ding)

There are universal constants ¢ and C such that

P (

for any A > C.

Teow — |E|I\/I2‘ > [E|(VAR - M +AR)) < Ce™
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Statement of the concentration bound

Theorem (Z., following conjecture of Ding)

There are universal constants ¢ and C such that

P (

for any A > C.

Teow — |E|M2‘ > [E|(VAR - M +AR)) < Ce™

Recall:

max Emic(x,y) < |[E|-R  and  Ereoy < |E|- M2

x,yeVv
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Statement of the concentration bound

Theorem (Z., following conjecture of Ding)

There are universal constants ¢ and C such that

P (

for any A > C.

Teow — |E|M2‘ > [E|(VAR - M +AR)) < Ce™

Recall:

max Emic(x,y) < |[E|-R  and  Ereoy < |E|- M2

x,yeV
Thus,
Ercov ~ |E| - M? whenever max Emhit(x,y) < ETcov.

x,yeV
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Statement of the concentration bound

Theorem (Z., following conjecture of Ding)

There are universal constants ¢ and C such that

P (

for any A > C.

Teow — |E|M2‘ > [E|(VAR - M +AR)) < Ce™

Recall:

max Emic(x,y) < |[E|-R  and  Ereoy < |E|- M2

x,yeVv

Thus,

Ercov ~ |E| - M? whenever max Emhit(x,y) < ETcov.
X, y€

(Ding proved for trees and bounded degree graphs.)

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 16 / 27



Upper bound (following Ding-Lee-Peres)

-3 (V) J

Mll—‘

1
AX = ‘CT*(t)(X) + 5%20 B

Suppose P (L+(¢)(x) = 0 for some x) is large.
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Upper bound (following Ding-Lee-Peres)

-3 (V) J

Mll—\

1
AX = ‘CT*(t)(X) + 5%20 B

Suppose P (L.+(4)(x) = 0 for some x) is large. Then,

P <m|n A, < R> >P (ET+(t)(x) = 0 for some x) -P (77)% < R)
xeVv N————
>0.5

is large,

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 17 / 27



Upper bound (following Ding-Lee-Peres)

-3 (V) J

Mll—\

1
AX = ‘CT*(t)(X) + 5%20 B

Suppose P (L.+(4)(x) = 0 for some x) is large. Then,

P <min Ax < R> >P (ET+(t)(X) = 0 for some x) - P (77>2< < R),
xeVv
>0.5

is large, so
P (min By < R> =P <m|nA < R>
xeV xeV

is large,
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Upper bound (following Ding-Lee-Peres)

-3 (V) J

I\)Il—‘

1
AX = ‘CT*(t)(X) + 5%2@ B

Suppose P (L.+(4)(x) = 0 for some x) is large. Then,

P <min Ax < R> >P (£T+(t)(x) = 0 for some x) - P (77>2< < R),
xeVv
>0.5
is large, so
P (min B < R> =P <m|nA < R>
xeV xeV

is large, which means +/2t can’'t be much more than M.
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Lower bound (following Ding)

1, 1
AX = £T+(t)(X) + Enxv B E (nx + \/_) J

Suppose V2t < M — CV/R.
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Lower bound (following Ding)

(v + vae)

1, 1
Ax = LT*(t)(X) + Enxv By E

Suppose V2t < M — CvV/R. Then

P <mi9n;+/27<0> = P(mi\r}n§(< -M + C\/ﬁ)
IS LS

is large (for C large, think e.g. C = 10)...
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Lower bound (following Ding)

1, 1
AX = £T+(t)(X) + Enxv B E (nx + \/_) J

Suppose V2t < M — CvV/R. Then

P <minn;+/27< O> =P (minn; < -M+ C\/ﬁ)
xeV xeV
is large (for C large, think e.g. C =10)... and

7. + V2t < 0 for some x ‘=" L+(x) =0.
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Lower bound (following Ding)

1, 1
AX = £T+(t)(X) + Enxv B E (nx + \/_) J

Suppose V2t < M — CvV/R. Then

P <minn;+/27< O> =P (minn; < -M+ C\/ﬁ)
xeV xeV
is large (for C large, think e.g. C =10)... and
7. + V2t < 0 for some x ‘=" L+(x) =0.

Important missing step: how to make “ =" rigorous.
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Concentration of cover times: recap

@ The transition point of whether
Lr+)(x) >0 forall x € V

occurs around V2t~ M = t = %MZ.
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Concentration of cover times: recap

@ The transition point of whether
Lr+)(x) >0 forall x € V

occurs around V2t~ M = t = %MZ.

e 71(t) is concentrated around its expectation 2|E| - t as long as
R < t, so

1
Teov = T+ <2M2> ~ |E‘ M2,
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Concentration of cover times: recap

@ The transition point of whether
Lr+)(x) >0 forall x € V

occurs around V2t~ M = t = %MZ.

e 71(t) is concentrated around its expectation 2|E| - t as long as
R < t, so

1
Teov = T+ <2M2> ~ |E‘ M2,

@ But still need “important missing step”.
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Part Ill: Stochastic domination in the generalized 2nd

Ray-Knight theorem
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Stochastic domination in the second Ray-Knight theorem

Theorem (variant of theorem of Lupu, conjectured by Ding)

We have

{\/£T+(t)(X):XE V} = % {max (77;4-\/5,0) iX € V},

where < denotes stochastic domination.
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A graph refinement

Random walk step can be simulated by random walk on refined graph:
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A graph refinement

Random walk step can be simulated by random walk on refined graph:

Uz
V51

Vi

Vn-1
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A graph refinement

Random walk step can be simulated by random walk on refined graph:

Uz
V51

Vi

Vn-1
z

Refined walk visits x a Geom(n) number of times before going to y or z
with equal probability
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A graph refinement

Random walk step can be simulated by random walk on refined graph:

Uz
V51

Vi

Vn-1
z

Refined walk visits x a Geom(n) number of times before going to y or z
with equal probability = time spent at x is still exponential

Alex Zhai (azhai@stanford.edu) Exponential concentration of cover times May 17, 2015 22 /27



A graph refinement

uz
V51

Vi

The GFFs are also related in a natural way: effective resistances (= GFF
covariances) are multiplied by n.
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Metric graphs

uz
V51

Vi

The limiting object as n — oo is known as a metric graph.
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Metric graphs

uz
V51

Vi

The limiting object as n — oo is known as a metric graph. In the limit:
@ random walk is a “Brownian motion on edges”.

o GFF has same law as original graph (up to scaling), with Brownian
bridges on edges
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Proof of stochastic domination

Artificially construct a coupling of random walk X and GFFs 7 and 7 on
the metric graph so that

1 2 _ 1 / 2
{‘T*m(x) * z”x}x o {2 (v var) }Xev'

S
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Proof of stochastic domination

Artificially construct a coupling of random walk X and GFFs 7 and 7 on
the metric graph so that

1 2 _ 1 / 2
{‘T*m(x) * z”x}x o {2 (v var) }Xev'

S

o Let
U = {set on which L +(;)(x) > 0}.

Claim: U is (a.s.) connected.
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Proof of stochastic domination

Artificially construct a coupling of random walk X and GFFs 7 and 7 on
the metric graph so that

1 2 _ 1 / 2
{‘T*m(x) * z”x}x o {2 (v var) }Xev'

S

o Let
U = {set on which L +(;)(x) > 0}.

Claim: U is (a.s.) connected.
o 7. 4+ /2t = 0 forces Lov@(x)=0
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Proof of stochastic domination

Artificially construct a coupling of random walk X and GFFs 7 and 7 on
the metric graph so that

1 2 _ 1 / 2
{erato ez} =Gl

S

o Let
U = {set on which L +(;)(x) > 0}.

Claim: U is (a.s.) connected.
o 1, + V2t =0 forces L +4)(x) =0
@ 7, + /2t can't change signs on U and is positive at x = v
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Some open questions

Theorem (generalized Ray-Knight)
{£T+(t)(x) + EUX}X - {E (nx + \/Z_t) }ng

eV

@ Only known proofs are by moment calculations. Can we give an
explicit coupling?

@ Can be understood relatively well when graph is a path or tree. What
about a cycle?
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