The reduced ℓ^p -cohomology in degree 1 and harmonic functions

Antoine Gournay

University of Warwick, May 21st 2015

Why ℓ^{p} -cohomology?

A ball packing in a manifold M is a [countable] set of closed balls in M so that any two balls intersect at most in a point. The incidence graph of a ball packing is a graph whose vertices are the balls and there is an edge if the ball touches.

Theorem (Koebe 1936)

A finite graph can be packed in \mathbb{R}^2 if and only if it is planar.

Quasi-round packing: replace balls by generic domains, require there is a K so that the ration "outer radius / inner radius" is $\leq K$.

There is no obstruction for quasi-round packings of finite graphs in \mathbb{R}^3 .

Why ℓ^p -cohomology?

Theorem (Koebe 1936)

A finite graph can be packed in \mathbb{R}^2 if and only if it is planar.

There is no obstruction for quasi-round packings of finite graphs in \mathbb{R}^3 .

Theorem (Benjamini & Schramm 2009)

If an infinite graph can be quasi-roundly packed in \mathbb{R}^d either it is *d*-parabolic or it has non-trivial reduced ℓ^d -cohomology in degree 1.

d-parabolic $\iff \inf\{ \|\nabla f\|_{\ell^p} \mid f \text{ has finite support and } f(x_0) = 1 \} = 0.$ "Easy" to understand, *e.g.* 2-parabolicity is recurrence. A Cayley graph is *d*-parabolic if and only if it has polynomial growth of degree $\leq d$.

In general, $d_{par} = \inf\{d \mid d\text{-parabolic}\}\ \text{belongs to } [d_{isop}, d_{gr}]\ \text{where } d_{isop}\ \text{is}$ the isoperimetric dimension (see later) and d_{gr} the minimal polynomial degree growth of balls.

▲□▶▲□▶▲□▶▲□▶ □ つくつ

What is ℓ^{p} -cohomology?

In degree 1, the ℓ^p -cohomology of a graph G = (V, E) is defined via incidence operators between vertices and edges. Take $E \subset V \times V$ symmetric, and let

$$\begin{aligned} \nabla : \quad \{V \to \mathbb{R}\} &\to \quad \{E \to \mathbb{R}\} \\ f &\mapsto \quad \nabla f(x,y) = f(y) - f(x) \end{aligned}$$

In graphs of bounded valency, $\nabla : \ell^{p}(V) \to \ell^{p}(E)$ is a bounded operator.

The space of *p*-Dirichlet functions is $D^{p}(G) = \{f : V \to \mathbb{R} \mid \nabla f \in \ell^{p}(E)\}$. It is endowed with a semi-norm $||f||_{D^{p}} = ||\nabla f||_{\ell^{p}}$. ("semi-" \to constant functions).

イロト イポト イラト イラト 一日

What is ℓ^{p} -cohomology?

$$\begin{array}{rcl} \nabla : & \{V \rightarrow \mathbb{R}\} & \rightarrow & \{E \rightarrow \mathbb{R}\} \\ & f & \mapsto & \nabla f(x,y) = f(y) - f(x) \end{array} & \|f\|_{\mathsf{D}^p} = \|\nabla f\|_{\ell^p} \end{array}$$

Definition

The reduced ℓ^p -cohomology in degree 1 of a graph is

$$\underline{\ell^{\rho}H}^{1}(G) = \frac{\operatorname{Im} \nabla \cap \ell^{\rho}(E)}{\overline{\nabla \ell^{\rho}(V)}^{\ell^{\rho}}} = \frac{\mathsf{D}^{\rho}(G)}{\overline{\ell^{\rho}(V) + \operatorname{cst}}^{\mathsf{D}^{\rho}}}$$

Theorem (Élek 1998, Pansu Ø)

Fix a bound on the geometry (valency, curvature and injectivity radius). Then the [reduced] ℓ^p -cohomology [in degree 1] is an invariant of quasi-isometry.

イロト イポト イヨト イヨト

A simple (yet important) example.

$$\underline{\ell^{p}H}^{p}(G) = \mathsf{D}^{p}(G)/\overline{\ell^{p}(V) + \mathbb{R}}^{\mathsf{D}^{p}(G)}$$

 g_n finitely supported so $\in \ell^p(V)$ for any p.

 $abla (g-g_n)$ takes *n* times the value 1/n $\implies \|g-g_n\|_{\mathsf{D}^p} = (n/n^p)^{1/p} = n^{-1/p'}.$

A simple (yet important) example.

$$\underline{\ell^{p}H}^{p}(G) = \mathsf{D}^{p}(G)/\overline{\ell^{p}(V) + \mathbb{R}}^{\mathsf{D}^{p}(G)}$$

A simple (yet important) example.

$$\underline{\ell^{p}H}^{p}(G) = \mathsf{D}^{p}(G)/\overline{\ell^{p}(V) + \mathbb{R}}^{\mathsf{D}^{p}(G)}$$

Remark: If p < q, the map $\underline{\ell^p H}^1(G) \xrightarrow{\text{Id}} \underline{\ell^q H}^1(G)$ is not always injective...

Ends

 $\underline{\ell^1 H}^1(G)$ is intimately related to the ends of a graph.

Definition (Freudenthal, 193?)

An end of a graph $\Gamma = (V, E)$ is a function from finite subsets of V to infinite ones, such that

- $\cdot \xi(F)$ is an infinite connected component of F^c ;
- $\cdot \forall F, F' \subset V \text{ (finite)}, \xi(F) \cap \xi(F') \neq \emptyset.$

Examples:

- A finite graph has 0 ends.
- The infinite grid (a Cayley graph of \mathbb{Z}^2) has 1 end.
- The infinite line (a Cayley graph of \mathbb{Z}) has 2 ends.
- Regular trees of even valency ≥ 3 (Cayley graphs of free groups) have ∞ many ends.

Ends

Lemma

The number of ends is a quasi-isometry invariant.

Theorem (Hopf, 1944)

The number of ends of a Cayley graph is 0, 1, 2 or ∞ .

Idea: 3 ends $\implies \infty$ ends

Theorem (Stallings, 1971)

[The Cayley graph of] a group has 2 ends iff it contains \mathbb{Z} as a finite index subgroup. It has ∞ many ends iff it is a "non-trivial" amalgamated product or HNN extension.

$$\underline{\ell^{1}H}^{1}(G) = \mathsf{D}^{1}(G)/\overline{\ell^{1}(V)} + \mathbb{R}^{\mathsf{D}^{1}(G)}$$

Lemma ("well-known")

If *G* has finitely many ends, $\underline{\ell^1 H}^1(G) \cong \mathbb{R}^{\operatorname{ends}(G)-1}$.

Preliminary claim: $D^1(G) \subset \ell^{\infty}(V)...?$

(日)

$$\underline{\ell^{1}H}^{1}(G) = \mathsf{D}^{1}(G)/\overline{\ell^{1}(V)} + \mathbb{R}^{\mathsf{D}^{1}(G)}$$

Lemma ("well-known")

If *G* has finitely many ends, $\underline{\ell^1 H}^1(G) \cong \mathbb{R}^{\operatorname{ends}(G)-1}$.

Preliminary claim: $D^1(G) \subset \ell^{\infty}(V)$...?

Hint: $f(y) - f(x) = \sum_{e \in P} \nabla f(e)$ for *P* a path from *x* to *y*.

イロト イポト イヨト イヨト 一日

$$\underline{\ell^{1}H}^{1}(G) = \mathsf{D}^{1}(G)/\overline{\ell^{1}(V)} + \mathbb{R}^{\mathsf{D}^{1}(G)}$$

Lemma ("well-known")

If *G* has finitely many ends, $\underline{\ell^1 H}^1(G) \cong \mathbb{R}^{\operatorname{ends}(G)-1}$.

$$|f(y)-f(x)| = \left|\sum_{e\in P} \nabla f(e)\right| \le \|\nabla f\|_{\ell^1(E)}.$$

Shows more: the ℓ^1 norm of ∇f tends to 0 outside larger and large balls.

On the [infinite] connected components of B_n^c (B_n = balls centred at some vertex), *f* becomes uniformly constant as $n \rightarrow \infty$.

$$\underline{\ell^{1}H}^{1}(G) = \mathsf{D}^{1}(G)/\overline{\ell^{1}(V)} + \mathbb{R}^{\mathsf{D}^{1}(G)}$$

Lemma ("well-known")

If *G* has finitely many ends, $\underline{\ell^1 H}^1(G) \cong \mathbb{R}^{\operatorname{ends}(G)-1}$.

$$|f(y)-f(x)|=\left|\sum_{e\in P}\nabla f(e)\right|\leq \|\nabla f\|_{\ell^{1}(E)}.$$

Shows more: the ℓ^1 norm of ∇f tends to 0 outside larger and large balls.

On the [infinite] connected components of B_n^c (B_n = balls centred at some vertex), *f* becomes uniformly constant as $n \rightarrow \infty$.

Thence, one defines a value of $f \in D^1(G)$ on each end:

$$\beta f(\xi) := \lim_{n \to \infty} f(x_n) \text{ where } x_n \in \xi(B_n)$$

$$\underline{\ell^{1}H}^{1}(G) = \mathsf{D}^{1}(G)/\overline{\ell^{1}(V)} + \mathbb{R}^{\mathsf{D}^{1}(G)}$$

Lemma ("well-known")

If *G* has finitely many ends, $\underline{\ell^1 H}^1(G) \cong \mathbb{R}^{\operatorname{ends}(G)-1}$.

$$|f(y)-f(x)|=\Big|\sum_{e\in P}\nabla f(e)\Big|\leq \|\nabla f\|_{\ell^1(E)}.$$

Boundary value of $f \in D^1(G)$:

$$\beta f(\xi) := \lim_{n \to \infty} f(x_n)$$
 where $x_n \in \xi(B_n)$

 β is linear and continuous on D¹(*G*).

Also: $\ell^1(V) \subset \operatorname{Ker}\beta$

 $\implies \beta \text{ sends } \overline{\ell^1(V) + \operatorname{cst}}^{D^1(G)}$ to constant functions.

$$\underline{\ell^1 H}^1(G) = \mathsf{D}^1(G) / \overline{\ell^1(V)} + \mathbb{R}^{\mathsf{D}^1(G)}$$

Lemma ("well-known")

If *G* has finitely many ends,
$$\underline{\ell^1 H}^1(G) \cong \mathbb{R}^{\operatorname{ends}(G)-1}$$

We have a [linear & continuous] map β which associates to $g \in D^1(G)$ a function on the ends.

$$\overline{\ell^1(V)} + \mathbb{R}^{D^1(G)}$$
 is sent to constant functions.

Remains to show that if βg is constant, then $g \in \overline{\ell^1(V) + \mathbb{R}}^{\mathsf{D}^1(G)}$.

Truncation Lemma 1

Definition

Say $g: V \to \mathbb{R}$ takes only one value at infinity if there is a $K \in \mathbb{R}$ so that for any $\varepsilon > 0$ one can find a $F_{\varepsilon} \subset V$ finite so that $g(F_{\varepsilon}^{c}) \subset]K - \varepsilon, K + \varepsilon[.$

Lemma ("maximum principle revisited")

If $g \in D^{p}(G)$ takes only one value at infinity then $[g] = 0 \in \underline{\ell^{p}H}^{1}(G)$.

Proof: WLOG K = 0. Define g_{ε} as

$$g_{arepsilon}(x) = \left\{egin{array}{cc} g(x) & ext{if } g(x) < arepsilon \ arepsilon g(x) / ert g(x) ert & ext{if } g(x) \geq arepsilon \end{array}
ight.$$

 $f_{\varepsilon} = g - g_{\varepsilon}$ is finitely supported, so $\in \ell^{p}(V)$ for any p.

 $\|g - f_{\varepsilon}\|_{D^{p}} = \|\nabla g_{\varepsilon}\|_{\ell^{p}(E)}$ is pointwise bounded by ∇g and tends pointwise to 0; so tends to 0.

Aim ...

... to describe $\underline{\ell^{p}H}^{1}$ as an ideal boundary.

 $\underline{\ell^1 H}^1$ is related to the ends ["well-known"].

[Bourdon & Pajot 2003]: In the hyperbolic case, there a strong link between ℓ^{p} -cohomology in degree 1 and some [Besov] space of functions on the visual boundary; also $p_{c} = \inf\{p \mid \underline{\ell^{p}H}^{1} \neq 0\}$ is a lower bound on the conformal dimension.

A natural idea, is to try to look at the "values" of this function on the "Poisson boundary".

Questions and answers

Question (Gromov 1992)

If *G* is the Cayley graph of an amenable group is $\underline{\ell^p H}^1(G) = \{0\}$ for any $p \in]1, \infty[$? [In fact, in all degrees]

Theorem (Gromov 1992, ...)

If *G* is the Cayley graph of a virtually nilpotent group then $\underline{\ell^{p}H}^{1}(G) = \{0\}$ for any $p \in]1, \infty[$.

Holds for any group with [virtually] infinite center. [Tessera 2009] show this also holds for polycyclic groups and some more.

Isoperimetric profiles

Definition

Let $d \in \mathbb{Z}_{\geq 1}$. A graph *G* satisfies a *d*-dimensional isoperimetric profiles (noted IS_d) if $\exists K > 0$ such that, $\forall F \subset V$ finite,

$$|F|^{1-\frac{1}{d}} \leq K|\partial F|$$

It has a strong isoperimetric profile (noted IS_{ω}) if $\exists K > 0$ such that, $\forall F \subset V$ finite, $|F| \leq K |\partial F|$

Examples: Cayley graphs of \mathbb{Z}^d satisfy IS_d .

A group is amenable iff its Cayley graph does not satisfy $IS_{\boldsymbol{\omega}}.$ (Restatement of Følner)

Isoperimetric profiles

Satisfying IS_{α} (for $\alpha \in \mathbb{Z}_{>1} \cup \{\omega\}$) is invariant under quasi-isometries.

Hyperbolic \implies IS_{ω} \implies IS_d, $\forall d$.

But IS_d , $\forall d \Rightarrow IS_\omega$. For example, Cayley graphs of $\mathbb{Z}^2 \rtimes_\alpha \mathbb{Z}$ where $\alpha(1) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

Theorem (Varopoulos 1985 + Gromov 1981 + Wolf 1968)

 Γ has polynomial growth of degree $\leq d \iff Cay(\Gamma, S)$ does not have IS_{d+1} .

 \implies groups which are not virtually nilpotent have IS_d for all d.

▲□▶▲□▶▲□▶▲□▶ □ つくつ

Harmonic functions

Let $P_x^{(n)}$ be the measure defined by $P_x^{(n)}(y) =$ the probability that a simple random walker starting at *x* ends up in *y* after *n* steps.

This gives a kernel: $P^{(n)}g(x) := \int g(y)dP_x^{(n)}(y)$.

A function $g: V \to \mathbb{R}$ is harmonic if $P^{(1)}g = g$ (mean value property).

 $\begin{aligned} \mathcal{H}(G) := & \text{space of harmonic functions.} \\ \mathcal{H}_b(G) := \mathcal{H}(G) \cap \ell^\infty(V) = & \text{space of bounded harmonic functions.} \end{aligned}$

Boundary values

Theorem (G., 2013)

Assume *G* satisfies IS_d . Let $1 \le p < d/2$. There is a linear map $\pi : \bigcup_{1 \le p \le d/2} D^p(G) \to \mathcal{H}(G)$ such that

• if
$$g\in \mathsf{D}^p(G)$$
, then $\pi(g)\in \mathsf{D}^q(G)$ for all $q>rac{dp}{d-2p}$.

• if
$$g \in \mathsf{D}^p(G) \cap \ell^\infty(V)$$
, then $\pi(g) \in \ell^\infty(V)$.

•
$$[g] = 0 \in \underline{\ell^p} H^1(G) \iff \pi(g)$$
 is a constant function
 $\iff g$ takes only one value at ∞ .

This extends a result of Lohoué (1990) which requires IS_{ω} .

Truncation Lemma 2

Lemma (Holopainen & Soardi 1994)

Assume $g \in D^{p}(G)$ is such that $[g] \neq 0 \in \underline{\ell^{p}H}^{1}(G)$. Let g_{K} be the function with values truncated in [-K, K]. Then for some K_{0} and any $K > K_{0}$, $[g_{K}] \neq 0 \in \underline{\ell^{p}H}^{1}(G)$.

Proof goes along the same lines as Truncation Lemma 1.

Corollary

To show $\underline{\ell^{p}H}^{1}(G) = \{0\}$, it suffices to show [g] = 0 for any $g \in D^{p}(G) \cap \ell^{\infty}(V)$.

Theorem (G., 2013)

Assume *G* satisfies IS_d . Let $1 \le p < d/2$. There is a linear map $\pi : \bigcup_{1 \le p \le d/2} D^p(G) \to \mathcal{H}(G)$ such that

- if $g \in \mathsf{D}^p(G)$, then $\pi(g) \in \mathsf{D}^q(G)$ for all $q > \frac{dp}{d-2p}$.
- if $g \in \mathsf{D}^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g] = 0 \in \underline{\ell^{p}H}^{1}(G) \iff \pi(g)$ is a constant function
 - $\iff g$ takes only one value at ∞ .

Corollary 1

If G satisfies IS_d and $\mathcal{H}_b(G) = \{0\}$, then $\underline{\ell^p H}^1(G) = \{0\}$ for all $p \in [1, \frac{d}{2}[$.

Indeed, $\pi(g) = 0$, $\forall g \in D^{p}(G) \cap \ell^{\infty}(V)$, so Theorem gives [g] = 0. Truncation Lemma 2 allows to conclude.

<ロ><()</p>

Theorem (G., 2013)

Assume *G* satisfies IS_d . Let $1 \le p < d/2$. There is a linear map π : $\bigcup_{1 \le p \le d/2} D^p(G) \to \mathcal{H}(G)$ such that

- if $g \in \mathsf{D}^p(G)$, then $\pi(g) \in \mathsf{D}^q(G)$ for all $q > \frac{dp}{d-2p}$.
- if $g \in \mathsf{D}^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g] = 0 \in \underline{\ell^{\rho}H}^{1}(G) \iff \pi(g)$ is a constant function

 \iff g takes only one value at ∞ .

Corollary 2

If *G* is the Cayley graph of a group Γ which is not virtually- \mathbb{Z} and $1 \le p < q < \infty$. Then the identity map $\underline{\ell^p H}^1(G) \to \underline{\ell^q H}^1(G)$ is injective.

[Cheeger-Gromov 1992] show $\underline{\ell^2 H}^1(G) = \{0\}$ for amenable groups \implies for amenable groups, $\underline{\ell^p H}^1(G) = \{0\}$ for all 1 .

Theorem (G., 2013)

Assume *G* satisfies IS_d . Let $1 \le p < d/2$. There is a linear map $\pi : \bigcup_{1 \le p \le d/2} D^p(G) \to \mathcal{H}(G)$ such that

- if $g \in \mathsf{D}^p(G)$, then $\pi(g) \in \mathsf{D}^q(G)$ for all $q > \frac{dp}{d-2p}$.
- if $g \in \mathsf{D}^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g] = 0 \in \underline{\ell^p H}^1(G) \iff \pi(g)$ is a constant function
 - \iff g takes only one value at ∞ .

Corollary 3

If *G* has IS_d and $1 \le p < d/2$, then $\cdot \mathcal{H}_b(G) \cap D^p(G) = \{\text{constants}\} \implies \forall q < \frac{dp}{d+2p}, \underline{\ell^p}H^1(G) = \{0\}.$ $\cdot \ell^p H^1(G) = \{0\} \implies \mathcal{H}(G) \cap D^p(G) = \{\text{constants}\}$

This uses that π is the identity on harmonic functions.

A.Gournay (TU Dresden)

Theorem (G., 2013)

Assume *G* satisfies IS_d . Let $1 \le p < d/2$. There is a linear map π : $\bigcup_{1 \le p \le d/2} D^p(G) \to \mathcal{H}(G)$ such that

- if $g \in \mathsf{D}^p(G)$, then $\pi(g) \in \mathsf{D}^q(G)$ for all $q > \frac{dp}{d-2p}$.
- if $g \in \mathsf{D}^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g] = 0 \in \underline{\ell^{p}H}^{1}(G) \iff \pi(g)$ is a constant function
 - \iff *g* takes only one value at ∞ .

Corollary 4

Assume $G' \subset G$ is a connected spanning subgraph of G so that G' has IS_d and $\underline{\ell^p H}^1(G') = \{0\}$ for $1 \le p < d/2$. $\underline{\ell^p H}^1(G) = \{0\}$.

If $g \in D^q(G)$ then $g \in D^q(G')$. This implies g takes only one value at ∞ as seen on G'. But this is also the case on G.

Corollary 4

Assume $G' \subset G$ is a connected spanning subgraph of G so that G' has IS_d and $\underline{\ell^p H}^1(G') = \{0\}$ for $1 \le p < d/2$. $\underline{\ell^p H}^1(G) = \{0\}$.

Corollary 5

Let $L \neq \{*\}$ and has at most two ends and *H* is infinite and has most two ends. Then the lamplighter $L \wr H$ has no harmonic function with gradient in ℓ^p ($p < \infty$).

[Thomassen 1978] shows that up to a quasi-isometry (actually bi-Lipschitz map of constant 6) both *L* and *H* contain a connected spanning subgraph which is a line, half-line or cycle. Hence they contain a of $G' = H' \wr L'$ where $H' = C_n$, \mathbb{N} or \mathbb{Z} and $L' = \mathbb{N}$ or \mathbb{Z} . This G' has $\mathcal{H}_b(G') = \{0\}$ and IS_d for all d.

! These graphs have lots of bounded harmonic functions (\Longrightarrow gradient in ℓ^{∞}).

Any Cayley graph has harmonic functions with gradient in ℓ^{∞} (= Lipschitz).

Corollary 4

Assume $G' \subset G$ is a connected spanning subgraph of G so that G' has IS_d and $\ell^p H^1(G') = \{0\}$ for $1 \le p < d/2$. $\ell^p H^1(G) = \{0\}$.

This can also be interpreted as a "forbidden subgraph" result: if $\underline{\ell^{\rho}H}^{1}(G) \neq \{0\}$ then there are no spanning connected subgraphs G' with $\mathcal{H}_{b}(G') = \{\text{constants}\}$ and IS_{d} (for some $d > 2\rho$).

e.g. no spanning \mathbb{Z}^d for d > 2p... Recall: [Thomassen 1978] very often there is a spanning line!

Corollary 6

Assume *G* has IS_d and $\underline{\ell^p H}^1(G) \neq \{0\}$ for $1 \leq p < d/2$. Then some part of the Poisson boundary is quasi-isometry invariant

Both IS_d and $\underline{\ell^{p}H}^{1}$ are QI-invariant, so always get a non-trivial bounded harmonic function by looking at $\pi(g)$ where $[g] \neq 0 \in \underline{\ell^{p}H}^{1}$ and g bounded.

The proof

Theorem (G., 2013)

Assume *G* satisfies IS_d . Let $1 \le p < d/2$. There is a linear map $\pi : \bigcup_{1 \le p \le d/2} D^p(G) \to \mathcal{H}(G)$ such that

- if $g \in \mathsf{D}^p(G)$, then $\pi(g) \in \mathsf{D}^q(G)$ for all $q > \frac{dp}{d-2p}$.
- if $g \in \mathsf{D}^p(G) \cap \ell^\infty(V)$, then $\pi(g) \in \ell^\infty(V)$.
- $[g] = 0 \in \underline{\ell^{p} H}^{1}(G) \iff \pi(g)$ is a constant function $\iff g$ takes only one value at ∞ .

 π is naively defined: $\pi(g) = \lim_{n \to \infty} P^n g$.

The "difficult" parts are:

- $\cdot \pi$ is [well-]defined.
- $\cdot \pi(g)$ is a constant implies g takes only one value at ∞ .

π defined, take one

$${\mathcal P}^{(n)}g(x)$$
 Cauchy? o ${\mathcal P}^{(n)}g(x)-{\mathcal P}^{(m)}g(x)=\int g {\mathrm d} {\mathcal P}^{(n)}_x-\int g {\mathrm d} {\mathcal P}^{(m)}_x.$

Problem/Idea ?

$$\begin{split} \int g d\xi - \int g d\phi &= \langle g \mid \xi - \phi \rangle \\ &= ??? \\ &= \langle \nabla g \mid ?? \rangle \\ &\leq \| \nabla g \|_{\ell^{p}} \|?? \|_{\ell^{p'}} \end{split}$$

→ ∃ →

Image: 0

Duality

 ∇^* the adjoint of ∇ :

$$\nabla: \{E \to \mathbb{R}\} \to \{V \to \mathbb{R}\}$$

$$f \mapsto \nabla f(x) = \sum_{y \sim x} f(y, x) - \sum_{y \sim x} f(x, y)$$

Note:
$$\Delta = \nabla^* \nabla$$
 then $\Delta g = 0 \iff (I - P)g = 0$.

Definition

 ξ, ϕ finitely supported probability measures. A transport pattern from ξ to ϕ is a finitely supported function $\tau_{\xi,\phi}: E \to \mathbb{R}$ so that $\nabla^* \tau_{\xi,\phi} = \phi - \xi$.

(日)

π defined, take two

$${\mathcal P}^{(n)}g(x)$$
 Cauchy? o ${\mathcal P}^{(n)}g(x)-{\mathcal P}^{(m)}g(x)=\int g d{\mathcal P}^{(n)}_x-\int g d{\mathcal P}^{(m)}_x$.

Problem/Idea ?

$$egin{array}{lll} \int g \mathrm{d} \xi - \int g \mathrm{d} \phi &= \langle g \mid \xi - \phi
angle \ &= \langle g \mid
abla^* au_{\phi, \xi}
angle \ &= \langle
abla g \mid
abla^* au_{\phi, \xi}
angle \ &= \langle
abla g \mid au_{\phi, \xi}
angle \ &| \cdot \mid &\leq \|
abla g \|_{\ell^
ho} \| au_{\phi, \xi} \|_{\ell^
ho'} \end{aligned}$$

イロト イポト イヨト イヨト

π defined, take two

$${\mathcal P}^{(n)}g(x)$$
 Cauchy? o ${\mathcal P}^{(n)}g(x)-{\mathcal P}^{(m)}g(x)=\int g d{\mathcal P}^{(n)}_x-\int g d{\mathcal P}^{(m)}_x$.

Problem/Idea ?

$$\begin{array}{ll} \mathcal{P}^{(m+k)}g(x) - \mathcal{P}^{(n)}g(x) &= \langle g \mid \mathcal{P}^{(m+k)}_{x} - \mathcal{P}^{(m)}_{x} \rangle \\ &= \langle g \mid \nabla^{*} \tau_{\mathcal{P}^{(m)}_{x},\mathcal{P}^{(m+k)}_{x}} \rangle \\ &= \langle \nabla g \mid \tau_{\mathcal{P}^{(m)}_{x},\mathcal{P}^{(m+k)}_{x}} \rangle \\ &| \cdot | &\leq \| \nabla g \|_{\ell^{p}} \| \tau_{\mathcal{P}^{(m)}_{x},\mathcal{P}^{(m+k)}_{x}} \|_{\ell^{p'}} \end{array}$$

How to define $\tau_{P_x^{(m)}, P_x^{(m+k)}}$?

イロト イポト イヨト イヨト

3

π defined, take two

$${\mathcal P}^{(n)}g(x)$$
 Cauchy? o ${\mathcal P}^{(n)}g(x)-{\mathcal P}^{(m)}g(x)=\int g d{\mathcal P}^{(n)}_x-\int g d{\mathcal P}^{(m)}_x$.

Problem/Idea ?

$$\begin{array}{ll} \mathcal{P}^{(m+k)}g(x) - \mathcal{P}^{(n)}g(x) &= \langle g \mid \mathcal{P}^{(m+k)}_{x} - \mathcal{P}^{(m)}_{x} \rangle \\ &= \langle g \mid \nabla^{*} \tau_{\mathcal{P}^{(m)}_{x},\mathcal{P}^{(m+k)}_{x}} \rangle \\ &= \langle \nabla g \mid \tau_{\mathcal{P}^{(m)}_{x},\mathcal{P}^{(m+k)}_{x}} \rangle \\ &|\cdot| &\leq \|\nabla g\|_{\ell^{p}} \|\tau_{\mathcal{P}^{(m)}_{x},\mathcal{P}^{(m+k)}_{x}} \|_{\ell^{p'}} \end{array}$$

How to define $\tau_{P_x^{(m)}, P_x^{(m+k)}}$?

 ∇^* is linear so (a possible choice is):

$$\tau_{P_x^{(m)}, P_x^{(m+k)}} = \sum_{i=0}^{k-1} \tau_{P_x^{(m+i)}, P_x^{(m+i+1)}}$$

A.Gournay (TU Dresden)

ヨトィヨト

Simple but inefficient...

How to define $\tau_{P_x^{(m)},P_x^{(m+1)}}$?

There is a very natural transport pattern:

take a random step!

Then $\|\tau_{P_x^{(m)},P_x^{(m+1)}}\|_{\ell^{p'}} \leq K \|P_x^{(m)}\|_{\ell^{p'}}$ (where K depends on the valency).

Transport: to infinity and beyond!

$$\mathcal{P}^{(m+k)}g(x) - \mathcal{P}^{(n)}g(x)| \leq \|\nabla g\|_{\ell^p} \|\tau_{\mathcal{P}^{(m)}_x, \mathcal{P}^{(m+k)}_x}\|_{\ell^{p'}} \leq \|\nabla g\|_{\ell^p} \sum_{i=m}^{m+k-1} \|\mathcal{P}^{(i)}_x\|_{\ell^{p'}}$$

So it suffices to check that $\sum_{n\geq 0} P_x^{(n)}$ is in $\ell^{p'}(V)$.

Theorem (Varopoulos 1985)

If G has IS_d , then for some K > 0, $\|P_x^{(n)}\|_{\ell^{\infty}(V)} \le Kn^{-d/2}$.

Thus

$$\|P_x^{(n)}\|_{\ell^q(V)}^q \le \|P_x^{(n)}\|_{\ell^\infty(V)}^{q-1}\|P_x^{(n)}\|_{\ell^1(V)} \le K' n^{-d(q-1)/2}$$

and $\sum P^{(n)}$ converges in ℓ^q if q' < d/2.

Want to prove: $\pi(g)$ is a constant function $\implies g$ is constant at infinity.

WLOG the constant $\pi(g)$ is 0.

Will prove:

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \text{ such that } x \notin B_{3n_{\varepsilon}} \implies |g(x)| < \kappa \varepsilon.$$

Make a well-chosen splitting of the scalar product:

$$\mathcal{P}^{(n)}g(x) - g(x) = \langle
abla g \mid au_{\delta_x, \mathcal{P}^{(n)}_x}
angle$$

• • = • • = •

from $\pi(g) \equiv 0$, to prove: for some K > 0 $\forall \epsilon > 0, \exists n_{\epsilon} \text{ such that } x \notin B_{3n_{\epsilon}} \implies |g(x)| < K\epsilon.$

Given $\varepsilon > 0$, define n_{ε} to be so that

 $\cdot \|\nabla g\|_{B^{c}_{n_{\varepsilon}}} < \varepsilon \\ \cdot \sup_{x \in V} \sum_{i \ge n_{\varepsilon}} \|P^{(n)}_{x}\|_{\ell^{p'}} < \varepsilon$

$$egin{aligned} \mathcal{P}^{(n)}g(x) - g(x) &= \langle
abla g \mid au_{\delta_{X},\mathcal{P}^{(n)}_{X}}
angle \ &= \langle
abla g \mid au_{\delta_{X},\mathcal{P}^{(n)}_{X}}
angle_{|B_{n_{\mathrm{E}}}} + \langle
abla g \mid au_{\delta_{X},\mathcal{P}^{(n)}_{X}}
angle_{|B_{n_{\mathrm{E}}}} \end{aligned}$$

2nd term: ∇g is small, and there is an absolute bound on τ : $\sum_{i\geq 0} \|P^{(i)}\|$ 1st term: ∇g is not small, but the τ will be small: can replace $\tau_{\delta_x, P_x^{(n)}}$ by $\tau_{P^{(n_{\varepsilon})}, P_x^{(n)}}$ because it takes at least n_{ε} steps to go from x to $B_{n_{\varepsilon}}$.

from $\pi(g) \equiv 0$, to prove: for some K > 0 $\forall \epsilon > 0, \exists n_{\epsilon} \text{ such that } x \notin B_{3n_{\epsilon}} \implies |g(x)| < K\epsilon.$

Given $\varepsilon > 0$, define n_{ε} to be so that

 $\cdot \|\nabla g\|_{B^{c}_{n_{\varepsilon}}} < \varepsilon \\ \cdot \sup_{x \in V} \sum_{i \ge n_{\varepsilon}} \|P^{(n)}_{x}\|_{\ell^{p'}} < \varepsilon$

Massage 2nd term:

$$egin{aligned} |\mathcal{P}^{(n)}g(x)-g(x)| &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|}+|\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|}+||
abla g \mid_{\ell^{p}(B_{n_{arepsilon}}^{c})}|| au_{\delta_{X},P_{X}^{(n)}}||_{\ell^{p'}(B_{n_{arepsilon}}^{c})} \ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|}+ & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|}+ & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |\langle
abla g \mid au_{\delta_{X},P_{X}^{(n)}}
angle_{|B_{n_{arepsilon}}|+} & arepsilon \\ &\leq |A_{\lambda_{X},P_{X}^{(n)}}
angle_{|B_{\lambda_{X}}|+} & arepsilon \\ &\leq |A_{\lambda_{X$$

▲撮▶ ▲ 国▶ ▲ 国▶ 二 国

from $\pi(g) \equiv 0$, to prove: for some K > 0 $\forall \epsilon > 0, \exists n_{\epsilon} \text{ such that } x \notin B_{3n_{\epsilon}} \implies |g(x)| < K\epsilon.$

Given $\varepsilon > 0$, define n_{ε} to be so that

 $\cdot \|\nabla g\|_{B^{c}_{n_{\varepsilon}}} < \varepsilon \\ \cdot \sup_{x \in V} \sum_{i \ge n_{\varepsilon}} \|P^{(n)}_{x}\|_{\ell^{p'}} < \varepsilon$

Massage 1st term:

$$egin{aligned} \mathcal{P}^{(n)}g(x) - g(x) &| &\leq |\langle
abla g \mid au_{\delta_{X},\mathcal{P}^{(n)}_{X}}
angle_{|B_{n_{\mathcal{E}}}|} &+ arepsilon K_{2} \ &\leq |\langle
abla g \mid au_{\mathcal{P}^{(n_{\mathcal{E}})}_{X},\mathcal{P}^{(n)}_{X}}
angle_{|B_{n_{\mathcal{E}}}|} &+ arepsilon K_{2} \ &\leq \|
abla g\|_{\ell^{
ho}} \|ar{ au}_{\mathcal{P}^{(n_{\mathcal{E}})}_{X},\mathcal{P}^{(n)}_{X}} \|_{\ell^{
ho'}} \|_{\ell^{
ho'}} + arepsilon K_{2} \ &\leq \|
abla g\|_{\ell^{
ho}} \sum_{i\geq n_{\mathcal{E}}} \|\mathcal{P}^{(i)}_{X}\|_{\ell^{
ho'}} &+ arepsilon K_{2} \ &\leq \|
abla g\|_{\ell^{
ho}} \sum_{i\geq n_{\mathcal{E}}} \|\mathcal{P}^{(i)}_{X}\|_{\ell^{
ho'}} &+ arepsilon K_{2} \ &\leq \|
abla g\|_{\ell^{
ho}} &arepsilon &$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

from $\pi(g) \equiv 0$, to prove: for some K > 0 $\forall \epsilon > 0, \exists n_{\epsilon} \text{ such that } x \notin B_{3n_{\epsilon}} \implies |g(x)| < K\epsilon.$

Given $\varepsilon > 0$, define n_{ε} to be so that

 $\cdot \|\nabla g\|_{B^{c}_{n_{\varepsilon}}} < \varepsilon \\ \cdot \sup_{x \in V} \sum_{i \ge n_{\varepsilon}} \|P^{(n)}_{x}\|_{\ell^{p'}} < \varepsilon$

Up to now: $\forall x \notin B_{3n_{\varepsilon}}$,

$$|P^{(n)}g(x)-g(x)|\leq K_3\varepsilon$$

Letting $n \to \infty$:

 $|g(x)| \leq K_3 \varepsilon$

as claimed.

▲掃▶ ▲ 国▶ ▲ 国▶ 二 国

Some questions

Q1: Is there an amenable group with a non-constant (bounded or not) harmonic functions whose gradient is in c_0 ?

Q2: If *G* is the Cayley graph of an amenable group (with $\mathcal{H}_b(G) \neq \{\text{constants}\}, \text{ what is the maximal } d \text{ so that } G \text{ has a connected spanning subgraph } G' \text{ with } \text{IS}_d \text{ and } \mathcal{H}_b(G') = \{\text{constants}\}?$

Q3.a: Is there an explicit and more efficient transport pattern from δ_x to $P_x^{(n)}$? **Q3.b:** In an amenable Cayley graph, is there a Følner sequence and an explicit (not too unefficient) transport pattern from δ_e to $\mathbb{1}_{F_n}$?

Q.4: For two infinite connected sets A and B let

 $n_{A,B}(\ell)$ = number of mutually disjoint paths of length $\leq \ell$ from *A* to *B*. Estimates for the growth (in ℓ) of $n_{A,B}(\ell)$ in an amenable Cayley graph (of exponential growth)