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Why /P-cohomology?

A ball packing in a manifold M is a [countable] set of closed balls in M so
that any two balls intersect at most in a point. The incidence graph of a ball
packing is a graph whose vertices are the balls and there is an edge if the ball
touches.

Theorem (Koebe 1936)

A finite graph can be packed in R? if and only if it is planar.

Quasi-round packing: replace balls by generic domains, require there is a
K so that the ration “outer radius / inner radius” is < K.

There is no obstruction for quasi-round packings of finite graphs in R3.
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Why /P-cohomology?

Theorem (Koebe 1936)

A finite graph can be packed in R? if and only if it is planar.

There is no obstruction for quasi-round packings of finite graphs in R3.

Theorem (Benjamini & Schramm 2009)

If an infinite graph can be quasi-roundly packed in R either it is d-parabolic or
it has non-trivial reduced ¢°-cohomology in degree 1.

d-parabolic <= inf{||Vf||¢ | f has finite support and f(xp) = 1} = 0.
“Easy” to understand, e.g. 2-parabolicity is recurrence. A Cayley graph is
d-parabolic if and only if it has polynomial growth of degree < d.

In general, dpar = inf{d | d-parabolic} belongs to [disop, dgr] Where disop is
the isoperimetric dimension (see later) and dg, the minimal polynomial degree
growth of balls.
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What is /°-cohomology?

In degree 1, the #P-cohomology of a graph G = (V, E) is defined via
incidence operators between vertices and edges. Take E C V x V symmetric,

and let
V: {V>R} —» {E—=R}
f = Vi(x,y) =1f(y) - f(x)

In graphs of bounded valency, V : #P(V) — ¢P(E) is a bounded operator.

The space of p-Dirichlet functions is DP(G) = {f: V — R | Vf € ¢P(E)}.

It is endowed with a semi-norm ||f||pr = ||Vf||¢e. (“semi-" — constant
functions).
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What is /P-cohomology?

V: {VoR} - {E—R}

f — Vf(x,y):f(y)—f(x) ||f”DP: HVfHZ"
Definition
The reduced #P-cohomology in degree 1 of a graph is
ImVNP(E DP(G
EP_H1(G): = Ep): ( )Dp
VIr(V) ¢P(V) +cst

Theorem (Elek 1998, Pansu @)
Fix a bound on the geometry (valency, curvature and injectivity radius). Then
the [reduced] £P-cohomology [in degree 1] is an invariant of quasi-isometry.
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A simple (yet important) example.

(PHP(G) = DP(G)/P(V) + R

Example:

g 0 0 1 1 1 1 1 1

O — O —@—@— —0—0—0
—1 2 1

o 0 0 1 ”T = 5 0 0

——————— s G— G —@—@—

gn finitely supported so € ¢P( V) for any p.

V(g — gn) takes ntimes the value 1/n
= 19— nlloe = (n/n?)!/P = n1/P.
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A simple (yet important) example.

(PHP(G) = DP(G)[PP(V) + R O

Example:

g 0 0 1 1 1 1 1 1

_._._._._ ....... _._._._._ .......
—1 2 1

gn: 0 0 1 nT non 0 0

....... _._._._._ . _._._._._

—— ”g_gnHDP = (n/np)1/p — n71/p!.

Then g, 2 g if p> 1. Thus V1 < p < o, [g] = 0 € PH'(G).
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A simple (yet important) example.

#HP(G) = D(G)/R(V) + R

Example:

g 0 0 1 1 1 1 1 1

- ———@— —0—0—0
—1 2 1

o 0 0 1 ”T = 5 0 0

——————— v G ——@—@—

In fact £PH'(G) = {0} if p €]1, [ and £'H'(G) ~ R.

Remark: If p < g, the map /°H'(G) M pay (G) is not always injective...
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Ends

OH' (G) is intimately related to the ends of a graph.

Definition (Freudenthal, 1937?)

An end of a graph ' = (V, E) is a function from finite subsets of V to infinite
ones, such that

- E(F) is an infinite connected component of F¢;
-VF,F' C V (finite), &(F) NE(F') # @.

Examples:
@ A finite graph has 0 ends.
@ The infinite grid (a Cayley graph of Z?) has 1 end.
@ The infinite line (a Cayley graph of Z) has 2 ends.

@ Regular trees of even valency > 3 (Cayley graphs of free groups) have o«
many ends.
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Ends

Lemma
The number of ends is a quasi-isometry invariant.

Theorem (Hopf, 1944)
The number of ends of a Cayley graph is 0, 1, 2 or co.

Idea: 3 ends — oo ends

Theorem (Stallings, 1971)

[The Cayley graph of] a group has 2 ends iff it contains 7Z as a finite index
subgroup. It has  many ends iff it is a “non-trivial” amalgamated product or
HNN extension.
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Ends and ¢('H'

0H'(6) =D'(G) /T (V) TR

Lemma (“well-known”)

If G has finitely many ends, £'H'(G) =2 Rends(G)—1,

Preliminary claim: D'(G) C £°(V)...?
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Ends and ('H'

£H'(6) =D'(@)/F(V)+ R

Lemma (“well-known”)

If G has finitely many ends, £' H'(G) = Rends(G) -1,

Preliminary claim: D'(G) C £°(V)...?

Hint: f(y) — f(x) = Yecp Vf(e) for P a path from x to y.
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Ends and ('H'

0H'(6) =D'(G) /T (V) TR

Lemma (“well-known”)

If G has finitely many ends, £'H'(G) =2 Rends(G)-1,

Y Vi(e)| <11Vl ey.

ecP

f(y) = ()| =
Shows more: the ' norm of V£ tends to 0 outside larger and large balls.

On the [infinite] connected components of B (B, = balls centred at some
vertex), f becomes uniformly constant as n — oo.
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Ends and ('H'
¢'H'(6)=D'(e)/ T (V) TR
Lemma (“well-known”)

If G has finitely many ends, £'H' (G) = Rends(G) 1

Y Vi(e)| <11Vl ey,

ecP

f(y) = 1(x)| =
Shows more: the ¢! norm of V tends to 0 outside larger and large balls.

On the [infinite] connected components of B (B, = balls centred at some
vertex), f becomes uniformly constant as n — oo.

Thence, one defines a value of f € D'(G) on each end:

BF(E) := im f(x,) where x, € §(B,)
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Ends and ('H'

0H'(G) =D(G) /T (V) TR

Lemma (“well-known”)

If G has finitely many ends, £'H'(G) =2 Rends(G)-1,

Y vi(e)| <11Vl ey,

ecP

f(y) —f(x)| =
Boundary value of f € D'(G):
BF(E) := Im f(x,) where x, € &(B,)

B is linear and continuous on D'(G).

Also: £'(V) C Kerf

—————D'(G
= P sends ¢'(V)+cst (@) to constant functions.
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Ends and ('H'

1
0'H'(G) =D'(G) /BT (V) L R" @
Lemma (“well-known”)
If G has finitely many ends, £'H'(G) = Rends(6)=1
We have a [linear & continuous] map B which associates to g € D'(G) a
function on the ends.

(G)

D1
(V)+R is sent to constant functions.

—————D'(G
Remains to show that if Bg is constant, then g € £1(V)+R @
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Truncation Lemma 1

Definition
Say g: V — R takes only one value at infinity if there is a K € R so that for any
€ > 0 one can find a Fg C V finite so that

9(F8) CIK —&, K +¢.

Lemma (“maximum principle revisited”)
If g € DP(G) takes only one value at infinity then [g] = 0 € £PH'(G).
Proof: WLOG K = 0. Define g; as

_J alx) if g(x) <e
6:(x) = { eg(x)/10(x)| ifa(x) e

f: = g — g is finitely supported, so € ¢P(V) for any p.

lg — fellor = [V gell () is pointwise bouded by Vg and tends pointwise to
0; so tends to 0. |
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Aim ...

... to describe @1 as an ideal boundary.
¢'H' is related to the ends [‘well-known’].

[Bourdon & Pajot 2003]: In the hyperbolic case, there a strong link between
£P-cohomology in degree 1 and some [Besov] space of functions on the visual
boundary; also p, = inf{p | #°H" # 0} is a lower bound on the conformal
dimension.

A natural idea, is to try to look at the “values” of this function on the
“Poisson boundary”.
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Questions and answers

Question (Gromov 1992)

If G is the Cayley graph of an amenable group is £°H'(G) = {0} for any p €
]1,°0[? [In fact, in all degrees]

Theorem (Gromov 1992, ...)

It G is the Cayley graph of a virtually nilpotent group then £PH'(G) = {0} for
any p €]1,[.

Holds for any group with [virtually] infinite center. [Tessera 2009] show this
also holds for polycyclic groups and some more.
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Isoperimetric profiles

Definition
Let d € Z>1. A graph G satisfies a d-dimensional isoperimetric profiles (noted
ISy) if 3K > 0 such that, VF C V finite,

1
|F|'~d < KI|oF|

It has a strong isoperimetric profile (noted IS,) if 3K > 0 such that, VF C V
finite, | F| < K|oF]|

Examples: Cayley graphs of Z¢ satisfy 1S.

A group is amenable iff its Cayley graph does not satisfy IS,. (Restatement
of Falner)
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Isoperimetric profiles

Satisfying IS, (for o € Z>1 U {®}) is invariant under quasi-isometries.
Hyperbolic — IS, — 1S4, Vd.

But ISy, Vd =& 1S,. For example, Cayley graphs of Z? x4 Z where
a(1) = (51).

Theorem (Varopoulos 1985 + Gromov 1981 + Wolf 1968)
I has polynomial growth of degree < d <= (Cay(I', S) does not have IS4 1.

== groups which are not virtually nilpotent have IS, for all d.
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Harmonic functions

Let P,((") be the measure defined by P,((")(y) = the probability that a simple
random walker starting at x ends up in y after n steps.

This gives a kernel: P("g(x) := [ g(y)dPy ")( ).

A function g : V — R is harmonic if P(1)g = g (mean value property).

H(G) :=space of harmonic functions.
Hy(G) := H(G)N£=(V) =space of bounded harmonic functions.
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Boundary values

Theorem (G., 2013)

Assume G satisfies ISy. Let 1 < p < d/2. There is a linear map =« :

U DP(G) — #(G) such that
1<p<d/2

dp

e if g € DP(G), then n(g) € D(G) for all g > 5

e if g € DP(G)N£L=(V), then (g) € £=(V).
@ [g] =0€ PH'(G) <= n(g)is a constant function
<= g takes only one value at .

This extends a result of Lohoué (1990) which requires ISy,.
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Truncation Lemma 2

Lemma (Holopainen & Soardi 1994)

Assume g € DP(G) is such that [g] # 0 € £PH'(G). Let gk be the function with
values truncated in [—K,K]. Then for some K and any K > Ko, [gk] # 0 €
(PH'(G).

Proof goes along the same lines as Truncation Lemma 1.

Corollary
To show £PH'(G) = {0}, it suffices to show [g] = 0 for any g € DP(G) N £=(V).
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Corollaries

Theorem (G., 2013)

Assume G satisfies ISy. Let 1 < p < d/2. There is a linear map « :

U DP(G) — H(G) such that
1<p<d/2
dp

e if g € DP(G), then n(g) € DI(G) for all g > J_2p

e if g€ DP(G)N{¢=(V), thenm(g) € £=(V).

e [g]=0€PH'(G) < =(g) is a constant function
<= g takes only one value at .

Corollary 1

If G satisfies IS and Hy,(G) = {0}, then £PH'(G) = {0} for all p € [1, 4.

Indeed, m(g) = 0, Vg € DP(G)N¢=(V), so Theorem gives [g] = 0.
Truncation Lemma 2 allows to conclude.
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Corollaries

Theorem (G., 2013)

Assume G satisfies ISy. Let 1 < p < d/2. There is a linear map =« :
U DP(G) — #H(G) such that

1<p<d/2

dp

e if g € DP’(G), then n(g) € DI(G) for all g > J_2p

e if g€ DP(G)N¥¢=(V), thenm(g) € £=(V).
e [g]=0€ PH'(G) <= n(g) is a constant function
<= g takes only one value at co.
Corollary 2
If Gis the Cayley graph of a group I which is not virtually-Z and 1 < p < g < e.
Then the identity map ¢PH'(G) — £9H'(G) is injective.

[Cheeger-Gromov 1992] show £2H' (G) = {0} for amenable groups
— for amenable groups, M1(G) ={0}forallt <p<2.
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Corollaries

Theorem (G., 2013)

Assume G satisfies ISy. Let 1 < p < d/2. There is a linear map = :

U DP(G) — H(G) such that
1<p<d/2

dp
— 2;3-

e if g € DP(G), then n(g) € D(G) for all g > p

e if g€ DP(G)N¥L=(V), thenm(g) € £=(V).

@ [g]=0€PH'(G) < =(g) is a constant function
<= g takes only one value at .

Corollary 3

If Ghas ISy and 1 < p < d/2, then
- Hp(G) NDP(G) = {constants} — Vq < %,M1 (G) ={0}.
- lPH'(G) = {0} = H(G)NDP(G) = {constants}

This uses that 1 is the identity on harmonic functions.
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Corollaries

Theorem (G., 2013)

Assume G satisfies ISy. Let 1 < p < d/2. There is a linear map =« :

U DP(G) — H(G) such that
1<p<d/2

dp
d—2p

e if g € DP(G), then n(g) € DI(G) for all g >

e if g € DP(G)N£=(V), then mt(g) € £=(V).
@ [g] =0€ PH'(G) <= n(g)is a constant function
<= g takes only one value at .
Corollary 4
Assume G' C Gis a connected spanning subgraph of G so that G' has IS, and
(PH'(G') = {0} for 1 < p < d/2. PH'(G) = {0}.

If g € DI(G) then g € DI(G'). This implies g takes only one value at « as
seen on G'. But this is also the case on G.
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Corollaries
Corollary 4

Assume G' C Gis a connected spanning subgraph of G so that G' has IS, and
PH'(G') = {0} for 1 < p < d/2. £PH'(G) = {0}.

Corollary 5

Let L # {«} and has at most two ends and H is infinite and has most two ends.
Then the lamplighter L? H has no harmonic function with gradient in /P (p < o).

[Thomassen 1978] shows that up to a quasi-isometry (actually bi-Lipschitz
map of constant 6) both L and H contain a connected spanning subgraph
wh|ch is a line, half-line or cycle. Hence they contain a of G = H' 1 L’ where

= Cp,NorZand L' =Nor Z. This G' has #,(G') = {0} and IS4 for all d.

! These graphs have lots of bounded harmonic functions ( = gradient in £%).

Any Cayley graph has harmonic functions with gradient in £ (= Lipschitz).

A.Gournay (TU Dresden) E"J‘ & harmonic functions 2015/05/21 18/30



Corollaries

Corollary 4

Assume G' C Gis a connected spanning subgraph of G so that G' has IS, and
PH'(G) = {0} for 1 < p < d/2. PH'(G) = {0}.

This can also be interpreted as a “forbidden subgraph” result: if
£PH'(G) # {0} then there are no spanning connected subgraphs G’ with
Hy(G') = {constants} and IS (for some d > 2p).

e.g. no spanning Z4 for d > 2p... Recall: [Thomassen 1978] very often there
is a spanning line!
Corollary 6

Assume G has IS4 and M1(G) # {0} for 1 < p < d/2. Then some part of
the Poisson boundary is quasi-isometry invariant

Both IS4 and #PH' are Ql-invariant, so always get a non-trivial bounded
harmonic function by looking at m(g) where [g] # 0 € #°H' and g bounded.
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The proof

Theorem (G., 2013)

Assume G satisfies ISy. Let 1 < p < d/2. There is a linear map = :

U DP(G) — H(G) such that
1<p<d/2

dp

e if g € DP(G), then n(g) € D(G) for all g > 5

e if g€ DP(G)N{¢=(V), thenm(g) € £=(V).
@ [g] =0€ (PH'(G) <= =(g) is a constant function
<= g takes only one value at .

nis naively defined: n(g) = lim pg.

The “difficult” parts are:
- T is [well-]defined.
- t(g) is a constant implies g takes only one value at .
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T defined, take one

P(" g(x) Cauchy? — PMg(x) — P(Mg(x) = [ gdP{” — [ gdP!™.

Problem/Idea ?

J9&—[gdd =(g|E—0)

—777

— (Vg|7?)
SNz
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Duality

V* the adjoint of V:

V: {E-R} —» {V—=R}
f = VX)) =X, ox f(y,X) = Lyx F(X, )

Note: A =V*Vthen Ag=0 < (/- P)g=0.
Definition

€, ¢ finitely supported probability measures. A transport pattern from & to ¢ is a
finitely supported function t¢ 4 : E — R so that V*1; , = ¢ — €.
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T defined, take two

P(M g(x) Cauchy? — PMg(x) — P(Mg(x) = [ gdP{™ — [ gdP{™.

Problem/Idea ?

J 9k — [ gdd gl&-90)

=

=(9| V')

= (Vg | Tez)

|- <IIVallelitoell»
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T defined, take two
P(M g(x) Cauchy? — PMg(x) — P(Mg(x) = [ gdP{™ — [ gdP{™

Problem/Idea ?

= (g| A" — P{"™)

=(g|V* Tp(m) 7P£m+k)>
= (Vg | Tpm pimn)

- < IValolitym pmvoles

PIm+4g(x) - P7g(x)

How to define T _(m) (m+x) ?
Py, Px

A.Gournay (TU Dresden) WJ‘ & harmonic functions 2015/05/21 22/30



T defined, take two

P(Mg(x) Cauchy? — PMg(x) — P(Mg(x) = [ gdP{” — [ gdP!™.

Problem/Idea ?
P g(x) - Pg(x) =
= Vg | TP)((m)7P£m+k)>
-1 < IVallelltpm pomenll e
How to define ‘cpﬁmx P)((erk)?

V* is linear so (a possible choice is):

k—1
TP)((m)7P)((m+k) = i_ZO’CP)((m+r’)7P)((m++i+1)
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Simple but inefficient...

How to define T_(m) _(m1)?
Py Px

There is a very natural transport pattern:

take a random step!

Then [|T m pimin [l < KHP,(('")HW (where K depends on the valency).
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Transport: to infinity and beyond!

m+k—1 .
PR g(x) = P g(x)| < [IVgllelltpm pimeillw < IVallee Y, 1P )],
i=m

So it suffices to check that ¥ nso PY is in 7 (V).

Theorem (Varopoulos 1985)

If G has IS4, then for some K > 0, HP)((n)Ilgw(v) < Kn—9/2,

Thus
1A ey < IR A sy < Kma=D/2

and ¥ P(") converges in /9 if ¢ < d/2.
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n(g) =cst —> constant at «
Want to prove:

7(g) is a constant function = g is constant at infinity.
WLOG the constant ©t(g) is 0.

Will prove:
Ve > 0, 3ng such that x ¢ By,, = |g(x)| < KEe.

Make a well-chosen splitting of the scalar product:

Pg(x) ~g(x) = (Va | Ty_u)
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n(g) =cst —> constant at «
from w(g) = 0, to prove: for some K > 0
Ve > 0, Ing such that x ¢ Bs,, = |g9(x)| < Ke.

Given € > 0, define n to be so that
[IVglleg, <&

SUP Y [P <

POg(x)~g(x) =(Vg| T ,n)
= Vol polian + (V1T )i,

2" term: Vg is small, and there is an absolute bound on T: ¥~ PO

1%t term: Vg is not small, but the T will be small:
can replace Ts. p(n) by T plne) pl because it takes at least n; steps to go
from x to Bj,.
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n(g) =cst = constant at

from w(g) = 0, to prove: for some K > 0
Ve > 0, Ing such that x ¢ Bs,, = |9(x)| < Ke.

Given € > 0, define n to be so that
[IVglleg, <€

n
SUp Y 1P <
Massage 2" term:

PMg(x) = g0 <1(Vg Ty sy +1(Vg | Ty po)ies

SP
I o)1+ 199 (e 5, pio 1
|Wgu%¢m%w— e KXol PVl
I )

ENEs € Kz
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n(g) =cst = constant at

from w(g) = 0, to prove: for some K > 0
Ve > 0, 3ng such that x ¢ Bs,, = |9(x)| < Ke.

Given € > 0, define n; to be so that
IVglles, <t
Uy 1P <€

Massage 1t term:

PMg(x) = g()| <1{Vg |ty o) sl +£K;
<Vl Tpm p) s, | €K
<IIValleellTpm g ll e (s, ) T

< IVglleLion 1P, +eke
< ||Vg||fp € +eKo
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n(g) =cst = constant at

from w(g) = 0, to prove: for some K > 0
Ve > 0, Ing such that x ¢ Bs,, = |9(x)| < Ke.

Given € > 0, define n to be so that
IVgllss, <t

SUp Y [P <
Up to now: Vx ¢ Bs,,
P g(x) — g(x)] < Kae
Letting n — oo:
19(x)| < Kse

as claimed.
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Some questions

Q1: Is there an amenable group with a non-constant (bounded or not)
harmonic functions whose gradient is in ¢o?

Q2: If Gis the Cayley graph of an amenable group (with
Hyp(G) # {constants}, what is the maximal d so that G has a connected
spanning subgraph G’ with ISy and #H,(G') = {constants}?

Q3.a: Is there an explicit and more efficient transport pattern from J, to P)((")?
Q3.b: In an amenable Cayley graph, is there a Fglner sequence and an
explicit (not too unefficient) transport pattern from J, to 1, ?

Q.4: For two infinite connected sets A and B let

na g(¢) = number of mutually disjoint paths of length < ¢ from A to B.
Estimates for the growth (in £) of na g(¢) in an amenable Cayley graph (of
exponential growth)
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