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Why `
p-cohomology?

A ball packing in a manifold M is a [countable] set of closed balls in M so
that any two balls intersect at most in a point. The incidence graph of a ball
packing is a graph whose vertices are the balls and there is an edge if the ball
touches.

Theorem (Koebe 1936)

A finite graph can be packed in R2 if and only if it is planar.

Quasi-round packing: replace balls by generic domains, require there is a
K so that the ration “outer radius / inner radius” is � K .

There is no obstruction for quasi-round packings of finite graphs in R3.
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Why `
p-cohomology?

Theorem (Koebe 1936)

A finite graph can be packed in R2 if and only if it is planar.

There is no obstruction for quasi-round packings of finite graphs in R3.

Theorem (Benjamini & Schramm 2009)

If an infinite graph can be quasi-roundly packed in Rd either it is d-parabolic or
it has non-trivial reduced `d -cohomology in degree 1.

d-parabolic () inffk∇fk`p j f has finite support and f (x0) = 1g= 0.
“Easy” to understand, e.g. 2-parabolicity is recurrence. A Cayley graph is

d-parabolic if and only if it has polynomial growth of degree � d .

In general, dpar = inffd j d-parabolicg belongs to [disop;dgr ] where disop is
the isoperimetric dimension (see later) and dgr the minimal polynomial degree
growth of balls.
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What is `
p-cohomology?

In degree 1, the `p-cohomology of a graph G = (V ;E) is defined via
incidence operators between vertices and edges. Take E � V �V symmetric,
and let

∇ : fV ! Rg ! fE ! Rg
f 7! ∇f (x ;y) = f (y)� f (x)

In graphs of bounded valency, ∇ : `p(V )! `p(E) is a bounded operator.

The space of p-Dirichlet functions is Dp(G) = ff : V ! R j ∇f 2 `p(E)g.

It is endowed with a semi-norm kfkDp = k∇fk`p . (“semi-” ! constant
functions).
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What is `
p-cohomology?

∇ : fV ! Rg ! fE ! Rg
f 7! ∇f (x ;y) = f (y)� f (x)

kfkDp = k∇fk`p

Definition

The reduced `p-cohomology in degree 1 of a graph is

`pH1(G) =
Im∇\ `p(E)

∇`p(V )
`p =

Dp(G)

`p(V )+ cst
Dp

Theorem (Élek 1998, Pansu ?)

Fix a bound on the geometry (valency, curvature and injectivity radius). Then
the [reduced] `p-cohomology [in degree 1] is an invariant of quasi-isometry.
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A simple (yet important) example.

`pHp(G) = Dp(G)=`p(V )+R
Dp(G)

Example:

v v v v v v v v

v v v v v v v vgn: 0 0 1 n�1
n

2
n

1
n 00

g: 0 0 1 1 1 1 1 1

gn finitely supported so 2 `p(V ) for any p.

∇(g�gn) takes n times the value 1=n
=) kg�gnkDp = (n=np)1=p = n�1=p0

.
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A simple (yet important) example.

`pHp(G) = Dp(G)=`p(V )+R
Dp(G)

Example:

v v v v v v v v

v v v v v v v vgn: 0 0 1 n�1
n

2
n

1
n 00

g: 0 0 1 1 1 1 1 1

=) kg�gnkDp = (n=np)1=p = n�1=p0

.

Then gn
Dp

! g if p > 1. Thus 81 < p < ∞; [g] = 0 2 `pH1(G).
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A simple (yet important) example.

`pHp(G) = Dp(G)=`p(V )+R
Dp(G)

Example:

v v v v v v v v

v v v v v v v vgn: 0 0 1 n�1
n

2
n

1
n 00

g: 0 0 1 1 1 1 1 1

In fact `pH1(G) = f0g if p 2]1;∞[ and `1H1
(G)' R.

Remark: If p < q, the map `pH1(G)
Id
! `qH1(G) is not always injective...
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Ends

`1H1
(G) is intimately related to the ends of a graph.

Definition (Freudenthal, 193?)

An end of a graph � = (V ;E) is a function from finite subsets of V to infinite
ones, such that
� ξ(F) is an infinite connected component of F c;
� 8F ;F 0 � V (finite), ξ(F)\ξ(F 0) 6=?.

Examples:

A finite graph has 0 ends.

The infinite grid (a Cayley graph of Z2) has 1 end.

The infinite line (a Cayley graph of Z) has 2 ends.

Regular trees of even valency � 3 (Cayley graphs of free groups) have ∞

many ends.
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Ends
Lemma
The number of ends is a quasi-isometry invariant.

Theorem (Hopf, 1944)

The number of ends of a Cayley graph is 0, 1, 2 or ∞.

Idea: 3 ends =) ∞ ends

Theorem (Stallings, 1971)

[The Cayley graph of] a group has 2 ends iff it contains Z as a finite index
subgroup. It has ∞ many ends iff it is a “non-trivial” amalgamated product or
HNN extension.
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Ends and `
1H

1

`1H1
(G) = D1(G)=`1(V )+R

D1(G)

Lemma (“well-known”)

If G has finitely many ends, `1H1
(G)�= Rends(G)�1.

Preliminary claim: D1(G)� `∞(V )...?
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Ends and `
1H

1

`1H1
(G) = D1(G)=`1(V )+R

D1(G)

Lemma (“well-known”)

If G has finitely many ends, `1H1
(G)�= Rends(G)�1.

Preliminary claim: D1(G)� `∞(V )...?

Hint: f (y)� f (x) = ∑e2P ∇f (e) for P a path from x to y .
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Ends and `
1H

1

`1H1
(G) = D1(G)=`1(V )+R

D1(G)

Lemma (“well-known”)

If G has finitely many ends, `1H1
(G)�= Rends(G)�1.

jf (y)� f (x)j=
��� ∑

e2P
∇f (e)

���� k∇fk`1(E):

Shows more: the `1 norm of ∇f tends to 0 outside larger and large balls.

On the [infinite] connected components of Bc
n (Bn = balls centred at some

vertex), f becomes uniformly constant as n ! ∞.
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Ends and `
1H

1

`1H1
(G) = D1(G)=`1(V )+R

D1(G)

Lemma (“well-known”)

If G has finitely many ends, `1H1
(G)�= Rends(G)�1.

jf (y)� f (x)j=
��� ∑

e2P
∇f (e)

���� k∇fk`1(E):

Shows more: the `1 norm of ∇f tends to 0 outside larger and large balls.

On the [infinite] connected components of Bc
n (Bn = balls centred at some

vertex), f becomes uniformly constant as n ! ∞.

Thence, one defines a value of f 2 D1(G) on each end:

βf (ξ) := lim
n!∞

f (xn) where xn 2 ξ(Bn)
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Ends and `
1H

1

`1H1
(G) = D1(G)=`1(V )+R

D1(G)

Lemma (“well-known”)

If G has finitely many ends, `1H1
(G)�= Rends(G)�1.

jf (y)� f (x)j=
��� ∑

e2P
∇f (e)

���� k∇fk`1(E):

Boundary value of f 2 D1(G):

βf (ξ) := lim
n!∞

f (xn) where xn 2 ξ(Bn)

β is linear and continuous on D1(G).

Also: `1(V )� Kerβ

=) β sends `1(V )+ cst
D1(G)

to constant functions.
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Ends and `
1H

1

`1H1
(G) = D1(G)=`1(V )+R

D1(G)

Lemma (“well-known”)

If G has finitely many ends, `1H1
(G)�= Rends(G)�1.

We have a [linear & continuous] map β which associates to g 2 D1(G) a
function on the ends.

`1(V )+R
D1(G)

is sent to constant functions.

Remains to show that if βg is constant, then g 2 `1(V )+R
D1(G)

.
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Truncation Lemma 1
Definition

Say g : V !R takes only one value at infinity if there is a K 2R so that for any
ε > 0 one can find a Fε � V finite so that

g(F c
ε )�]K � ε;K + ε[:

Lemma (“maximum principle revisited”)

If g 2 Dp(G) takes only one value at infinity then [g] = 0 2 `pH1(G).

Proof: WLOG K = 0. Define gε as

gε(x) =

�
g(x) if g(x)< ε

εg(x)=jg(x)j if g(x)� ε

fε = g�gε is finitely supported, so 2 `p(V ) for any p.

kg� fεkDp = k∇gεk`p(E) is pointwise bouded by ∇g and tends pointwise to
0; so tends to 0. �
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Aim ...

... to describe `pH1 as an ideal boundary.

`1H1 is related to the ends [“well-known”].

[Bourdon & Pajot 2003]: In the hyperbolic case, there a strong link between
`p-cohomology in degree 1 and some [Besov] space of functions on the visual
boundary; also pc = inffp j `pH1 6= 0g is a lower bound on the conformal
dimension.

A natural idea, is to try to look at the “values” of this function on the
“Poisson boundary”.
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Questions and answers

Question (Gromov 1992)

If G is the Cayley graph of an amenable group is `pH1(G) = f0g for any p 2
]1;∞[? [In fact, in all degrees]

Theorem (Gromov 1992, ...)

If G is the Cayley graph of a virtually nilpotent group then `pH1(G) = f0g for
any p 2]1;∞[.

Holds for any group with [virtually] infinite center. [Tessera 2009] show this
also holds for polycyclic groups and some more.
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Isoperimetric profiles

Definition

Let d 2 Z�1. A graph G satisfies a d-dimensional isoperimetric profiles (noted
ISd ) if 9K > 0 such that, 8F � V finite,

jF j1�
1
d � K j∂F j

It has a strong isoperimetric profile (noted ISω) if 9K > 0 such that, 8F � V
finite, jF j � K j∂F j

Examples: Cayley graphs of Zd satisfy ISd .

A group is amenable iff its Cayley graph does not satisfy ISω. (Restatement
of Følner)
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Isoperimetric profiles

Satisfying ISα (for α 2 Z�1[fωg) is invariant under quasi-isometries.

Hyperbolic =) ISω =) ISd ;8d .

But ISd ;8d 6=) ISω. For example, Cayley graphs of Z2
oαZ where

α(1) =
�

2 1
1 1

�
.

Theorem (Varopoulos 1985 + Gromov 1981 + Wolf 1968)

� has polynomial growth of degree � d () Cay(�;S) does not have ISd+1.

=) groups which are not virtually nilpotent have ISd for all d .
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Harmonic functions

Let P(n)
x be the measure defined by P(n)

x (y) = the probability that a simple
random walker starting at x ends up in y after n steps.

This gives a kernel: P(n)g(x) :=
R

g(y)dP(n)
x (y).

A function g : V ! R is harmonic if P(1)g = g (mean value property).

H (G) :=space of harmonic functions.
Hb(G) := H (G)\ `∞(V ) =space of bounded harmonic functions.
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Boundary values

Theorem (G., 2013)

Assume G satisfies ISd . Let 1 � p < d=2. There is a linear map π :
[

1�p<d=2
Dp(G)! H (G) such that

if g 2 Dp(G), then π(g) 2 Dq(G) for all q >
dp

d �2p
.

if g 2 Dp(G)\ `∞(V ), then π(g) 2 `∞(V ).

[g] = 0 2 `pH1(G) () π(g) is a constant function
() g takes only one value at ∞.

This extends a result of Lohoué (1990) which requires ISω.
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Truncation Lemma 2

Lemma (Holopainen & Soardi 1994)

Assume g 2 Dp(G) is such that [g] 6= 0 2 `pH1(G). Let gK be the function with
values truncated in [�K ;K ]. Then for some K0 and any K > K0, [gK ] 6= 0 2
`pH1(G).

Proof goes along the same lines as Truncation Lemma 1.

Corollary

To show `pH1(G) = f0g, it suffices to show [g] = 0 for any g 2 Dp(G)\`∞(V ).
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Corollaries

Theorem (G., 2013)

Assume G satisfies ISd . Let 1 � p < d=2. There is a linear map π :
[

1�p<d=2
Dp(G)! H (G) such that

if g 2 Dp(G), then π(g) 2 Dq(G) for all q >
dp

d �2p
.

if g 2 Dp(G)\ `∞(V ), then π(g) 2 `∞(V ).

[g] = 0 2 `pH1(G) () π(g) is a constant function
() g takes only one value at ∞.

Corollary 1

If G satisfies ISd and Hb(G) = f0g, then `pH1(G) = f0g for all p 2 [1; d
2 [.

Indeed, π(g) = 0, 8g 2 Dp(G)\ `∞(V ), so Theorem gives [g] = 0.
Truncation Lemma 2 allows to conclude.
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Corollaries

Theorem (G., 2013)

Assume G satisfies ISd . Let 1 � p < d=2. There is a linear map π :
[

1�p<d=2
Dp(G)! H (G) such that

if g 2 Dp(G), then π(g) 2 Dq(G) for all q >
dp

d �2p
.

if g 2 Dp(G)\ `∞(V ), then π(g) 2 `∞(V ).

[g] = 0 2 `pH1(G) () π(g) is a constant function
() g takes only one value at ∞.

Corollary 2

If G is the Cayley graph of a group � which is not virtually-Z and 1� p < q < ∞.
Then the identity map `pH1(G)! `qH1(G) is injective.

[Cheeger-Gromov 1992] show `2H1
(G) = f0g for amenable groups

=) for amenable groups, `pH1(G) = f0g for all 1 < p � 2.
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Corollaries

Theorem (G., 2013)

Assume G satisfies ISd . Let 1 � p < d=2. There is a linear map π :
[

1�p<d=2
Dp(G)! H (G) such that

if g 2 Dp(G), then π(g) 2 Dq(G) for all q >
dp

d �2p
.

if g 2 Dp(G)\ `∞(V ), then π(g) 2 `∞(V ).

[g] = 0 2 `pH1(G) () π(g) is a constant function
() g takes only one value at ∞.

Corollary 3

If G has ISd and 1 � p < d=2, then
� Hb(G)\Dp(G) = fconstantsg =) 8q < dp

d+2p ; `
pH1(G) = f0g:

� `pH1(G) = f0g =) H (G)\Dp(G) = fconstantsg

This uses that π is the identity on harmonic functions.
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Corollaries

Theorem (G., 2013)

Assume G satisfies ISd . Let 1 � p < d=2. There is a linear map π :
[

1�p<d=2
Dp(G)! H (G) such that

if g 2 Dp(G), then π(g) 2 Dq(G) for all q >
dp

d �2p
.

if g 2 Dp(G)\ `∞(V ), then π(g) 2 `∞(V ).

[g] = 0 2 `pH1(G) () π(g) is a constant function
() g takes only one value at ∞.

Corollary 4

Assume G0 �G is a connected spanning subgraph of G so that G0 has ISd and
`pH1(G0) = f0g for 1 � p < d=2. `pH1(G) = f0g.

If g 2 Dq(G) then g 2 Dq(G0). This implies g takes only one value at ∞ as
seen on G0. But this is also the case on G.
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Corollaries

Corollary 4

Assume G0 �G is a connected spanning subgraph of G so that G0 has ISd and
`pH1(G0) = f0g for 1 � p < d=2. `pH1(G) = f0g.

Corollary 5

Let L 6= f�g and has at most two ends and H is infinite and has most two ends.
Then the lamplighter L oH has no harmonic function with gradient in `p (p < ∞).

[Thomassen 1978] shows that up to a quasi-isometry (actually bi-Lipschitz
map of constant 6) both L and H contain a connected spanning subgraph
which is a line, half-line or cycle. Hence they contain a of G0 = H 0 oL0 where
H 0 = Cn;N or Z and L0 = N or Z. This G0 has Hb(G0) = f0g and ISd for all d .

! These graphs have lots of bounded harmonic functions ( =) gradient in `∞).

Any Cayley graph has harmonic functions with gradient in `∞ (= Lipschitz).
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Corollaries

Corollary 4

Assume G0 �G is a connected spanning subgraph of G so that G0 has ISd and
`pH1(G0) = f0g for 1 � p < d=2. `pH1(G) = f0g.

This can also be interpreted as a “forbidden subgraph” result: if
`pH1(G) 6= f0g then there are no spanning connected subgraphs G0 with
Hb(G0) = fconstantsg and ISd (for some d > 2p).

e.g. no spanning Zd for d > 2p... Recall: [Thomassen 1978] very often there
is a spanning line!
Corollary 6

Assume G has ISd and `pH1(G) 6= f0g for 1 � p < d=2. Then some part of
the Poisson boundary is quasi-isometry invariant

Both ISd and `pH1 are QI-invariant, so always get a non-trivial bounded
harmonic function by looking at π(g) where [g] 6= 0 2 `pH1 and g bounded.
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The proof

Theorem (G., 2013)

Assume G satisfies ISd . Let 1 � p < d=2. There is a linear map π :
[

1�p<d=2
Dp(G)! H (G) such that

if g 2 Dp(G), then π(g) 2 Dq(G) for all q >
dp

d �2p
.

if g 2 Dp(G)\ `∞(V ), then π(g) 2 `∞(V ).

[g] = 0 2 `pH1(G) () π(g) is a constant function
() g takes only one value at ∞.

π is naively defined: π(g) = lim
n!∞

Png.

The “difficult” parts are:
� π is [well-]defined.
� π(g) is a constant implies g takes only one value at ∞.
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π defined, take one

P(n)g(x) Cauchy? ! P(n)g(x)�P(m)g(x) =
R

gdP(n)
x �

R
gdP(m)

x .

Problem/Idea ?
R

gdξ�
R

gdφ = hg j ξ�φi
=???
= h∇g j??i
� k∇gk`pk??k`p0
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Duality

∇� the adjoint of ∇:

∇ : fE ! Rg ! fV ! Rg
f 7! ∇f (x) = ∑y�x f (y ;x)�∑y�x f (x ;y)

Note: �= ∇�∇ then �g = 0 () (I�P)g = 0.

Definition

ξ;φ finitely supported probability measures. A transport pattern from ξ to φ is a
finitely supported function τξ;φ : E ! R so that ∇�τξ;φ = φ�ξ.
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π defined, take two

P(n)g(x) Cauchy? ! P(n)g(x)�P(m)g(x) =
R

gdP(n)
x �

R
gdP(m)

x .

Problem/Idea ?
R

gdξ�
R

gdφ = hg j ξ�φi
= hg j ∇�τφ;ξi
= h∇g j τφ;ξi

j � j � k∇gk`pkτφ;ξk`p0
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π defined, take two

P(n)g(x) Cauchy? ! P(n)g(x)�P(m)g(x) =
R

gdP(n)
x �

R
gdP(m)

x .

Problem/Idea ?

P(m+k)g(x)�P(n)g(x) = hg j P(m+k)
x �P(m)

x i
= hg j ∇�τ

P(m)
x ;P(m+k)

x
i

= h∇g j τ
P(m)

x ;P(m+k)
x

i

j � j � k∇gk`pkτ
P(m)

x ;P(m+k)
x

k`p0

How to define τ
P(m)

x ;P(m+k)
x

?

A.Gournay (TU Dresden) `pH1 & harmonic functions 2015/05/21 22 / 30



π defined, take two

P(n)g(x) Cauchy? ! P(n)g(x)�P(m)g(x) =
R

gdP(n)
x �

R
gdP(m)

x .

Problem/Idea ?

P(m+k)g(x)�P(n)g(x) = hg j P(m+k)
x �P(m)

x i
= hg j ∇�τ

P(m)
x ;P(m+k)

x
i

= h∇g j τ
P(m)

x ;P(m+k)
x

i

j � j � k∇gk`pkτ
P(m)

x ;P(m+k)
x

k`p0

How to define τ
P(m)

x ;P(m+k)
x

?

∇� is linear so (a possible choice is):

τ
P(m)

x ;P(m+k)
x

=
k�1

∑
i=0

τ
P(m+i)

x ;P(m++i+1)
x
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Simple but inefficient...

How to define τ
P(m)

x ;P(m+1)
x

?

There is a very natural transport pattern:

take a random step!

Then kτ
P(m)

x ;P(m+1)
x

k`p0 � KkP(m)
x k`p0 (where K depends on the valency).
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Transport: to infinity and beyond!

jP(m+k)g(x)�P(n)g(x)j � k∇gk`pkτ
P(m)

x ;P(m+k)
x

k`p0 � k∇gk`p

m+k�1

∑
i=m

kP(i)
x k`p0

So it suffices to check that ∑n�0 P(n)
x is in `p0

(V ).

Theorem (Varopoulos 1985)

If G has ISd , then for some K > 0, kP(n)
x k`∞(V) � Kn�d=2.

Thus

kP(n)
x kq

`q(V) � kP(n)
x kq�1

`∞(V)kP(n)
x k`1(V) � K 0n�d(q�1)=2

and ∑P(n) converges in `q if q0 < d=2.
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π(g) =cst =) constant at ∞

Want to prove:
π(g) is a constant function =) g is constant at infinity.

WLOG the constant π(g) is 0.

Will prove:
8ε > 0, 9nε such that x =2 B3nε

=) jg(x)j< K ε.

Make a well-chosen splitting of the scalar product:

P(n)g(x)�g(x) = h∇g j τ
δx ;P

(n)
x
i
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π(g) =cst =) constant at ∞

from π(g)� 0, to prove: for some K > 0
8ε > 0, 9nε such that x =2 B3nε

=) jg(x)j< K ε.

Given ε > 0, define nε to be so that
� k∇gkBc

nε
< ε

� sup
x2V

∑i�nε
kP(n)

x k`p0 < ε

P(n)g(x)�g(x) = h∇g j τ
δx ;P

(n)
x
i

= h∇g j τ
δx ;P

(n)
x
ijBnε

+ h∇g j τ
δx ;P

(n)
x
ijBc

nε

2nd term: ∇g is small, and there is an absolute bound on τ: ∑i�0 kP(i)k

1st term: ∇g is not small, but the τ will be small:
can replace τ

δx ;P
(n)
x

by τ
P(nε);P(n)

x
because it takes at least nε steps to go

from x to Bnε
.
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π(g) =cst =) constant at ∞

from π(g)� 0, to prove: for some K > 0
8ε > 0, 9nε such that x =2 B3nε

=) jg(x)j< K ε.

Given ε > 0, define nε to be so that
� k∇gkBc

nε
< ε

� sup
x2V

∑i�nε
kP(n)

x k`p0 < ε

Massage 2nd term:

jP(n)g(x)�g(x)j � jh∇g j τ
δx ;P

(n)
x
ijBnε

j+ jh∇g j τ
δx ;P

(n)
x
ijBc

nε
j

� jh∇g j τ
δx ;P

(n)
x
ijBnε

j+k∇gk`p(Bc
nε
)kτ

δx ;P
(n)
x
k`p0

(Bc
nε
)

� jh∇g j τ
δx ;P

(n)
x
ijBnε

j+ ε K1 ∑i�0 kP(i)
x k`p0

� jh∇g j τ
δx ;P

(n)
x
ijBnε

j+ ε K2
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π(g) =cst =) constant at ∞

from π(g)� 0, to prove: for some K > 0
8ε > 0, 9nε such that x =2 B3nε

=) jg(x)j< K ε.

Given ε > 0, define nε to be so that
� k∇gkBc

nε
< ε

� sup
x2V

∑i�nε
kP(n)

x k`p0 < ε

Massage 1st term:

jP(n)g(x)�g(x)j � jh∇g j τ
δx ;P

(n)
x
ijBnε

j +εK2

� jh∇g j τ
P(nε)

x ;P(n)
x
ijBnε

j +εK2

� k∇gk`pkτ
P(nε)

x ;P(n)
x
k`p0

(Bnε )
+εK2

� k∇gk`p ∑i�nε
kP(i)

x k`p0 +εK2

� k∇gk`p ε +εK2
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π(g) =cst =) constant at ∞

from π(g)� 0, to prove: for some K > 0
8ε > 0, 9nε such that x =2 B3nε

=) jg(x)j< K ε.

Given ε > 0, define nε to be so that
� k∇gkBc

nε
< ε

� sup
x2V

∑i�nε
kP(n)

x k`p0 < ε

Up to now: 8x =2 B3nε
,

jP(n)g(x)�g(x)j � K3ε

Letting n ! ∞:
jg(x)j � K3ε

as claimed.

A.Gournay (TU Dresden) `pH1 & harmonic functions 2015/05/21 29 / 30



Some questions

Q1: Is there an amenable group with a non-constant (bounded or not)
harmonic functions whose gradient is in c0?

Q2: If G is the Cayley graph of an amenable group (with
Hb(G) 6= fconstantsg, what is the maximal d so that G has a connected
spanning subgraph G0 with ISd and Hb(G0) = fconstantsg?

Q3.a: Is there an explicit and more efficient transport pattern from δx to P(n)
x ?

Q3.b: In an amenable Cayley graph, is there a Følner sequence and an
explicit (not too unefficient) transport pattern from δe to 1lFn ?

Q.4: For two infinite connected sets A and B let
nA;B(`) = number of mutually disjoint paths of length � ` from A to B:

Estimates for the growth (in `) of nA;B(`) in an amenable Cayley graph (of
exponential growth)
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