The reduced ℓ^{p}-cohomology in degree 1 and harmonic functions

Antoine Gournay

University of Warwick, May $21^{\text {st }} 2015$

Why ℓ^{p}-cohomology?

A ball packing in a manifold M is a [countable] set of closed balls in M so that any two balls intersect at most in a point. The incidence graph of a ball packing is a graph whose vertices are the balls and there is an edge if the ball touches.

Theorem (Koebe 1936)

A finite graph can be packed in \mathbb{R}^{2} if and only if it is planar.

Quasi-round packing: replace balls by generic domains, require there is a K so that the ration "outer radius / inner radius" is $\leq K$.

There is no obstruction for quasi-round packings of finite graphs in \mathbb{R}^{3}.

Why ℓ^{p}-cohomology?

Theorem (Koebe 1936)

A finite graph can be packed in \mathbb{R}^{2} if and only if it is planar.
There is no obstruction for quasi-round packings of finite graphs in \mathbb{R}^{3}.

Theorem (Benjamini \& Schramm 2009)

If an infinite graph can be quasi-roundly packed in \mathbb{R}^{d} either it is d-parabolic or it has non-trivial reduced ℓ^{d}-cohomology in degree 1.
d-parabolic $\Longleftrightarrow \inf \left\{\|\nabla f\|_{\ell^{p}} \mid f\right.$ has finite support and $\left.f\left(x_{0}\right)=1\right\}=0$.
"Easy" to understand, e.g. 2-parabolicity is recurrence. A Cayley graph is d-parabolic if and only if it has polynomial growth of degree $\leq d$.

In general, $d_{p a r}=\inf \{d \mid d$-parabolic $\}$ belongs to $\left[d_{\text {isop }}, d_{g r}\right]$ where $d_{\text {isop }}$ is the isoperimetric dimension (see later) and $d_{g r}$ the minimal polynomial degree growth of balls.

What is ℓ^{p}-cohomology?

In degree 1 , the ℓ^{p}-cohomology of a graph $G=(V, E)$ is defined via incidence operators between vertices and edges. Take $E \subset V \times V$ symmetric, and let

$$
\begin{array}{cc}
\nabla:\{V \rightarrow \mathbb{R}\} & \rightarrow\{E \rightarrow \mathbb{R}\} \\
f & \mapsto \nabla f(x, y)=f(y)-f(x)
\end{array}
$$

In graphs of bounded valency, $\nabla: \ell^{P}(V) \rightarrow \ell^{P}(E)$ is a bounded operator.

The space of p-Dirichlet functions is $D^{p}(G)=\left\{f: V \rightarrow \mathbb{R} \mid \nabla f \in \ell^{p}(E)\right\}$.
It is endowed with a semi-norm $\|f\|_{D^{p}}=\|\nabla f\|_{\ell^{p}}$. ("semi-" \rightarrow constant functions).

What is ℓ^{p}-cohomology?

$$
\begin{array}{ccc}
\nabla:\{V \rightarrow \mathbb{R}\} & \rightarrow\{E \rightarrow \mathbb{R}\} & \|f\|_{\mathrm{p}^{p}}=\|\nabla f\|_{\ell^{p}}
\end{array}
$$

Definition

The reduced ℓ^{p}-cohomology in degree 1 of a graph is

$$
{\underline{\ell^{p}} H^{1}}^{(G)}=\frac{\operatorname{Im} \nabla \cap \ell^{\rho}(E)}{\overline{\nabla \ell^{p}(V)^{\rho}}}=\frac{\mathrm{D}^{p}(G)}{\overline{\ell^{p}(V)+\mathrm{cst}^{p}}}
$$

Theorem (Élek 1998, Pansu \varnothing)

Fix a bound on the geometry (valency, curvature and injectivity radius). Then the [reduced] ℓ^{p}-cohomology [in degree 1] is an invariant of quasi-isometry.

A simple (yet important) example.

Example:

g_{n} finitely supported so $\in \ell^{p}(V)$ for any p.
$\nabla\left(g-g_{n}\right)$ takes n times the value $1 / n$

$$
\Longrightarrow\left\|g-g_{n}\right\|_{D^{p}}=\left(n / n^{p}\right)^{1 / p}=n^{-1 / p^{\prime}}
$$

A simple (yet important) example.

Example:

$\Longrightarrow\left\|g-g_{n}\right\|_{\mathrm{D}^{p}}=\left(n / n^{p}\right)^{1 / p}=n^{-1 / p^{\prime}}$.
Then $g_{n} \xrightarrow{D^{p}} g$ if $p>1$. Thus $\forall 1<p<\infty,[g]=0 \in \underline{\ell^{p} H^{1}}(G)$.

A simple (yet important) example.

Example:

Remark: If $p<q$, the map $\underline{\ell^{p}} H^{1}(G) \xrightarrow{\text { Id }} \underline{\ell^{q}} H^{1}(G)$ is not always injective...

Ends

$\underline{\ell^{1} H^{1}}(G)$ is intimately related to the ends of a graph.

Definition (Freudenthal, 193?)

An end of a graph $\Gamma=(V, E)$ is a function from finite subsets of V to infinite ones, such that

- $\xi(F)$ is an infinite connected component of F^{c};
- $\forall F, F^{\prime} \subset V$ (finite), $\xi(F) \cap \xi\left(F^{\prime}\right) \neq \varnothing$.

Examples:

- A finite graph has 0 ends.
- The infinite grid (a Cayley graph of \mathbb{Z}^{2}) has 1 end.
- The infinite line (a Cayley graph of \mathbb{Z}) has 2 ends.
- Regular trees of even valency ≥ 3 (Cayley graphs of free groups) have ∞ many ends.

Ends

Lemma

The number of ends is a quasi-isometry invariant.

Theorem (Hopf, 1944)

The number of ends of a Cayley graph is $0,1,2$ or ∞.

Idea: 3 ends $\Longrightarrow \infty$ ends

Theorem (Stallings, 1971)
[The Cayley graph of] a group has 2 ends iff it contains \mathbb{Z} as a finite index subgroup. It has ∞ many ends iff it is a "non-trivial" amalgamated product or HNN extension.

Ends and $\underline{\ell}^{1} H^{1}$

Lemma ("well-known")

Preliminary claim: $\mathrm{D}^{1}(G) \subset \ell^{\infty}(V) \ldots$?

Ends and $\underline{\ell}^{1} H^{1}$

$$
\underline{\ell^{1} H^{1}}(G)=D^{1}(G) / \overline{\ell^{1}(V)+\mathbb{R}^{D^{1}}(G)}
$$

Lemma ("well-known")

If G has finitely many ends, $\underline{\ell^{1} H^{1}}(G) \cong \mathbb{R}^{\operatorname{ends}(G)-1}$.

Preliminary claim: $\mathrm{D}^{1}(G) \subset \ell^{\infty}(V) \ldots$?

Hint: $f(y)-f(x)=\sum_{e \in P} \nabla f(e)$ for P a path from x to y.

Ends and $\underline{\ell}^{1} H^{1}$

Lemma ("well-known")

If G has finitely many ends, $\underline{\ell^{1} H^{1}}(G) \cong \mathbb{R}^{\mathrm{ends}(G)-1}$.

$$
|f(y)-f(x)|=\left|\sum_{e \in P} \nabla f(e)\right| \leq\|\nabla f\|_{\ell^{1}(E)}
$$

Shows more: the ℓ^{1} norm of ∇f tends to 0 outside larger and large balls.

On the [infinite] connected components of B_{n}^{c} ($B_{n}=$ balls centred at some vertex), f becomes uniformly constant as $n \rightarrow \infty$.

Ends and $\underline{\ell}^{1} H^{1}$

$$
\underline{\left.\ell^{1} H^{1}(G)=D^{1}(G) / \overline{\ell^{1}(V)+\mathbb{R}^{D^{1}}(G)}, \underline{1}\right)}
$$

Lemma ("well-known")

If G has finitely many ends, $\underline{\ell^{1} H^{1}}(G) \cong \mathbb{R}^{\text {ends }(G)-1}$.

$$
|f(y)-f(x)|=\left|\sum_{e \in P} \nabla f(e)\right| \leq\|\nabla f\|_{\ell^{\prime}(E)} .
$$

Shows more: the ℓ^{1} norm of ∇f tends to 0 outside larger and large balls.
On the [infinite] connected components of $B_{n}^{\mathrm{c}}\left(B_{n}=\right.$ balls centred at some vertex), f becomes uniformly constant as $n \rightarrow \infty$.

Thence, one defines a value of $f \in D^{1}(G)$ on each end:

$$
\beta f(\xi):=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \quad \text { where } x_{n} \in \xi\left(B_{n}\right)
$$

Ends and $\underline{\ell}^{1} H^{1}$

$$
\underline{\ell^{1} H^{1}}(G)=D^{1}(G) / \overline{\ell^{1}(V)+\mathbb{R}^{\mathrm{D}}(G)}
$$

Lemma ("well-known")

If G has finitely many ends, $\underline{\ell^{1}} H^{1}(G) \cong \mathbb{R}^{\text {ends }(G)-1}$.

$$
|f(y)-f(x)|=\left|\sum_{e \in P} \nabla f(e)\right| \leq\|\nabla f\|_{\ell^{\prime}(E)} .
$$

Boundary value of $f \in \mathrm{D}^{1}(G)$:

$$
\beta f(\xi):=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \quad \text { where } x_{n} \in \xi\left(B_{n}\right)
$$

β is linear and continuous on $D^{1}(G)$.
Also: $\ell^{1}(V) \subset \operatorname{Ker} \beta$
$\Longrightarrow \beta$ sends $\overline{\ell^{1}(V)+\mathrm{cst}^{1}(G)}$ to constant functions.

Ends and $\underline{\ell}^{1} H^{1}$

$$
\underline{\left.\ell^{1} H^{1}(G)=D^{1}(G) / \overline{\ell^{1}(V)+\mathbb{R}^{D^{1}}(G)}, \underline{1}\right)}
$$

Lemma ("well-known")

If G has finitely many ends, $\underline{\ell^{1} H^{1}}(G) \cong \mathbb{R}^{\text {ends }(G)-1}$.
We have a [linear \& continuous] map β which associates to $g \in D^{1}(G)$ a function on the ends.
$\overline{\ell^{1}(V)+\mathbb{R}^{D^{1}(G)}}$ is sent to constant functions.

Remains to show that if βg is constant, then $g \in \overline{\ell^{1}(V)+\mathbb{R}^{D^{1}(G)}}$.

Truncation Lemma 1

Definition

Say $g: V \rightarrow \mathbb{R}$ takes only one value at infinity if there is a $K \in \mathbb{R}$ so that for any $\varepsilon>0$ one can find a $F_{\varepsilon} \subset V$ finite so that

$$
\left.g\left(F_{\varepsilon}^{\mathrm{c}}\right) \subset\right] K-\varepsilon, K+\varepsilon[.
$$

Lemma ("maximum principle revisited")

If $g \in D^{p}(G)$ takes only one value at infinity then $[g]=0 \in \underline{\ell^{p} H^{1}(G) \text {. }}$ Proof: WLOG $K=0$. Define g_{ε} as

$$
g_{\varepsilon}(x)= \begin{cases}g(x) & \text { if } g(x)<\varepsilon \\ \varepsilon g(x) /|g(x)| & \text { if } g(x) \geq \varepsilon\end{cases}
$$

$f_{\varepsilon}=g-g_{\varepsilon}$ is finitely supported, so $\in \ell^{p}(V)$ for any p.
$\left\|g-f_{\varepsilon}\right\|_{\mathrm{D}^{\rho}}=\left\|\nabla g_{\varepsilon}\right\|_{\ell^{\rho}(E)}$ is pointwise bouded by ∇g and tends pointwise to 0 ; so tends to 0 .

Aim ...

... to describe $\underline{\ell}^{p} \underline{H}^{1}$ as an ideal boundary.
$\underline{\ell}^{1} \underline{H}^{1}$ is related to the ends ["well-known"].
[Bourdon \& Pajot 2003]: In the hyperbolic case, there a strong link between ℓ^{p}-cohomology in degree 1 and some [Besov] space of functions on the visual boundary; also $p_{c}=\inf \left\{p \mid \underline{\ell}^{p} \underline{H}^{1} \neq 0\right\}$ is a lower bound on the conformal dimension.

A natural idea, is to try to look at the "values" of this function on the "Poisson boundary".

Questions and answers

Question (Gromov 1992)

If G is the Cayley graph of an amenable group is $\underline{\ell}^{p} H^{1}(G)=\{0\}$ for any $p \in$] $1, \infty$ [? [In fact, in all degrees]

Theorem (Gromov 1992, ...)

If G is the Cayley graph of a virtually nilpotent group then $\underline{\ell^{p}} \underline{H}^{1}(G)=\{0\}$ for any $p \in] 1, \infty[$.

Holds for any group with [virtually] infinite center. [Tessera 2009] show this also holds for polycyclic groups and some more.

Isoperimetric profiles

Definition

Let $d \in \mathbb{Z}_{\geq 1}$. A graph G satisfies a d-dimensional isoperimetric profiles (noted IS_{d}) if $\exists K>0$ such that, $\forall F \subset V$ finite,

$$
|F|^{1-\frac{1}{d}} \leq K|\partial F|
$$

It has a strong isoperimetric profile (noted IS_{ω}) if $\exists K>0$ such that, $\forall F \subset V$ finite, $|F| \leq K|\partial F|$

Examples: Cayley graphs of \mathbb{Z}^{d} satisfy IS_{d}.
A group is amenable iff its Cayley graph does not satisfy IS_{ω}. (Restatement of Følner)

Isoperimetric profiles

Satisfying $\operatorname{IS}_{\alpha}$ (for $\alpha \in \mathbb{Z}_{\geq 1} \cup\{\omega\}$) is invariant under quasi-isometries.

Hyperbolic $\Longrightarrow \mathrm{IS}_{\omega} \Longrightarrow \mathrm{IS}_{d}, \forall d$.

But $\mathrm{IS}_{d}, \forall d \nRightarrow \mathrm{IS}_{\omega}$. For example, Cayley graphs of $\mathbb{Z}^{2} \rtimes_{\alpha} \mathbb{Z}$ where $\alpha(1)=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.

Theorem (Varopoulos 1985 + Gromov 1981 + Wolf 1968)
Γ has polynomial growth of degree $\leq d \Longleftrightarrow \operatorname{Cay}(\Gamma, S)$ does not have IS_{d+1}.
\Longrightarrow groups which are not virtually nilpotent have IS_{d} for all d.

Harmonic functions

Let $P_{x}^{(n)}$ be the measure defined by $P_{x}^{(n)}(y)=$ the probability that a simple random walker starting at x ends up in y after n steps.

This gives a kernel: $P^{(n)} g(x):=\int g(y) \mathrm{d} P_{x}^{(n)}(y)$.

A function $g: V \rightarrow \mathbb{R}$ is harmonic if $P^{(1)} g=g$ (mean value property).
$\mathcal{H}(G):=$ space of harmonic functions.
$\mathcal{H}_{b}(G):=\mathcal{H}(G) \cap \ell^{\infty}(V)=$ space of bounded harmonic functions.

Boundary values

Theorem (G., 2013)

Assume G satisfies IS $_{d}$. Let $1 \leq p<d / 2$. There is a linear map π : $\underset{1 \leq p<d / 2}{\cup} \mathrm{D}^{p}(G) \rightarrow \mathcal{H}(G)$ such that

- if $g \in D^{p}(G)$, then $\pi(g) \in D^{q}(G)$ for all $q>\frac{d p}{d-2 p}$.
- if $g \in D^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g]=0 \in \underline{\ell^{p} H^{1}}(G) \Longleftrightarrow \pi(g)$ is a constant function
$\Longleftrightarrow g$ takes only one value at ∞.

This extends a result of Lohoué (1990) which requires IS_{ω}.

Truncation Lemma 2

Lemma (Holopainen \& Soardi 1994)

Assume $g \in \mathrm{D}^{p}(G)$ is such that $[g] \neq 0 \in \underline{\ell^{p} H^{1}}(G)$. Let g_{K} be the function with values truncated in $[-K, K]$. Then for some K_{0} and any $K>K_{0},\left[g_{K}\right] \neq 0 \in$ $\ell^{p} H^{1}(G)$.

Proof goes along the same lines as Truncation Lemma 1.

Corollary

To show $\underline{\ell^{p} H^{1}}(G)=\{0\}$, it suffices to show $[g]=0$ for any $g \in D^{p}(G) \cap \ell^{\infty}(V)$.

Corollaries

Theorem (G., 2013)

Assume G satisfies IS $_{d}$. Let $1 \leq p<d / 2$. There is a linear map π :
$\underset{p<d / 2}{\cup} \mathrm{D}^{p}(G) \rightarrow \mathcal{H}(G)$ such that

- if $g \in D^{p}(G)$, then $\pi(g) \in D^{q}(G)$ for all $q>\frac{d p}{d-2 p}$.
- if $g \in D^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g]=0 \in \underline{\ell}^{p} H^{1}(G) \Longleftrightarrow \pi(g)$ is a constant function
$\Longleftrightarrow g$ takes only one value at ∞.

Corollary 1

If G satisfies IS_{d} and $\mathcal{H}_{b}(G)=\{0\}$, then $\underline{\ell}^{p} H^{1}(G)=\{0\}$ for all $p \in\left[1, \frac{d}{2}[\right.$.
Indeed, $\pi(g)=0, \forall g \in \mathrm{D}^{p}(G) \cap \ell^{\infty}(V)$, so Theorem gives $[g]=0$.
Truncation Lemma 2 allows to conclude.

Corollaries

Theorem (G., 2013)

Assume G satisfies IS $_{d}$. Let $1 \leq p<d / 2$. There is a linear map π :
$\cup_{p<d / 2} \mathrm{D}^{p}(G) \rightarrow \mathcal{H}(G)$ such that $1 \leq p<d / 2$

- if $g \in D^{p}(G)$, then $\pi(g) \in D^{q}(G)$ for all $q>\frac{d p}{d-2 p}$.
- if $g \in \mathrm{D}^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g]=0 \in \underline{\ell}^{\rho} H^{1}(G) \Longleftrightarrow \pi(g)$ is a constant function
$\Longleftrightarrow g$ takes only one value at ∞.

Corollary 2

If G is the Cayley graph of a group Γ which is not virtually- \mathbb{Z} and $1 \leq p<q<\infty$. Then the identity map $\underline{\ell}^{p} H^{1}(G) \rightarrow \underline{\ell}^{q} \underline{H}^{1}(G)$ is injective.
[Cheeger-Gromov 1992] show $\underline{\ell}^{2} H^{1}(G)=\{0\}$ for amenable groups

Corollaries

Theorem (G., 2013)

Assume G satisfies IS $_{d}$. Let $1 \leq p<d / 2$. There is a linear map π :
$\cup \mathrm{D}^{p}(G) \rightarrow \mathcal{H}(G)$ such that
$1 \leq p<d / 2$

- if $g \in D^{p}(G)$, then $\pi(g) \in D^{q}(G)$ for all $q>\frac{d p}{d-2 p}$.
- if $g \in D^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g]=0 \in \underline{\ell}^{p} H^{1}(G) \Longleftrightarrow \pi(g)$ is a constant function
$\Longleftrightarrow g$ takes only one value at ∞.

Corollary 3

If G has IS_{d} and $1 \leq p<d / 2$, then

- $\mathcal{H}_{b}(G) \cap D^{p}(G)=\{$ constants $\} \Longrightarrow \forall q<\frac{d p}{d+2 p}, \ell^{p} H^{1}(G)=\{0\}$.
$\cdot \underline{\ell^{p}} H^{1}(G)=\{0\} \Longrightarrow \mathcal{H}(G) \cap D^{p}(G)=\{$ constants $\}$
This uses that π is the identity on harmonic functions.

Corollaries

Theorem (G., 2013)

Assume G satisfies IS_{d}. Let $1 \leq p<d / 2$. There is a linear map π :
$\underset{p<d / 2}{\cup} \mathrm{D}^{p}(G) \rightarrow \mathcal{H}(G)$ such that
$1 \leq p<d / 2$

- if $g \in D^{p}(G)$, then $\pi(g) \in D^{q}(G)$ for all $q>\frac{d p}{d-2 p}$.
- if $g \in D^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g]=0 \in \underline{\ell}^{p} H^{1}(G) \Longleftrightarrow \pi(g)$ is a constant function
$\Longleftrightarrow g$ takes only one value at ∞.

Corollary 4

Assume $G^{\prime} \subset G$ is a connected spanning subgraph of G so that G^{\prime} has IS_{d} and $\underline{\ell^{p} H^{1}}\left(G^{\prime}\right)=\{0\}$ for $1 \leq p<d / 2 \cdot \underline{\ell^{p} H^{1}}(G)=\{0\}$.

If $g \in D^{q}(G)$ then $g \in D^{q}\left(G^{\prime}\right)$. This implies g takes only one value at ∞ as seen on G^{\prime}. But this is also the case on G.

Corollaries

Corollary 4

Assume $G^{\prime} \subset G$ is a connected spanning subgraph of G so that G^{\prime} has IS_{d} and $\underline{\ell^{p} H^{1}}\left(G^{\prime}\right)=\{0\}$ for $1 \leq p<d / 2 \cdot \underline{\ell}^{p} H^{1}(G)=\{0\}$.

Corollary 5

Let $L \neq\{*\}$ and has at most two ends and H is infinite and has most two ends. Then the lamplighter L l H has no harmonic function with gradient in $\ell^{p}(p<\infty)$.
[Thomassen 1978] shows that up to a quasi-isometry (actually bi-Lipschitz map of constant 6) both L and H contain a connected spanning subgraph which is a line, half-line or cycle. Hence they contain a of $\left.G^{\prime}=H^{\prime}\right\} L^{\prime}$ where $H^{\prime}=C_{n}, \mathbb{N}$ or \mathbb{Z} and $L^{\prime}=\mathbb{N}$ or \mathbb{Z}. This G^{\prime} has $\mathcal{H}_{b}\left(G^{\prime}\right)=\{0\}$ and IS_{d} for all d.
! These graphs have lots of bounded harmonic functions (\Longrightarrow gradient in ℓ^{∞}).

Any Cayley graph has harmonic functions with gradient in ℓ^{∞} (= Lipschitz).

Corollaries

Corollary 4

Assume $G^{\prime} \subset G$ is a connected spanning subgraph of G so that G^{\prime} has IS_{d} and $\underline{\ell^{p} H^{1}}\left(G^{\prime}\right)=\{0\}$ for $1 \leq p<d / 2 \cdot \underline{\ell^{p} H^{1}}(G)=\{0\}$.

This can also be interpreted as a "forbidden subgraph" result: if $\underline{\ell}^{p} H^{1}(G) \neq\{0\}$ then there are no spanning connected subgraphs G^{\prime} with $\mathcal{H}_{b}\left(G^{\prime}\right)=\{$ constants $\}$ and IS $_{d}$ (for some $d>2 p$).
e.g. no spanning \mathbb{Z}^{d} for $d>2 p$... Recall: [Thomassen 1978] very often there is a spanning line!

Corollary 6

Assume G has IS_{d} and $\underline{\ell}^{p} H^{1}(G) \neq\{0\}$ for $1 \leq p<d / 2$. Then some part of the Poisson boundary is quasi-isometry invariant

Both IS_{d} and ${\underline{\ell^{P}} \underline{H}^{1} \text { are QI-invariant, so always get a non-trivial bounded }}^{\text {a }}$ harmonic function by looking at $\pi(g)$ where $[g] \neq 0 \in \underline{\ell}^{p} \mathcal{H}^{1}$ and g bounded.

The proof

Theorem (G., 2013)

Assume G satisfies IS $_{d}$. Let $1 \leq p<d / 2$. There is a linear map π :
$\cup_{p<d / 2} \mathrm{D}^{p}(G) \rightarrow \mathcal{H}(G)$ such that
$1 \leq p<d / 2$

- if $g \in D^{p}(G)$, then $\pi(g) \in D^{q}(G)$ for all $q>\frac{d p}{d-2 p}$.
- if $g \in D^{p}(G) \cap \ell^{\infty}(V)$, then $\pi(g) \in \ell^{\infty}(V)$.
- $[g]=0 \in \underline{\ell}^{p} H^{1}(G) \Longleftrightarrow \pi(g)$ is a constant function
$\Longleftrightarrow g$ takes only one value at ∞.
π is naively defined: $\pi(g)=\lim _{n \rightarrow \infty} P^{n} g$.
The "difficult" parts are:
- π is [well-]defined.
- $\pi(g)$ is a constant implies g takes only one value at ∞.

π defined, take one

$P^{(n)} g(x)$ Cauchy? $\rightarrow P^{(n)} g(x)-P^{(m)} g(x)=\int g \mathrm{~d} P_{x}^{(n)}-\int g \mathrm{~d} P_{x}^{(m)}$.

Problem/Idea?

$$
\begin{aligned}
\int g d \xi-\int g d \phi & =\langle g \mid \xi-\phi\rangle \\
& =? ? ? \\
& =\langle\nabla g \mid ? ?\rangle \\
& \leq\|\nabla g\|_{\ell^{p}}\|? ?\|_{\ell^{\prime}}
\end{aligned}
$$

Duality

∇^{*} the adjoint of ∇ :

$$
\begin{array}{cc}
\nabla:\{E \rightarrow \mathbb{R}\} & \rightarrow\{V \rightarrow \mathbb{R}\} \\
f & \mapsto \nabla f(x)=\sum_{y \sim x} f(y, x)-\sum_{y \sim x} f(x, y)
\end{array}
$$

Note: $\Delta=\nabla^{*} \nabla$ then $\Delta g=0 \Longleftrightarrow(I-P) g=0$.

Definition

ξ, ϕ finitely supported probability measures. A transport pattern from ξ to ϕ is a finitely supported function $\tau_{\xi, \phi}: E \rightarrow \mathbb{R}$ so that $\nabla^{*} \tau_{\xi, \phi}=\phi-\xi$.

π defined, take two

$P^{(n)} g(x)$ Cauchy $? \rightarrow P^{(n)} g(x)-P^{(m)} g(x)=\int g d P_{x}^{(n)}-\int g \mathrm{~d} P_{x}^{(m)}$.

Problem/Idea?

$$
\begin{aligned}
\int g d \xi-\int g d \phi & =\langle g \mid \xi-\phi\rangle \\
& =\left\langle g \mid \nabla^{*} \tau_{\phi, \xi}\right\rangle \\
& =\left\langle\nabla g \mid \tau_{\phi, \xi}\right\rangle \\
|\cdot| & \leq\|\nabla g\|\left\|_{\ell p}\right\| \tau_{\phi, \xi} \|_{\ell^{\prime}}
\end{aligned}
$$

π defined, take two

$P^{(n)} g(x)$ Cauchy $? \rightarrow P^{(n)} g(x)-P^{(m)} g(x)=\int g d P_{x}^{(n)}-\int g \mathrm{~d} P_{x}^{(m)}$.

Problem/Idea?

$$
\begin{aligned}
P^{(m+k)} g(x)-P^{(n)} g(x) & =\left\langle g \mid P_{x}^{(m+k)}-P_{x}^{(m)}\right\rangle \\
& =\langle g| \nabla \nabla^{*} \tau_{\left.P_{x}^{(m)}\left(P_{P}^{(m+k)}\right)\right\rangle} \\
& =\left\langle\nabla g \mid \tau_{\left.P^{(m)}, P_{(}^{(m+k)}\right\rangle}\right\rangle \\
|\cdot| & \leq\|\nabla\|\| \|_{\rho P} \| \tau_{P_{x}^{(m)}, P_{x}^{(m+k)} \|_{\ell^{\prime}}}
\end{aligned}
$$

How to define $\tau_{P_{x}^{(m)}, P_{x}^{(m+k)}}$?

π defined, take two

$P^{(n)} g(x)$ Cauchy $? \rightarrow P^{(n)} g(x)-P^{(m)} g(x)=\int g d P_{x}^{(n)}-\int g d P_{x}^{(m)}$.

Problem/Idea?

$$
\begin{aligned}
P^{(m+k)} g(x)-P^{(n)} g(x) & =\left\langle g \mid P_{x}^{(m+k)}-P_{x}^{(m)}\right\rangle \\
& =\left\langle g \mid \nabla^{*} \tau_{P_{x}^{(m)}, P_{x}^{(m+k)}}\right\rangle \\
& =\left\langle\nabla g \mid \tau_{\left.P_{x}^{(m)}, P_{x}^{(m+k)}\right\rangle}\right\rangle \\
|\cdot| & \leq\|\nabla g\|_{\ell \rho}\left\|\tau_{P_{x}^{(m)}, P_{x}^{(m+k)}}\right\|_{\ell^{\prime}}
\end{aligned}
$$

How to define $\tau_{P_{x}^{(m)}, P_{x}^{(m+k)}}$?
∇^{*} is linear so (a possible choice is):

$$
\tau_{P_{x}^{(m)}, P_{x}^{(m+k)}}=\sum_{i=0}^{k-1} \tau_{P_{x}^{(m+i)}, P_{x}^{(m++i+1)}}
$$

Simple but inefficient...

How to define $\tau_{P_{x}^{(m)}, P_{x}^{(m+1)}}$?

There is a very natural transport pattern:
take a random step!

Then $\left\|\tau_{P_{x}^{(m)}, P_{x}^{(m+1)}}\right\|_{\ell \rho^{\prime}} \leq K\left\|P_{x}^{(m)}\right\|_{\ell \rho^{\prime}}$ (where K depends on the valency).

Transport: to infinity and beyond!

$$
\left|P^{(m+k)} g(x)-P^{(n)} g(x)\right| \leq\|\nabla g\|\left\|_{\ell \rho}\right\| \tau_{P_{x}^{(m)}, P_{x}^{(m+k)}}\left\|_{\ell^{\mu}} \leq\right\| \nabla g\left\|_{\ell \rho} \sum_{i=m}^{m+k-1}\right\| P_{x}^{(i)} \|_{\ell^{\rho}}
$$

So it suffices to check that $\sum_{n \geq 0} P_{x}^{(n)}$ is in $\ell^{\rho^{\prime}}(V)$.

Theorem (Varopoulos 1985)

If G has IS_{d}, then for some $K>0,\left\|P_{x}^{(n)}\right\|_{\ell^{\infty}(V)} \leq K n^{-d / 2}$.
Thus

$$
\left\|P_{x}^{(n)}\right\|_{\ell^{q}(V)}^{q} \leq\left\|P_{x}^{(n)}\right\|_{\ell^{\infty}(V)}^{q-1}\left\|P_{x}^{(n)}\right\|_{\ell^{1}(V)} \leq K^{\prime} n^{-d(q-1) / 2}
$$

and $\sum P^{(n)}$ converges in ℓ^{q} if $q^{\prime}<d / 2$.
$\pi(g)=$ cst \Longrightarrow constant at ∞

Want to prove:
$\pi(g)$ is a constant function $\Longrightarrow g$ is constant at infinity.

WLOG the constant $\pi(g)$ is 0 .

Will prove:

$$
\forall \varepsilon>0, \exists n_{\varepsilon} \text { such that } x \notin B_{3 n_{\varepsilon}} \Longrightarrow|g(x)|<K \varepsilon
$$

Make a well-chosen splitting of the scalar product:

$$
P^{(n)} g(x)-g(x)=\left\langle\nabla g \mid \tau_{\delta_{x}, P_{x}^{(n)}}\right\rangle
$$

$\pi(g)=$ cst \Longrightarrow constant at ∞
from $\pi(g) \equiv 0$, to prove: for some $K>0$

$$
\forall \varepsilon>0, \exists n_{\varepsilon} \text { such that } x \notin B_{3 n_{\varepsilon}} \Longrightarrow|g(x)|<K \varepsilon
$$

Given $\varepsilon>0$, define n_{ε} to be so that

- $\|\nabla g\|_{B_{n_{\varepsilon}}^{c}}<\varepsilon$
. $\sup _{x \in V} \sum_{i \geq n_{\varepsilon}}\left\|P_{X}^{(n)}\right\|_{\ell p^{\prime}}<\varepsilon$

$$
\begin{aligned}
P^{(n)} g(x)-g(x) & =\left\langle\nabla g \mid \tau_{\delta_{x}, P_{x}^{(n)}}\right\rangle \\
& =\left\langle\nabla g \mid \tau_{\delta_{x}, P_{x}^{(n)}}\right\rangle_{B_{B_{\varepsilon}}}+\left\langle\nabla g \mid \tau_{\delta_{x}, P_{x}^{(n)}}\right\rangle_{\mid B_{n_{\varepsilon}}^{c}}
\end{aligned}
$$

$2^{\text {nd }}$ term: ∇g is small, and there is an absolute bound on $\tau: \sum_{i \geq 0}\left\|P^{(i)}\right\|$ $1^{\text {st }}$ term: ∇g is not small, but the τ will be small:
can replace $\tau_{\delta_{x}, P_{x}^{(n)}}$ by $\tau_{P_{\left(n_{\varepsilon}\right), P_{x}^{(n)}}}$ because it takes at least n_{ε} steps to go from x to $B_{n_{\varepsilon}}$.
$\pi(g)=$ cst \Longrightarrow constant at ∞
from $\pi(g) \equiv 0$, to prove: for some $K>0$

$$
\forall \varepsilon>0, \exists n_{\varepsilon} \text { such that } x \notin B_{3 n_{\varepsilon}} \Longrightarrow|g(x)|<K \varepsilon
$$

Given $\varepsilon>0$, define n_{ε} to be so that

- $\|\nabla g\|_{B_{n_{\varepsilon}}^{c}}<\varepsilon$
. $\sup _{x \in V} \sum_{i \geq n_{\varepsilon}}\left\|P_{x}^{(n)}\right\|_{\ell \rho^{\prime}}<\varepsilon$
Massage $2^{\text {nd }}$ term:

$$
\begin{aligned}
& \left|P^{(n)} g(x)-g(x)\right| \leq\left|\left\langle\nabla g \mid \tau_{\delta_{x}, P_{x}^{(n)}}\right\rangle_{\mid B_{n_{\varepsilon}}}\right|+\mid\left.\langle\nabla g| \tau_{\left.\delta_{x}, P_{x}^{(n)}\right\rangle}\right|_{\mid B_{n_{\varepsilon}}^{c}} \mid \\
& \leq\left|\left\langle\nabla g \mid \tau_{\delta_{x}, P_{x}^{(n)}}\right\rangle_{\mid B_{n_{\varepsilon}}}\right|+\|\nabla g\|_{\ell{ }_{\ell}^{p}\left(B_{n_{\varepsilon}}^{c}\right)} \mid\left\|\tau_{\delta_{x}, P_{x}^{(n)}}\right\|_{\ell^{\rho}\left(B_{n_{\varepsilon}}^{c}\right)} \\
& \leq\left|\left\langle\nabla g \mid \tau_{\delta_{x}, P_{x}^{(n)}}\right\rangle_{\mid B_{n_{\varepsilon}}}\right|+\quad \varepsilon \quad K_{1} \sum_{i \geq 0}\left\|P_{x}^{(i)}\right\|_{\ell \rho^{\prime}} \\
& \leq\left|\left\langle\nabla g \mid \tau_{\delta_{x}, P_{x}^{(n)}}\right\rangle_{\mid B_{n_{\varepsilon}}}\right|+\quad \varepsilon \quad K_{2}
\end{aligned}
$$

$\pi(g)=$ cst \Longrightarrow constant at ∞
from $\pi(g) \equiv 0$, to prove: for some $K>0$ $\forall \varepsilon>0, \exists n_{\varepsilon}$ such that $x \notin B_{3 n_{\varepsilon}} \Longrightarrow|g(x)|<K \varepsilon$.

Given $\varepsilon>0$, define n_{ε} to be so that

- $\|\nabla g\|_{B_{n_{\varepsilon}}^{c}}<\varepsilon$
. $\sup _{x \in V} \sum_{i \geq n_{\varepsilon}}\left\|P_{x}^{(n)}\right\|_{\ell p^{\prime}}<\varepsilon$
Massage $1^{\text {st }}$ term:

$$
\begin{array}{rlr}
\left|P^{(n)} g(x)-g(x)\right| & \leq \mid\langle\nabla g| \tau_{\left.\delta_{x}, P_{x}^{(n)}\right\rangle_{\mid B_{n_{\varepsilon}}} \mid}+\varepsilon K_{2} \\
& \leq\left|\left\langle\nabla g \mid \tau_{\left.P_{x}^{\left(n_{\varepsilon}\right)}, P_{P}^{(n)}\right\rangle}\right\rangle_{\mid B_{n_{\varepsilon}}}\right| & +\varepsilon K_{2} \\
& \leq\|\nabla g\|_{\ell^{\rho}}\left\|\tau_{P_{x}^{\left(n_{\varepsilon}\right)}, P_{x}^{(n)}}\right\|_{\ell^{\prime}\left(B_{n_{\varepsilon}}\right)}+\varepsilon K_{2} \\
& \leq\|\nabla g\|_{\ell^{\rho}} \sum_{i \geq n_{\varepsilon}}\left\|P_{x}^{(i)}\right\|_{\ell^{\rho^{\prime}}} & +\varepsilon K_{2} \\
& \leq\|\nabla g\|_{\ell^{\rho}} \quad \varepsilon & +\varepsilon K_{2}
\end{array}
$$

$\pi(g)=$ cst \Longrightarrow constant at ∞

from $\pi(g) \equiv 0$, to prove: for some $K>0$

$$
\forall \varepsilon>0, \exists n_{\varepsilon} \text { such that } x \notin B_{3 n_{\varepsilon}} \Longrightarrow|g(x)|<K \varepsilon .
$$

Given $\varepsilon>0$, define n_{ε} to be so that

- $\|\nabla g\|_{B_{n_{\varepsilon}}^{c}}<\varepsilon$
. $\sup _{x \in V} \sum_{i \geq n_{\varepsilon}}\left\|P_{x}^{(n)}\right\|_{\ell \rho^{\prime}}<\varepsilon$
Up to now: $\forall x \notin B_{3 n_{\varepsilon}}$,

$$
\left|P^{(n)} g(x)-g(x)\right| \leq K_{3} \varepsilon
$$

Letting $n \rightarrow \infty$:

$$
|g(x)| \leq K_{3} \varepsilon
$$

as claimed.

Some questions

Q1: Is there an amenable group with a non-constant (bounded or not) harmonic functions whose gradient is in c_{0} ?

Q2: If G is the Cayley graph of an amenable group (with $\mathcal{H}_{b}(G) \neq\{$ constants $\}$, what is the maximal d so that G has a connected spanning subgraph G^{\prime} with IS_{d} and $\mathcal{H}_{b}\left(G^{\prime}\right)=\{$ constants $\}$?

Q3.a: Is there an explicit and more efficient transport pattern from δ_{x} to $P_{x}^{(n)}$? Q3.b: In an amenable Cayley graph, is there a FøIner sequence and an explicit (not too unefficient) transport pattern from δ_{e} to $\mathbb{1}_{F_{n}}$?
Q.4: For two infinite connected sets A and B let
$n_{A, B}(\ell)=$ number of mutually disjoint paths of length $\leq \ell$ from A to B. Estimates for the growth (in ℓ) of $n_{A, B}(\ell)$ in an amenable Cayley graph (of exponential growth)

