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Motivation

In the 1970s De Gennes suggested the ‘ant in the labyrinth’ to
investigate the transport properties of percolation cluster models for
random media.

Early toy models for clusters were structures with exact self-similarity
which enabled explicit renormalization group calculations such as the
Sierpinski gasket.

This introduces some fixed scaling parameters and periodic behaviour
is seen in the asymptotics of many quantities associated with random
walks on such fractal graphs.

Aim: To examine the asymptotics of quantities such as the eigenvalue
counting function for some simple random fractals.
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Spectral asymptotics

The standard Laplacian on a bounded domain D ⊆ R
d with Dirichlet

boundary conditions has a discrete spectrum consisting of
eigenvalues 0 < λD1 < λD2 ≤ . . . . That is λi satisfies for some u







−∆u = λiu in D

u = 0 on ∂D
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Spectral asymptotics

The standard Laplacian on a bounded domain D ⊆ R
d with Dirichlet

boundary conditions has a discrete spectrum consisting of
eigenvalues 0 < λD1 < λD2 ≤ . . . . That is λi satisfies for some u







−∆u = λiu in D

u = 0 on ∂D

Weyl’s Theorem of 1912 states that the eigenvalue counting function

N(λ) = |{λi : λi ≤ λ}|

satisfies

lim
λ→∞

N(λ)

λd/2
=

Bd

(2π)d
|D|

where |D| is the Lebesgue measure of D. and Bd the volume of the
unit ball in R

d.
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The connection to the heat kernel

Consider the Dirichlet heat kernel on the domain. Mercer’s theorem gives

pat (x, y) =
∞
∑

i=1

e−λitφi(x)φi(y),

where φi are an orthonormal set of eigenfunctions, eigenvalue λi.

The trace of the heat semigroup, or the partition function, satisfies

∫

D

pat (x, x)dx =
∞
∑

i=1

e−λit =

∫ ∞

0

e−stN(ds).

Thus information about the spectrum can be recovered from Tauberian
theorems, if we understand the short time heat kernel asymptotics, and
vice versa.
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Percolation onZ2

p = 0.5
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Percolation onZ2

p = 0.5
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Fractals
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Random walks on SG

The random walk on the Sierpinski gasket graph shows sub-Gaussian
heat kernel estimates (Jones)

pn(x, y) ≍ c1n
−df/dw exp

(

−c2
(

d(x, y)dw

n

)1/(dw−1)
)

.

where df = log 3/ log 2, dw = log 5/ log 2 and d(., .) is the shortest path
metric.
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Random walks on SG

There are small oscillations in the long time heat kernel, so the constants
in the upper and lower bounds are different (Grabner-Woess)

pn(0, 0) = n−df/dwF (logn)(1 + o(1),

where F is a non-constant log 5 periodic function.
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Spectral asymptotics for SG

The scaling limit of the random walks is a Brownian motion. Its generator
is the Laplacian and we can examine its eigenvalues.

For the Sierpinski gasket (and other nested fractals) we have

N(λ) = λdS/2(G(log λ) + o(1)), as λ→ ∞,

where ds = 2 log 3/ log 5 = 2df/dw and G is a periodic function
(Fukushima-Shima, Barlow-Kigami).

There exist strictly localized eigenfunctions.
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The continuum random tree

The continuum random tree, initially constructed by Aldous, arises as

the scaling limit of uniform random trees on n vertices.

a random real tree defined as the contour process of Brownian
excursion.

A third view is that it is a random recursive self-similar set.

It is closely related to mean field limits for critical percolation on graphs, in
particular high dimensional critical percolation on Z

d and limit models
arising in the critical window of the random graph model.
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Self-similar decomposition

Let Z1, Z2 be two µT -random vertices of T . There exists a unique
branch-point bT (ρ, Z1, Z2) ∈ T of these three vertices. Let T1, T2 and T3
the components containing ρ, Z1 and Z2. For i = 1, 2, 3, we define a
metric dTi

and probability measure µTi
on Ti by setting

dTi
:= ∆

−1/2
i dT |Ti×Ti

, µTi
(·) := ∆−1

i µ(· ∩ Ti),

where ∆i := µT (Ti).
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Random recursive fractal

Lemma
The collections (Ti, dTi

, µTi
, ρi, Z

1
i , Z

2
i ), i = 1, 2, 3, are independent copies

of (T , dT , µT , ρ, Z
1, Z2), and the entire family of random variables is

independent of (∆i)
3
i=1, which has a Dirichlet-( 12 ,

1
2 ,

1
2 ) distribution.

The CRT is isomorphic to a deterministic self-similar set with a random
metric
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The Dirichlet form

The natural Laplace operator on T is defined via its Dirichlet form.

P-a.s. there exists a local regular Dirichlet form (ET ,FT ) on L2(T , µ),
which is associated with the Laplace operator LT via for f, g ∈ FT

ET (f, g) = −(LT f, g).

and the metric dT through, for every x 6= y,

dT (x, y)
−1 = inf{ET (f, f) : f ∈ FT , f(x) = 0, f(y) = 1}.

A Neumann eigenvalue λ with eigenfunction u satisfies ET (f, u) = λ(f, u)

for all f ∈ FT .

We work with the eigenvalue counting function defined from (ET ,FT , µ).
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Scalings

We have the following relationships:
For the Dirichlet form

ET (f, f) =
3
∑

i=1

∆
−1/2
i ETi

(f ◦ φi, f ◦ φi),

where φi is the map from T → Ti.

For the measure

∫

T

f dµT =
3
∑

i=1

∆i

∫

Ti

f ◦ φi dµTi
.
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Dirichlet-Neumann bracketing

There is a simple relationship between the Dirichlet and Neumann
counting functions. For trees we have

ND(λ) ≤ NN (λ) ≤ ND(λ) + 2.

For the CRT we can compare eigenvalues and use the scalings:
For a Neumann eigenvalue λ of T we have

3
∑

i=1

∆
−1/2
i ETi

(f ◦ φi, u ◦ φi) = ET (f, u) = λ(f, u) = λ

3
∑

i=1

∆i(f ◦ φi, u ◦ φi).

Thus λ∆3/2
i is a Neumann eigenvalue of Ti. Hence

3
∑

i=1

ND
i (λ∆

3/2
i ) ≤ ND(λ) ≤ NN (λ) ≤

3
∑

i=1

NN
i (λ∆

3/2
i ).
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The renewal equation

The key tool for studying the behaviour is a renewal equation. Let
X(t) = ND(et) and η(t) = ND(et)−∑3

i=1N
D
i (et∆

3/2
i ). Then

X(t) = η(t) +
3
∑

i=1

Xi(t+
3

2
log∆i).

If m(t) = e−2t/3EX(t), u(t) = e−2t/3Eη(t), then

m(t) = u(t) +

∫ ∞

0

e−sm(t− s)ds.
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Theorem [Croydon + H (2008)] There exists a deterministic constant

C0 = m(∞) =

∫ ∞

−∞

u(t)dt ∈ (0,∞)

such that

λ−2/3
EN(λ) → C0, as λ→ ∞.

λ−2/3N(λ) → C0, as λ→ ∞, P-a.s.

This second result is proved in a similar manner to Nerman’s proof of the
almost sure convergence of the general branching process.
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The annealed heat kernel

We have been working directly with the eigenvalue counting function. We
can use the trace theorem and Tauberian theorems to obtain results on
the partition function.

Firstly from the trace theorem and the property that the continuum random
tree is invariant under random rerooting

Ept(ρ, ρ) = E

∫

T

pt(x, x)µT (dx) = E

∫ ∞

0

e−stNN (ds).
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Thus an application of a Tauberian Theorem gives

Corollary
Let Γ be the standard gamma function, then

t2/3Ept(ρ, ρ) → C0Γ(5/3) as t→ 0,

Note that Croydon obtained quenched and annealed heat kernel bounds
for the CRT:

C1 ≤ t2/3Ept(ρ, ρ) ≤ C2, 0 < t < 1.

and P-a.s.

C3| log t|a
′ ≤ t2/3 sup

x∈T

pt(x, x) ≤ C4| log t|a, 0 < t < 1.
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CRT results

Theorem
Suppose (NT (λ))λ∈R is the eigenvalue counting function for the natural
Laplacian on the continuum random tree. As λ→ ∞:

ENT (λ) = C0λ
2/3 +O(1).
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CRT results

Theorem
Suppose (NT (λ))λ∈R is the eigenvalue counting function for the natural
Laplacian on the continuum random tree. As λ→ ∞:

ENT (λ) = C0λ
2/3 +O(1).

P-a.s., for ǫ > 0,

NT (λ) = C0λ
2/3 + o(λ1/3+ǫ).
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Scaling limit of the CRG

Let G(N, p) be the Erdös-Renyi random graph. The critical window is
p = N−1 + νN−4/3 for a fixed ν ∈ (−∞,∞).

Addario-Berry, Broutin and Goldschmidt construct the scaling limit:
Conditioned on the number of connections J = j we have (for j ≥ 2) that
M is constructed by

taking a random 3 regular graph on 2(j − 1) vertices

generate (α1, . . . , α3(j−1)) according to a Dirichlet ( 12 , . . . ,
1
2 )

distribution.

construct 3(j − 1) size αj CRTs with root plus a randomly chosen
vertex.

replace the edges in the graph with the trees linked at the roots and
randomly chosen vertices.
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Dirichlet-Neumann bracketing allows us to compare eigenvalues of M, T .

Theorem

Suppose (NM(λ))λ∈R is the eigenvalue counting function for the natural
Laplacian on the scaling limit of the giant component of the critical random
graph M, and Z1 is the mass of M with respect to its canonical measure
µM. Then, as λ→ ∞:

ENM(λ) = C0EZ1λ
2/3 +O(1).

λ−2/3NM(λ) → C0Z1. P− a.s.

A CLT for the CRT will give a CLT here too.
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Spectral asymptotics for random gaskets

For a random recursive Sierpinski gasket, where each 2, 3 side division is
independently chosen with probability p, 1− p for each triangle

lim
λ→∞

N(λ)

λds/2
=W, a.s.

where ds = 2α/(α+ 1) and α satisfies p3( 35 )
α + (1− p)6( 7

15 )
α = 1.

Is there a CLT in this case?
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The diamond hierarchical lattice

A recursively constructed graph

1. D0 = (V0, E0), where V0 consists of two vertices and E0 an edge
between them.

2. Dn+1 = (Vn+1, En+1) with each edge in En replaced by a diamond:
two sets of two edges in series in parallel.
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Scaling limit

The scaling limit for the diamond lattice is a self-similar set.

Let (K, d) be a compact metric space with two points labelled 0,1.

Let {ψi : i = 1, 2, 3, 4} be a set of 1/2-contractions ψi : K → K. This
defines the scaling limit of the diamond hierarchical lattice K as a
self-similar set

K =

4
⋃

i=1

ψi(K).

The set is not finitely ramified. Its Hausdorff dimension is 2.
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The diffusion on the scaling limit

There is a local regular Dirichlet form (E ,F) on L2(K,µ) with
self-similarity,

E(f, g) =
4
∑

i=1

E(f ◦ ψi, g ◦ ψi), ∀f, g ∈ F .

Let N(x) be the Neumann eigenvalue counting function, then

0 < lim inf
x→∞

N(x)

x
< lim sup

x→∞

N(x)

x
<∞. (1)

There exists a jointly continuous heat kernel pt(x, y), for all
t ∈ (0, 1), x, y ∈ K. For µ-a.a x ∈ K

c1t
−1| log t|−2−ǫ ≤ pt(x, x) ≤ c2t

−1
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Percolation onDn

Fix p ∈ [0, 1]. For e ∈ En, let µe be independent random variables with
P(µe = 1) = p, P(µe = 0) = 1− p.

Let Ep
n be the open edges in Dn.

We say percolation occurs if there is a connected component of Ep
n

containing 0 and 1 as n gets large.

Let f be the map on the percolation probability obtained by
considering whether a single diamond is open

f(p) = 1− (1− p2)2 = 2p2 − p4.
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f has 3 fixed points in [0, 1].

0 and 1 are attracting

pc = (
√
5− 1)/2 is repulsive.

Lemma 1 If the lattice Dn is subject to Bernoulli bond percolation with
p = pc, then there is percolation in the sense that the end points of the
lattice, 0 and 1, are connected with probability pc. As n→ ∞
If p > pc, then P (0 and 1 are connected in Dn) → 1.
If p < pc, then P (0 and 1 are connected in Dn) → 0.

Thus we can let n→ ∞ when p = pc to obtain an ‘infinite lattice’ under
critical percolation Dpc

∞. Easier to think about the scaling limit.
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‘Random walk on Dpc∞’

H and Kumagai (2010): We can define the scaling limit of the critical
percolation cluster on D∞ as a random recursive fractal and analyse
the properties of the diffusion on this scaling limit.

We have an explicit formula for the spectral exponent in that for P-a.e.
ω for µω − a.e.x ∈ C we have

lim
λ→∞

logNω(λ)

log λ
= lim

t→0

log qωt (x, x)

− log t
=

θ

θ + 1

where θ = 5.2654.... Thus ds = 1.6807...

Sharper results mimic those on the diamond hierarchical lattice itself.

The analysis can be extended to the random cluster model on the
diamond lattice.
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A tree description

We build a branching tree model of (Dpc
n )∞n=0. For any graph Dn we label

each edge by either c for connected or d for disconnected. To produce
Dn+1 we use the following reproduction rule:

1. If we have a c, the replacement graph is one of the 7 possible
connected graph structures.

2. If we have a d, the replacement graph for that non-edge is chosen
from the 9 possible disconnected configurations.

Thus we view our sequence of percolation configurations (Gn) as starting
from the initial edge G0, that is D0 labelled with a c, and then each graph
Gn is the subgraph of the labelled graph Dn where we only keep the
edges with labels c.
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The configurations

c d

For Dp
1 we have 7 combinations of edges which give a connection across

D0 and 9 which give a disconnection.
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c

level 0
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c

cc c d
level 1
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c c c d cccc cc d d

c

c c c d

d c d c

level 2
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level 3
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The infinite cluster at level 3
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The critical cluster

The critical cluster is the connected component of Dpc
∞ containing 0

and 1.

The existence of the critical cluster has positive probability, thus we
can condition on its existence and work on a subset Ωc ⊂ Ω of our
probability space.

The construction of (Dpc

n,N )0≤n≤N can be extended to describe the infinite
cluster at criticality. This is a sequence of subgraphs of (Dpc

n,N )0≤n≤N

which we label (Cn)0≤n≤N where we remove all the edges of the graph
Dpc

N that are not connected to the vertices 0 and 1 and then apply the
percolation construction.
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Diffusion on the critical cluster

The key is to understand the electrical resistance. To ensure the effective
resistance across the essentially two different configurations is one we
take edge weights

ρui
=







1 ui = c, uij = c, j = 1, 2, 3, 4

2 otherwise
(2)

1 1

1 1

2 2

2

The electrical resistance can be used as a metric and we can describe the
cluster’s properties in the resistance metric by a multitype branching
random walk.
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The Dirichlet form

We put resistances on each cell to ensure that the global resistance
remains at 1.

Theorem 1 There exists a Dirichlet form (E(ω),Fω) on L2(C(ω), µω) for all
ω ∈ Ω with the self-similarity condition

E(ω)(f, g) =

4
∑

i=1

E(σiω)(f ◦ ψi, g ◦ ψi)ρu∅
∀f, g ∈ Fω.

The Hausdorff dimension in the resistance metric drf = θ, the Malthusian
parameter of a branching process.

The spectral dimension ds = 2drf/(d
r
f + 1) < 2.
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Spectral Properties

As before the Dirichlet and Neumann Laplacians have compact resolvent
and we have an eigenvalue counting function N(λ) for either. Using
multidimensional renewal theory and branching random walk we have:

Theorem 2 There is oscillation for the high frequency asymptotics of
either Dirichlet or Neumann eigenvalues in that for each λ ∈ [1, 2(1+θ)), we
have a random variable W such that

lim
n→∞

∣

∣

∣

∣

Nu∅(λ2(1+θ)n)

(λ2(1+θ)n)θ/(θ+1)
−mu∅

∞ (log λ)W

∣

∣

∣

∣

= 0, a.s.

where mu∅
∞ (t) is the limit of the renewal equation for the mean.

Oscillations are inherited from those in the lattice despite the randomness.
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Higher order terms

We try to examine the higher order terms in the spectral asymptotics.

1. The case of the continuum random tree there is a CLT in the spectrum
but proving the non-triviality of the variance is difficult.

2. For the random recursive gaskets the LLN has a random limit at first
order and checking CLT conditions is more challenging.

3. Percolation on the diamond lattice has a random multiple of a periodic
function.

4. We look at a simpler model - random fractal strings.

A fractal string is a union of intervals with a boundary that is typically a
Cantor set. The problem of the spectral asymptotics is more
straightforward as we understand very well the eigenvalues for the
interval.
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The Brownian string

A natural random fractal string can be generated by Brownian motion.

Take Brownian motion started from 0 in R run for unit time. The path can
be viewed as a sequence of excursions away from 0. The zero set is a
Cantor set (perfect and nowhere dense) and so divides the time axis into
a countable number of intervals. Thus we have a decomposition of the
unit interval - a fractal string.

For the Dirichlet counting function

N(λ) =
1

π
λ1/2 − Lζ(1/2)λ1/4 + o(λ1/8+ǫ).

where L is the local time at 0 of the Brownian motion and ζ is the
Riemann zeta function (H-Lapidus).

We look at a family of examples:
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Dirichlet strings

Let T1, T2 be chosen from a Beta(α, α) distribution, γ ∈ (0, 1).

Divide [0, 1] into three pieces ψ1([0, 1]) = [0, T
1/γ
1 ], ψ2([0, 1]) = [T γ

2 , 1] and
S1, the middle open interval, the first piece of string of length
1− T

1/γ
1 − T

1/γ
2 .

By choosing ψ1, ψ2 independently according to the distribution we
generate a random cantor set K defined by K = ∪iψi(K).

This is the boundary of the string S and has dimension γ a.s.
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The counting function

For the boundary term in the asymptotics:

Theorem:
For the fractal string S, for all α ∈ N, γ ∈ (0, 1) we have

λ−γ/2
[

π−1λ1/2 −N(λ)
]

→ C, a.s.,

as λ→ ∞, for some positive constant C.
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The counting function

For the boundary term in the asymptotics:

Theorem:
For the fractal string S, for all α ∈ N, γ ∈ (0, 1) we have

λ−γ/2
[

π−1λ1/2 −N(λ)
]

→ C, a.s.,

as λ→ ∞, for some positive constant C.

For the second term we use a Central Limit Theorem for the GBP
(Charmoy, Croydon, H 2015)

Theorem:
For the string S, we have, provided α ≤ 59

λγ/4{λ−γ/2

[

1

π
λ1/2 −N(λ)

]

− C} → N(0, σ2), in distribution,

as λ→ ∞, for some positive constant σ.
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Theorem: (Charmoy, Croydon, H 2015)
There exists an α̃ ≥ 80 and a γ ∈ (0, 1) such that: if 59 < α ≤ α̃, then
there exists a constant c1(γ, α) > 0 such that

ENγ,α(λ) =
1

π
λ1/2 − C(γ, α)λγ/2 + c1(γ, α)λ

γη(α)/2 + o(λη(α)),

where η(α) = max{ℜ(θ0) ∈ (−∞, 1) : P (θ0) = 0},

P (θ) :=

α−1
∏

i=0

(α+ θ + i)− (2α)!

α!

and, for this range of α we have 1/2 < η(α) < 1. In particular

λγ/4
(

λ−γ/2

(

1

π
λ1/2 −Nγ,α(λ)

)

− C(γ, α)

)

does not converge in distribution as λ→ ∞.
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