Electric network for non-reversible Markov chains

Joint work with Áron Folly

Márton Balázs

University of Bristol

Random walks on graphs and potential theory University of Warwick, 20th May 2015.

Reducing a network
Thomson, Dirichlet principles
Monotonicity, transience, recurrence

Irreversible chains and electric networks

The part
From network to chain
From chain to network
Effective resistance
What works

The electric network

Reducing the network Nonmonotonicity Dirichlet principle

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

$$h_{x} := \mathbf{P}_{x} \{ \tau_{a} < \tau_{b} \}$$
 (τ is the hitting time)

is harmonic:

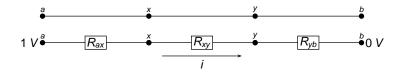
$$h_x = \sum_y P_{xy} h_y, \qquad h_a = 1, \quad h_b = 0.$$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

$$h_{x} := \mathbf{P}_{x} \{ \tau_{a} < \tau_{b} \}$$
 (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy} h_y, \qquad h_a = 1, \quad h_b = 0.$$



Electric resistor network: the voltage u is harmonic (C = 1/R):

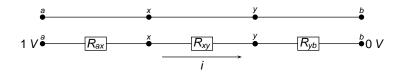
$$u_x = \sum_{v} \frac{C_{xy}}{\sum_{z} C_{xz}} \cdot u_y; \qquad u_a = 1, \quad u_b = 0.$$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

$$h_{x} := \mathbf{P}_{x} \{ \tau_{a} < \tau_{b} \}$$
 (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy} h_y, \qquad h_a = 1, \quad h_b = 0.$$



Electric resistor network: the voltage u is harmonic (C = 1/R):

$$u_{x} = \sum_{y} \frac{C_{xy}}{\sum_{z} C_{xz}} \cdot u_{y}; \qquad u_{a} = 1, \quad u_{b} = 0.$$

Thus,

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}}$$

Thus,

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}} = : \frac{C_{xy}}{C_{x}}.$$

Thus.

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}} = : \frac{C_{xy}}{C_{x}}.$$

Stationary distribution:

$$\mu_{x} = \sum_{y} \mu_{y} P_{yx} = \sum_{y} \mu_{y} \frac{C_{xy}}{C_{y}}$$
$$C_{x} = \sum_{y} C_{y} \frac{C_{xy}}{C_{y}}$$

Thus,

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}} = : \frac{C_{xy}}{C_{x}}.$$

Stationary distribtuion:

$$\mu_{x} = \sum_{y} \mu_{y} P_{yx} = \sum_{y} \mu_{y} \frac{C_{xy}}{C_{y}}$$

$$C_{x} = \sum_{y} C_{y} \frac{C_{xy}}{C_{y}}$$

$$C_{x} = \mu_{x}.$$

Thus.

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}} = : \frac{C_{xy}}{C_{x}}.$$

Stationary distribtuion:

$$\mu_{x} = \sum_{y} \mu_{y} P_{yx} = \sum_{y} \mu_{y} \frac{C_{xy}}{C_{y}}$$

$$C_{x} = \sum_{y} C_{y} \frac{C_{xy}}{C_{y}}$$

$$C_{x} = \mu_{x}.$$

$$P_{xy} = C_{xy}/C_x$$

Thus.

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}} = : \frac{C_{xy}}{C_{x}}.$$

Stationary distribution:

$$\mu_{X} = \sum_{y} \mu_{y} P_{yX} = \sum_{y} \mu_{y} \frac{C_{xy}}{C_{y}}$$

$$C_{X} = \sum_{y} C_{y} \frac{C_{xy}}{C_{y}}$$

$$\Leftrightarrow C_{Y} = \mu_{Y}.$$

Notice $\mu_x P_{xy} = C_{xy} = C_{yx} = \mu_y P_{yx}$, so the chain is reversible.

$$P_{xy} = C_{xy}/C_x$$
 $C_x = \mu_x$

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{C_{xy}}{C_{y}} n_{y}$$

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{C_{xy}}{C_{y}} n_{y}$$
$$u_{x} = \sum_{y} \frac{C_{xy}}{C_{x}} \cdot u_{y}$$

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{C_{xy}}{C_{y}} n_{y}$$
$$u_{x} = \sum_{y} \frac{C_{xy}}{C_{x}} \cdot u_{y}$$
$$u_{x} C_{x} = \sum_{y} \frac{C_{xy}}{C_{y}} \cdot u_{y} C_{y}$$

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{C_{xy}}{C_{y}} n_{y}$$

$$u_{x} = \sum_{y} \frac{C_{xy}}{C_{x}} \cdot u_{y}$$

$$u_{x} C_{x} = \sum_{y} \frac{C_{xy}}{C_{y}} \cdot u_{y} C_{y}$$

$$\Rightarrow u_{x} C_{x} = n_{x}.$$

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{C_{xy}}{C_{y}} n_{y}$$

$$u_{x} = \sum_{y} \frac{C_{xy}}{C_{x}} \cdot u_{y}$$

$$u_{x} C_{x} = \sum_{y} \frac{C_{xy}}{C_{y}} \cdot u_{y} C_{y}$$

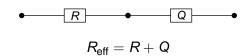
$$u_{x} C_{x} = n_{x}.$$

 \mathbf{E}_a (signed current $x \to y$ before absorbed in b) $= n_x P_{xv} - n_v P_{vx} = (u_x - u_v) C_{xv} = i_{xy}$. normalisation...

$$P_{xv} = C_{xv}/C_x$$

Reducing a network

Series:

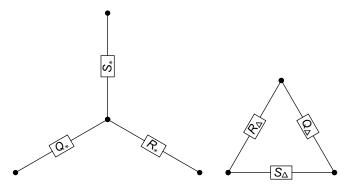


Parallel:

$$\frac{1}{R_{\text{eff}}} = \frac{1}{R} + \frac{1}{Q}$$

Reducing a network

Star-Delta:

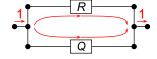


$$R_* = rac{Q_\Delta S_\Delta}{R_\Delta + Q_\Delta + S_\Delta}$$

$$R_* = \frac{Q_\Delta S_\Delta}{R_\Delta + Q_\Delta + S_\Delta}, \qquad R_\Delta = \frac{R_* \, Q_* + R_* \, S_* + Q_* \, S_*}{R_*}. \label{eq:Radiation}$$

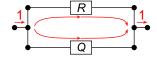
Thomson, Dirichlet principles

Thomson principle:



The physical unit current is the unit flow that minimizes the sum of the ohmic power losses $\sum i^2 R$.

Thomson principle:



The physical unit current is the unit flow that minimizes the sum of the ohmic power losses $\sum i^2 R$.

Dirichlet principle:

The physical voltage is the function that minimizes the ohmic power losses $\sum (\nabla u)^2/R$.

Monotonicity, transience, recurrence

The monotonicity property:

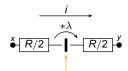
Between any disjoint sets of vertices, the effective resistance is a non-decreasing function of the individual resistances.

Monotonicity, transience, recurrence

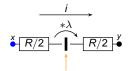
The monotonicity property:

Between any disjoint sets of vertices, the effective resistance is a non-decreasing function of the individual resistances.

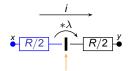
→ can be used to prove transience-recurrence by reducing the graph to something manageable in terms of resistor networks.



$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$

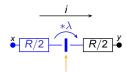


$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$

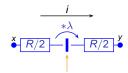


$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

The part

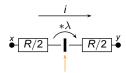


$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$



$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$

Reversible

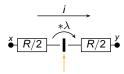


Voltage amplifier: keeps the current, multiplies the potential.

$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$

$$(u_{x} - i \cdot R^{pr}) \cdot \lambda^{pr} = u_{y}$$

The part



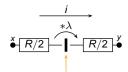
Voltage amplifier: keeps the current, multiplies the potential.

$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$

$$(U_{X} - i \cdot R^{pr}) \cdot \lambda^{pr} = U_{Y}$$

$$\lambda^{pr} = \lambda$$

$$\begin{array}{c|c}
 & *\lambda^{\text{se}} \\
 & & R^{\text{se}} \\
 & U_X \cdot \lambda^{\text{se}} - R^{\text{se}} \cdot i = U_Y \\
 & \lambda^{\text{se}} = \lambda
\end{array}$$



$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

$$(u_{x} - i \cdot R^{pr}) \cdot \lambda^{pr} = u_{y}$$

$$\lambda^{pr} = \lambda$$

$$R^{pr} = \frac{\lambda+1}{2\lambda} \cdot R$$

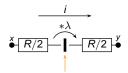
$$u_{x} \cdot \lambda^{\text{se}} - R^{\text{se}} \cdot i = u_{y}$$

$$\lambda^{\text{se}} = \lambda$$

$$R^{\text{se}} = \frac{\lambda+1}{2} \cdot R$$

Reversible

The part



Voltage amplifier: keeps the current, multiplies the potential.

$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

$$(u_{x} - i \cdot R^{pr}) \cdot \lambda^{pr} = u_{y}$$

$$\lambda^{pr} = \lambda$$

$$R^{pr} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$u_{X} \cdot \lambda^{\text{se}} - R^{\text{se}} \cdot i = u_{Y}$$

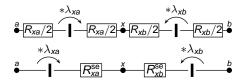
$$\lambda^{\text{se}} = \lambda$$

$$R^{\text{se}} = \frac{\lambda+1}{2} \cdot R$$

$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$R^{\text{se}} = \frac{\lambda+1}{2} \cdot R$$

$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$



$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

Harmonicity

$$u_{x} = \sum_{y} \frac{C_{xy}^{\text{se}}}{\sum_{z} C_{xz}^{\text{se}}} \cdot \lambda_{xy} u_{y}$$

$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

Harmonicity

$$u_{x} = \sum_{y} \frac{C_{xy}^{\text{se}}}{\sum_{z} C_{xz}^{\text{se}}} \cdot \lambda_{xy} u_{y}$$

$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

Harmonicity

$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy}+1}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz}+1}} \cdot \lambda_{xy} u_{y}$$

$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$u_{x} = \sum_{y} \frac{C_{xy}^{\text{se}}}{\sum_{z} C_{xz}^{\text{se}}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy}+1}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz}+1}} \cdot \lambda_{xy} u_{y}$$

$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy}+1}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz}+1}} \cdot \lambda_{xy} u_{y}$$

$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y}$$
with $\gamma_{xy} = \sqrt{\lambda_{xy}} = \frac{1}{\gamma_{yx}}$, $D_{xy} = \frac{2\gamma_{xy} C_{xy}}{(\lambda_{xy}+1)} = D_{yx}$.

$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$R^{\text{se}} = \frac{\lambda+1}{2} \cdot R$$

$$u_{x} = \sum_{y} \frac{C_{xy}^{\text{Se}}}{\sum_{z} C_{xz}^{\text{Se}}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy+1}}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz+1}}} \cdot \lambda_{xy} u_{y}$$

$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y}$$
with $\gamma_{xy} = \sqrt{\lambda_{xy}} = \frac{1}{\gamma_{yx}}$, $D_{xy} = \frac{2\gamma_{xy} C_{xy}}{(\lambda_{xy+1})} = D_{yx}$.

$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$R^{\text{se}} = \frac{\lambda+1}{2} \cdot R$$

$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy+1}}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz+1}}} \cdot \lambda_{xy} u_{y}$$

$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$
with $\gamma_{xy} = \sqrt{\lambda_{xy}} = \frac{1}{\gamma_{yx}}$, $D_{xy} = \frac{2\gamma_{xy} C_{xy}}{(\lambda_{xy}+1)} = D_{yx}$.

$$R^{\text{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$R^{\text{se}} = \frac{\lambda+1}{2} \cdot R$$

$$u_{x} = \sum_{y} \frac{C_{xy}^{\text{se}}}{\sum_{z} C_{xz}^{\text{se}}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy} + 1}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz} + 1}} \cdot \lambda_{xy} u_{y}$$

$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$
with $\gamma_{xy} = \sqrt{\lambda_{xy}} = \frac{1}{\gamma_{yx}}$, $D_{xy} = \frac{2\gamma_{xy} C_{xy}}{(\lambda_{xy} + 1)} = D_{yx}$.

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

$$h_{x} := \mathbf{P}_{x} \{ \tau_{a} < \tau_{b} \}$$
 (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy} h_y, \qquad h_a = 1, \quad h_b = 0.$$

$$u_x = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_x} \cdot u_y, \qquad u_a = 1, \quad u_b = 0.$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}} \qquad D_x = \sum_z D_{xz} \gamma_{zx} \qquad D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

$$h_{x} := \mathbf{P}_{x} \{ \tau_{a} < \tau_{b} \}$$
 (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy} h_y, \qquad h_a = 1, \quad h_b = 0.$$

$$u_x = \sum_y \frac{D_{xy} \gamma_{xy}}{D_x} \cdot u_y, \qquad u_a = 1, \quad u_b = 0.$$

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x}.$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

$$h_{x} := \mathbf{P}_{x} \{ \tau_{a} < \tau_{b} \}$$
 (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy} h_y, \qquad h_a = 1, \quad h_b = 0.$$

$$u_x = \sum_{\mathbf{y}} \frac{D_{xy} \gamma_{xy}}{D_x} \cdot u_{\mathbf{y}}, \qquad u_{\mathbf{a}} = 1, \quad u_{\mathbf{b}} = 0.$$

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x}.$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$ $P_{xy} = D_{xy} \gamma_{xy}/D_x$

Stationary distribution:

$$\mu_{x} = \sum_{z} \mu_{z} P_{zx} = \sum_{z} \mu_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$
$$D_{x} = \sum_{z} D_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$ $P_{xy} = D_{xy} \gamma_{xy}/D_x$

Reversible

Stationary distribution:

$$\mu_{X} = \sum_{z} \mu_{z} P_{zX} = \sum_{z} \mu_{z} \frac{D_{zX} \gamma_{zX}}{D_{z}}$$

$$D_{X} = \sum_{z} D_{z} \frac{D_{zX} \gamma_{zX}}{D_{z}}$$

$$\Rightarrow D_{X} = \mu_{X}.$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1)$ $P_{xy} = D_{xy} \gamma_{xy} / D_x$

"Markovian" property

Reversible

$$u_{x} = \sum_{z} P_{xz} u_{z}; \qquad \sum_{z} P_{xz} = 1$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$ $P_{xy} = D_{xy} \gamma_{xy}/D_x$

Reversible

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

$$\sum_{z} P_{xz} = \sum_{z} \frac{D_{xz} \gamma_{xz}}{D_{x}} = 1$$

$$D_{\mathsf{X}} := \sum_{\mathsf{Z}} D_{\mathsf{X}\mathsf{Z}} \gamma_{\mathsf{Z}\mathsf{X}}$$

$$\gamma_{xy}=\sqrt{\lambda_{xy}}$$
 $D_x=\sum_z D_{xz}\gamma_{zx}$ $D_{xy}=2\gamma_{xy}C_{xy}/(\lambda_{xy}+1)$ $P_{xy}=D_{xy}\gamma_{xy}/D_x$

"Markovian" property

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

$$\sum_{z} P_{xz} = \sum_{z} \frac{D_{xz} \gamma_{xz}}{D_{x}} = 1$$

$$D_{\mathbf{X}} := \sum_{\mathbf{Z}} D_{\mathbf{XZ}} \gamma_{\mathbf{ZX}} = \sum_{\mathbf{Z}} D_{\mathbf{XZ}} \gamma_{\mathbf{XZ}}.$$

$$\gamma_{xy}=\sqrt{\lambda_{xy}}$$
 $D_x=\sum_z D_{xz}\gamma_{zx}$ $D_{xy}=2\gamma_{xy}C_{xy}/(\lambda_{xy}+1)$ $P_{xy}=D_{xy}\gamma_{xy}/D_x$

Reversible

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

$$\sum_{z} P_{xz} = \sum_{z} \frac{D_{xz} \gamma_{xz}}{D_{x}} = 1$$

$$D_{\mathbf{X}} := \sum_{\mathbf{Z}} D_{\mathbf{X}\mathbf{Z}} \gamma_{\mathbf{Z}\mathbf{X}} = \sum_{\mathbf{Z}} D_{\mathbf{X}\mathbf{Z}} \gamma_{\mathbf{X}\mathbf{Z}}.$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy}/D_x \end{split}$$

From chain to network

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x} = \frac{D_{xy}\gamma_{xy}}{\mu_x}$$
$$\mu_x P_{xy} \cdot \mu_y P_{yx} = D_{xy}^2;$$
$$\frac{\mu_x P_{xy}}{\mu_y P_{yx}} = \gamma_{xy}^2 = \lambda_{xy}.$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy}/D_x \end{split}$$

Reversible

$$\begin{aligned} P_{xy} &= \frac{D_{xy}\gamma_{xy}}{D_x} = \frac{D_{xy}\gamma_{xy}}{\mu_x} \\ \mu_x P_{xy} \cdot \mu_y P_{yx} &= D_{xy}^2; \\ \frac{\mu_x P_{xy}}{\mu_y P_{yx}} &= \gamma_{xy}^2 = \lambda_{xy}. \end{aligned}$$

Reversed chain: Replace P_{xy} by $\hat{P}_{xy} = P_{yx} \cdot \frac{\mu_y}{\mu_x}$.

 $\sim D_{xy}$ stays, λ_{xy} reverses to λ_{yx} .

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2 \gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

From chain to network

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{D_{yx} \gamma_{yx}}{D_{y}} n_{y}$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy}/D_x \end{split}$$

Reversible

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{D_{yx} \gamma_{yx}}{D_{y}} n_{y}$$
$$u_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz}$ $D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1)$

$$P_{xy} = D_{xy} \gamma_{xy} / D_x$$

From chain to network

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{D_{yx} \gamma_{yx}}{D_{y}} n_{y}$$
$$u_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$
$$u_{x} D_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{y}} \cdot u_{y} D_{y}$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$ $P_{xy} = D_{xy} \gamma_{xy}/D_x$

From chain to network

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{D_{yx} \gamma_{yx}}{D_{y}} n_{y}$$

$$u_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$

$$u_{x} D_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{y}} \cdot u_{y} D_{y}$$

$$\Rightarrow \hat{u}_{x} D_{x} = n_{x}$$

in the reversed chain.

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_{z} D_{xz} \gamma_{zx} = \sum_{z} D_{xz} \gamma_{xz}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$

$$P_{xy} = D_{xy} \gamma_{xy}/D_x$$

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$\rightarrow \hat{u}_X D_X = n_X$$

in the reversed chain.

 \mathbf{E}_a (signed current $x \to y$ before absorbed in b)

$$= n_x P_{xy} - n_y P_{yx} = (\hat{u}_x \gamma_{xy} - \hat{u}_y \gamma_{yx}) D_{xy} = \hat{i}_{xy}.$$
 normalisation...

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy}/D_x \end{split}$$

Suppose u_a , u_b given, the solution is $\{u_x\}_{x\in\Omega}$ and $\{i_{xy}\}_{x\sim y\in\Omega}$. Current

$$i_{a} = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

Suppose u_a , u_b given, the solution is $\{u_x\}_{x\in\Omega}$ and $\{i_{xy}\}_{x\sim y\in\Omega}$. Current

$$i_a = \sum_{\mathsf{X} \sim a} i_{\mathsf{a}\mathsf{X}}$$

flows in the network at a.

 \sim The "Markovian" property has another solution: constant u_h potentials with zero external currents.

Effective resistance

Suppose u_a , u_b given, the solution is $\{u_x\}_{x\in\Omega}$ and $\{i_{xy}\}_{x\sim y\in\Omega}$. Current

$$i_a = \sum_{\mathsf{X} \sim a} i_{\mathsf{a}\mathsf{X}}$$

flows in the network at a.

 \sim The "Markovian" property has another solution: constant u_h potentials with zero external currents.

 \rightarrow The difference of these two: $\{u_x - u_h\}_{x \in \Omega}$ is a solution too, with i_a flowing in the network.

Effective resistance

Suppose u_a , u_b given, the solution is $\{u_x\}_{x\in\Omega}$ and $\{i_{xy}\}_{x\sim y\in\Omega}$. Current

$$i_a = \sum_{\mathsf{X} \sim a} i_{\mathsf{a}\mathsf{X}}$$

flows in the network at a.

- \sim The "Markovian" property has another solution: constant u_h potentials with zero external currents.
- \rightarrow The difference of these two: $\{u_x u_h\}_{x \in \Omega}$ is a solution too, with i_a flowing in the network.
- \rightarrow Going backwards from $u_b u_b = 0$ at b, all currents and potentials are proportional to $u_a - u_b$ at a.

Effective resistance

Suppose u_a , u_b given, the solution is $\{u_x\}_{x\in\Omega}$ and $\{i_{xy}\}_{x\sim y\in\Omega}$. Current

$$i_{a} = \sum_{\mathsf{X} \sim a} i_{\mathsf{a}\mathsf{X}}$$

flows in the network at a.

- \sim The "Markovian" property has another solution: constant u_h potentials with zero external currents.
- \rightarrow The difference of these two: $\{u_x u_h\}_{x \in \Omega}$ is a solution too, with i_a flowing in the network.
- \rightarrow Going backwards from $u_b u_b = 0$ at b, all currents and potentials are proportional to $u_a - u_b$ at a.
- \rightarrow In particular, i_a is proportional to $u_a u_b$. We have effective resistance.

What works

... the analogy with $\mathbf{P}\{\tau_a < \tau_b\}$.

What works

... the analogy with $P\{\tau_a < \tau_b\}$.

Modulo normalisation...

 \mathbf{E}_a (signed current $x \to y$ before absorbed in b) = \hat{i}_{xv} .

in the reversed network!

... the analogy with $P\{\tau_a < \tau_b\}$.

Modulo normalisation...

 $\mathbf{E}_a(\text{signed current } x \to y \text{ before absorbed in } b) = \hat{i}_{xv}.$

in the reversed network!

Theorem (Chandra, Raghavan, Ruzzo, Smolensky and Tiwari '96 for reversible)

Commute time = R_{eff} · all conductances.

What works

For all sets A, B, capacity \sim escape probability.

$$cap(A, B) = C_{AB}^{eff} = \frac{1}{R_{AB}^{eff}}$$

For all sets A, B, capacity \sim escape probability.

$$cap(A, B) = C_{AB}^{eff} = \frac{1}{R_{AB}^{eff}} = \frac{1}{2} \sum_{x \sim y \in V} C_{xy} (u_x - u_y)^2.$$

This is non-physical!

For all sets A, B, capacity \sim escape probability.

$$cap(A, B) = C_{AB}^{eff} = \frac{1}{R_{AB}^{eff}} = \frac{1}{2} \sum_{x \sim y \in V} C_{xy} (u_x - u_y)^2.$$

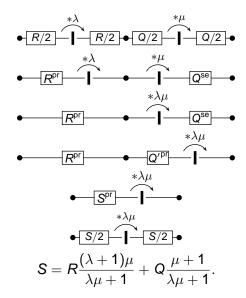
This is non-physical!

In particular, symmetrising the chain $(P_{xy} o frac{P_{xy} + \bar{P}_{xy}}{2})$ cannot increase escape probabilities:

- symmetrising leaves C_{xv} unchanged;
- the above sum is minimised by the symmetric voltages, not $\{u_{\mathbf{x}}\}\$ (Classical Dirichlet principle).

The electric network

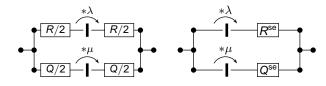
Series:



The electric network

Reversible

Parallel:



Compare this with

$$S = \frac{RQ}{R+Q}$$

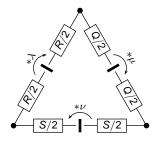
$$\nu = \frac{Q\lambda(\mu+1) + R\mu(\lambda+1)}{Q(\mu+1) + R(\lambda+1)}.$$

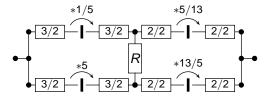
The electric network

Star-Delta:

Star to Delta works,

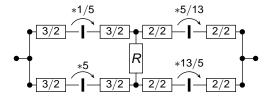
Delta to Star only works if Delta does not produce a circular current by itself ($\lambda\mu\nu=1$).





$$R^{\text{eff}} = \frac{27}{14} + \frac{1296}{1225R + 2268}$$

Nonmonotonicity



$$R^{\text{eff}} = \frac{27}{14} + \frac{1296}{1225R + 2268}.$$
 ©

Reversible Irreversible Engineering Reducing Nonmonotonicity Dirichlet

Dirichlet principle

$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$

$$E_{\text{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

$$egin{aligned} \mathcal{R}_{ab}^{ ext{eff}} &= & E_{ ext{Ohm}}(i_u), \ & (i_u)_{xy} = \mathcal{C}_{xy} \cdot ig(u(x) - u(y)ig), \ & E_{ ext{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot \mathcal{R}_{xy}. \end{aligned}$$

$$R_{ab}^{\text{eff}} = \min_{u:u(a)=1, u(b)=0} E_{\text{Ohm}}(i_u),$$
$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$
$$E_{\text{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

Classical case:

$$\begin{split} R_{ab}^{\text{eff}} &= \min_{u:u(a)=1,\,u(b)=0} E_{\text{Ohm}}(i_u), \\ &(i_u)_{xy} = C_{xy} \cdot \big(u(x)-u(y)\big), \\ E_{\text{Ohm}}(i_u) &= \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}. \end{split}$$

$$(i_u^*)_{xy} = D_{xy} \cdot (\gamma_{xy} u(x) - \gamma_{yx} u(y)),$$

$$E_{\text{Ohm}}(i_u^* - \Psi) = \sum_{x \sim y} (i_u^* - \Psi_{xy})^2 \cdot R_{xy}.$$

Irreversible

Dirichlet principle

Classical case:

$$\begin{split} R_{ab}^{\text{eff}} &= \min_{u:u(a)=1,\,u(b)=0} E_{\text{Ohm}}(i_u), \\ &(i_u)_{xy} = C_{xy} \cdot \big(u(x)-u(y)\big), \\ E_{\text{Ohm}}(i_u) &= \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}. \end{split}$$

$$R_{ab}^{\text{eff}} = E_{\text{Ohm}}(i_u^* - \Psi),$$
$$(i_u^*)_{xy} = D_{xy} \cdot (\gamma_{xy} u(x) - \gamma_{yx} u(y)),$$
$$E_{\text{Ohm}}(i_u^* - \Psi) = \sum_{x \sim v} (i_u^* - \Psi_{xy})^2 \cdot R_{xy}.$$

Classical case:

$$\begin{split} R_{ab}^{\text{eff}} &= \min_{u:u(a)=1,\,u(b)=0} E_{\text{Ohm}}(i_u), \\ &(i_u)_{xy} = C_{xy} \cdot \big(u(x)-u(y)\big), \\ E_{\text{Ohm}}(i_u) &= \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}. \end{split}$$

$$\begin{aligned} R_{ab}^{\text{eff}} &= \min_{\Psi: \text{flow}} E_{\text{Ohm}}(i_u^* - \Psi), \\ (i_u^*)_{xy} &= D_{xy} \cdot (\gamma_{xy} u(x) - \gamma_{yx} u(y)), \\ E_{\text{Ohm}}(i_u^* - \Psi) &= \sum_{x \sim y} (i_u^* - \Psi_{xy})^2 \cdot R_{xy}. \end{aligned}$$

Irreversible

Dirichlet principle

Classical case:

$$\begin{split} R_{ab}^{\text{eff}} &= \min_{u:u(a)=1,\,u(b)=0} E_{\text{Ohm}}(i_u), \\ &(i_u)_{xy} = C_{xy} \cdot \big(u(x)-u(y)\big), \\ E_{\text{Ohm}}(i_u) &= \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}. \end{split}$$

$$\begin{split} R_{ab}^{\text{eff}} &= \min_{u:u(a)=1,\ u(b)=0} \min_{\Psi: \text{flow}} E_{\text{Ohm}}(i_u^* - \Psi), \\ & (i_u^*)_{xy} = D_{xy} \cdot \left(\gamma_{xy} u(x) - \gamma_{yx} u(y)\right), \\ E_{\text{Ohm}}(i_u^* - \Psi) &= \sum_{x \sim y} \left(i_u^* - \Psi_{xy}\right)^2 \cdot R_{xy}. \end{split}$$

Classical case:

$$\begin{split} R_{ab}^{\text{eff}} &= \min_{u:u(a)=1,\,u(b)=0} E_{\text{Ohm}}(i_u), \\ &(i_u)_{xy} = C_{xy} \cdot \big(u(x) - u(y)\big), \\ E_{\text{Ohm}}(i_u) &= \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}. \end{split}$$

Irreversible case (A. Gaudillière, C. Landim / M. Slowik):

$$\begin{split} R_{ab}^{\text{eff}} &= \min_{u:u(a)=1,\,u(b)=0} \, \min_{\Psi:\,\text{flow}} E_{\text{Ohm}}(i_u^* - \Psi), \\ &\qquad \qquad (i_u^*)_{xy} = D_{xy} \cdot \left(\gamma_{xy} u(x) - \gamma_{yx} u(y)\right), \\ E_{\text{Ohm}}(i_u^* - \Psi) &= \sum_{x \sim y} \left(i_u^* - \Psi_{xy}\right)^2 \cdot R_{xy}. \end{split}$$

Thank you.

Theorem (Well Known Theorem)

A Markov chain is reversible if and only if for every closed cycle $x_0, x_1, x_2, \ldots, x_n = x_0$ in Ω we have

$$P_{x_0x_1} \cdot P_{x_1x_2} \cdots P_{x_{n-1}x_0} = P_{x_0x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_1x_0}.$$

In particular, any Markov chain on a finite connected tree G is necessarily reversible.

Electrical proof.

Plug in

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x},$$
 D_{xy} symmetric:

$$\begin{split} P_{x_0x_1} \cdot P_{x_1x_2} \cdots P_{x_{n-1}x_0} &= P_{x_0x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_1x_0} \\ \gamma_{x_0x_1} \cdot \gamma_{x_1x_2} \cdots \gamma_{x_{n-1}x_0} &= \gamma_{x_0x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_1x_0} \\ \lambda_{x_0x_1} \cdot \lambda_{x_1x_2} \cdots \lambda_{x_{n-1}x_0} &= 1. \end{split}$$

Total multiplication factor along any loop is one.

Electrical proof.

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x},$$
 D_{xy} symmetric:

$$\begin{split} P_{x_0x_1} \cdot P_{x_1x_2} \cdots P_{x_{n-1}x_0} &= P_{x_0x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_1x_0} \\ \gamma_{x_0x_1} \cdot \gamma_{x_1x_2} \cdots \gamma_{x_{n-1}x_0} &= \gamma_{x_0x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_1x_0} \\ \lambda_{x_0x_1} \cdot \lambda_{x_1x_2} \cdots \lambda_{x_{n-1}x_0} &= 1. \end{split}$$

- Total multiplication factor along any loop is one.
- Zero current and free vertices is a solution.

Electrical proof.

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x},$$
 D_{xy} symmetric:

$$\begin{split} P_{x_0x_1} \cdot P_{x_1x_2} \cdots P_{x_{n-1}x_0} &= P_{x_0x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_1x_0} \\ \gamma_{x_0x_1} \cdot \gamma_{x_1x_2} \cdots \gamma_{x_{n-1}x_0} &= \gamma_{x_0x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_1x_0} \\ \lambda_{x_0x_1} \cdot \lambda_{x_1x_2} \cdots \lambda_{x_{n-1}x_0} &= 1. \end{split}$$

- Total multiplication factor along any loop is one.
- Zero current and free vertices is a solution.
- It's the only solution.

Electrical proof.

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x},$$
 D_{xy} symmetric:

$$\begin{split} P_{x_0x_1} \cdot P_{x_1x_2} \cdots P_{x_{n-1}x_0} &= P_{x_0x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_1x_0} \\ \gamma_{x_0x_1} \cdot \gamma_{x_1x_2} \cdots \gamma_{x_{n-1}x_0} &= \gamma_{x_0x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_1x_0} \\ \lambda_{x_0x_1} \cdot \lambda_{x_1x_2} \cdots \lambda_{x_{n-1}x_0} &= 1. \end{split}$$

- Total multiplication factor along any loop is one.
- Zero current and free vertices is a solution.
- It's the only solution.
- The network is "Markovian": potential is constant.

Electrical proof.

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x},$$
 D_{xy} symmetric:

$$\begin{split} P_{x_0x_1} \cdot P_{x_1x_2} \cdots P_{x_{n-1}x_0} &= P_{x_0x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_1x_0} \\ \gamma_{x_0x_1} \cdot \gamma_{x_1x_2} \cdots \gamma_{x_{n-1}x_0} &= \gamma_{x_0x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_1x_0} \\ \lambda_{x_0x_1} \cdot \lambda_{x_1x_2} \cdots \lambda_{x_{n-1}x_0} &= 1. \end{split}$$

- Total multiplication factor along any loop is one.
- Zero current and free vertices is a solution.
- It's the only solution.
- ▶ The network is "Markovian": potential is constant.
- ▶ All λ 's are 1, and the chain is reversible.

Electrical proof.

Repeat for trees:

There are no loops.

Electrical proof.

- There are no loops.
- Zero current and free vertices is a solution.

Electrical proof.

- There are no loops.
- Zero current and free vertices is a solution.
- It's the only solution.

Electrical proof.

- There are no loops.
- Zero current and free vertices is a solution.
- It's the only solution.
- The network is "Markovian": potential is constant.

Electrical proof.

- There are no loops.
- Zero current and free vertices is a solution.
- It's the only solution.
- The network is "Markovian": potential is constant.
- ▶ All λ 's are 1, and the chain is reversible.

Electrical proof.

Repeat for trees:

- There are no loops.
- Zero current and free vertices is a solution.
- It's the only solution.
- The network is "Markovian": potential is constant.
- ▶ All λ 's are 1, and the chain is reversible.

Second thank you.