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Self-similar graphs

Constructed recursively: Xn is obtained by “glueing” copies of Xn−1

together.

Finite approximations of fractals or finite parts of infinite graphs.

Some examples:

(modified) Koch curve Sierpiński gasket Lindstrøm snowflake
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Sierpiński graphs

The classical sequence of Sierpiński graphs (finite approximations of the
Sierpiński gasket, starting with a single triangle) will serve as a running
example to illustrate the general idea:

X0 X1 X2
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Random loops

We study two different kinds of models to create a random partition into
cycles:

Partition the edge set randomly into cycles; this is only possible if the
graph is Eulerian.

Partition the vertex set randomly into cycles; more precisely, take a
random 2-factor of the graph (a spanning subgraph whose connected
components are cycles).
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Random edge partitions

Choosing a partition of the edge set into cycles uniformly at random is
equivalent to choosing, independently for each vertex, the way in which
edges are “linked”. In the example of the Sierpiński graph, we have three
possibilities at each vertex (except for the corners, where we have no
choice):

This means that for the n-th Sierpiński graph Xn, we have

33(3
n−1)/2

possibilities.
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An example

The following picture shows a randomly generated instance for n = 5:
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Random 2-factors
The random 2-factor model is a dual in some sense: instead of using every
edge exactly once, we use every vertex exactly once. The picture shows a
randomly generated instance on the Sierpiński graph X5 again:
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Counting 2-factors

Counting all possibilities (which will be necessary for a probabilistic
analysis) is slightly more involved than in the previous model.

We notice that a 2-factor of Xn induces 2-factors on the three copies of
Xn−1, with two exceptions:

One or more corners may be left out.

One of the components may be a path connecting two corners.

Thus we define a few auxiliary quantities first:

ai,n denotes the number of 2-factors of Xn, from which i (fixed)
corner vertices have been removed (i ∈ {0, 1, 2, 3}).

bi,n denotes the number of spanning subgraphs of Xn, where all but
one component are cycles, and the exceptional component is a path
connecting the two bottom corners. For i = 0, the third corner is
covered as well, for i = 1, we remove it first.
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The auxiliary quantities

The following two examples show instances that are counted by a2,3 and
b0,3 respectively.
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Setting up a recursion

Now we only need to determine the number of ways of putting the pieces
together. For instance:

=

+ + +

+ +

This gives us

b0,n+1 = b20,na2,n + 2b0,nb1,na1,n + b21,na0,n + 2b20,nb1,n,

and recursions for the other quantities are obtained in the same way.
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The recursions

a0,n+1 = 6a0,na1,na2,n + 2a31,n + b30,n,

a1,n+1 = 2a0,na1,na3,n + 2a0,na
2
2,n + 4a21,na2,n + b20,nb1,n,

a2,n+1 = 2a0,na2,na3,n + 2a21,na
2
3,n + 4a1,na

2
2,n + b0,nb

2
1,n,

a3,n+1 = 6a1,na2,na3,n + 2a32,n + b31,n,

b0,n+1 = b20,na2,n + 2b0,nb1,na1,n + b21,na0,n + 2b20,nb1,n,

b1,n+1 = b20,na3,n + 2b0,nb1,na2,n + b21,na1,n + 2b0,nb
2
1,n,

with a0,0 = a3,0 = b0,0 = b1,0 = 1, a1,0 = a2,0 = 0.

We are particularly interested in a0,n:

n 0 1 2 3 4

a0,n 1 1 35 1072000 27269660672000000000
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Solving the recursions

One observes immediately that a0,n = a1,n = a2,n = a3,n for n ≥ 1 (proof
by induction or by a simple combinatorial bijection) and b0,n = b1,n for
n ≥ 1. This is not crucial per se, but it simplifies the calculations
considerably.

We can set
an = a0,n = a1,n = a2,n = a3,n

and
bn = b0,n = b1,n

and obtain
an+1 = 8a3n + b3n, bn+1 = 4anb

2
n + 2b3n.

Loop models on a fractal S. Wagner, Stellenbosch University 12 / 33



Solving the recursions

One observes immediately that a0,n = a1,n = a2,n = a3,n for n ≥ 1 (proof
by induction or by a simple combinatorial bijection) and b0,n = b1,n for
n ≥ 1. This is not crucial per se, but it simplifies the calculations
considerably.

We can set
an = a0,n = a1,n = a2,n = a3,n

and
bn = b0,n = b1,n

and obtain
an+1 = 8a3n + b3n, bn+1 = 4anb

2
n + 2b3n.

Loop models on a fractal S. Wagner, Stellenbosch University 12 / 33



Solving the recursions

Now consider the quotient: qn = an/bn, which satisfies

qn+1 =
an+1

bn+1
=

8a3n + b3n
4anb2n + 2b3n

=
8q3n + 1

4qn + 2

with q1 =
1
3 . Thus qn converges to the fixed point of the map x 7→ 8x3+1

4x+1 ,

which is 1
2 . Indeed,

qn =
1

2
− 1

2n
+O

( log n
n2

)
.

It follows that
an+1 = 16a3n(1 +O(n−1)).

Loop models on a fractal S. Wagner, Stellenbosch University 13 / 33



Solving the recursions

Now consider the quotient: qn = an/bn, which satisfies

qn+1 =
an+1

bn+1
=

8a3n + b3n
4anb2n + 2b3n

=
8q3n + 1

4qn + 2

with q1 =
1
3 . Thus qn converges to the fixed point of the map x 7→ 8x3+1

4x+1 ,

which is 1
2 . Indeed,

qn =
1

2
− 1

2n
+O

( log n
n2

)
.

It follows that
an+1 = 16a3n(1 +O(n−1)).

Loop models on a fractal S. Wagner, Stellenbosch University 13 / 33



The asymptotic solution

We finally arrive at the following formula:

Theorem

The number of 2-factors of the nth Sierpiński graph Xn is asymptotically
given by

an ∼
1

4
A3n ,

for a constant A = 1.77019389 . . .. Moreover, the number of “almost
2-factors” satisfies

bn ∼
1

2
A3n .
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The number of loops
In both models, the number of loops satisfies a central limit theorem with
mean and variance linear in the number of vertices of Xn:

Theorem

Let Ln denote the random number of cycles in the random edge partition
model. The mean and variance of Ln are asymptotically given by

µn ∼ 0.169619 · 3n, σ2n ∼ 0.171443 · 3n.

The normalised random variable Ln−µn
σn

converges weakly to a standard
normal distribution.

0 100 200 300 400 500 600 700

0.01

0.02

0.03

0.04

The distribution for n = 6.
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The number of loops

Theorem

Let Ln denote the random number of cycles in the random 2-factor model.
The mean and variance of Ln are asymptotically given by

µn ∼ 0.119986 · 3n, σ2n ∼ 0.085573 · 3n.

The normalised random variable Ln−µn
σn

converges weakly to a standard
normal distribution.
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Short loops
A similar result holds for the number of cycles of fixed length:

Theorem

For a fixed integer k ≥ 3, let Lk,n and Lk,n be the number of cycles of
length k in the random edge partition model and the random 2-factor
model on Xn respectively.
There exist positive constants αk, βk and αk, βk such that mean and
variance of Lk,n and Lk,n are asymptotically equal to

µk,n ∼ αk · 3n, σ2k,n ∼ βk · 3n

and
µk,n ∼ αk · 3n, σ2k,n ∼ βk · 3n

respectively. Moreover, the normalised random variables
Lk,n−µk,n

σk,n
and

Lk,n−µk,n
σk,n

converge weakly to a standard normal distribution.
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An example of the distribution

Number of triangles in a random 2-factor of X6:
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Long loops

In both models, “almost all” the cycles are short, since we have the
following trivial property:

Proposition

In both models, the number of cycles of length > k is O(3n/k). Thus if
k →∞ (arbitrarily slowly), the proportion of such cycles goes to 0.

Nonetheless, this raises the question how long “long” cycles typically are.
The answers are vastly different.
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Long loops in the edge partition model

Consider the cycle containing a fixed corner of Xn in the edge partition
model, and let J be the smallest index for which this cycle fits inside a
copy of XJ .

Theorem

There exists a constant C < 1 such that

P(J = j) = O(C2j ).

Corollary

With high probability, the longest cycle in the edge partition model has
length O(nlog2 3).
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Long loops in the 2-factor model

Recall the following definitions:

ai,n denotes the number of 2-factors of Xn, from which i (fixed)
corner vertices have been removed (i ∈ {0, 1, 2, 3}).

bi,n denotes the number of spanning subgraphs of Xn, where all but
one component are cycles, and the exceptional component is a path
connecting the two bottom corners. For i = 0, the third corner is
covered as well, for i = 1, we remove it first.

We have seen that a0,n = a1,n = a2,n = a3,n = an and b0,n = b1,n = bn
for n ≥ 1, and that an/bn → 1

2 .
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Long loops in the 2-factor model

In the recursion
an+1 = 8a3n + b3n,

the first term stands for the number of configurations without a cycle
surrounding the central hole, the second term stands for configurations
with such a cycle. Since they are asymptotically equal, the asymptotic
probability for a cycle around the central hole is 1

2 .

If there is no cycle around the central hole, then in each of the three parts
the probability for such a cycle is asymptotically 1

2 , etc.

In other words: fairly long cycles (at least in the order of 2n) exist with
high probability. How long are they actually, and what do they look like?

Loop models on a fractal S. Wagner, Stellenbosch University 22 / 33



Long loops in the 2-factor model

In the recursion
an+1 = 8a3n + b3n,

the first term stands for the number of configurations without a cycle
surrounding the central hole, the second term stands for configurations
with such a cycle. Since they are asymptotically equal, the asymptotic
probability for a cycle around the central hole is 1

2 .

If there is no cycle around the central hole, then in each of the three parts
the probability for such a cycle is asymptotically 1

2 , etc.

In other words: fairly long cycles (at least in the order of 2n) exist with
high probability. How long are they actually, and what do they look like?

Loop models on a fractal S. Wagner, Stellenbosch University 22 / 33



Long loops in the 2-factor model

In the recursion
an+1 = 8a3n + b3n,

the first term stands for the number of configurations without a cycle
surrounding the central hole, the second term stands for configurations
with such a cycle. Since they are asymptotically equal, the asymptotic
probability for a cycle around the central hole is 1

2 .

If there is no cycle around the central hole, then in each of the three parts
the probability for such a cycle is asymptotically 1

2 , etc.

In other words: fairly long cycles (at least in the order of 2n) exist with
high probability. How long are they actually, and what do they look like?

Loop models on a fractal S. Wagner, Stellenbosch University 22 / 33



Long loops in the 2-factor model
A random 2-factor of X8 and its longest cycle:
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Long loops in the 2-factor model

Theorem

Let Mn be the length of the longest cycle in a random 2-factor of Xn.
The normalised random variable n−1/10

(
5
2

)−n
Mn converges weakly to a

limiting distribution.
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The distribution for n = 6.
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Long loops in the 2-factor model

Heuristic explanation:

Consider the case that there is a cycle around the central hole. When we
decompose Xn into its three pieces, we obtain three configurations that
are each counted by b0,n−1 = bn−1.

Call configurations counted by an “type A configurations” and those
counted by bn “type B configurations”.

The recursion
bn = 4an−1b

2
n−1 + 2b3n−1

has two terms that are asymptotically equal. The first corresponds to a
split into one type A and two type B configurations, the second to a split
into three type B configurations.
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Long loops in the 2-factor model

Thus with asymptotic probability 1
2 , a piece of the long cycle in a type B

copy of Xn decomposes into three similar pieces in copies of Xn−1,
otherwise only two.

So we can regard this essentially as a Galton-Watson process, for which
standard theorems would be available. The main issue is the fact that the
probabilities only hold asymptotically (this is also the reason for the
curious n1/10).
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A scaling limit

What do random 2-factors look like on a macroscopic level? To formalise
this question, we can use the different types of subgraphs induced on
pieces that we also used for counting purposes. The following picture
shows a random 2-factor at increasing resolutions:
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A scaling limit

These “increasing resolutions” come with a natural projection map,
turning this into a projective system with a projective (inverse) limit. The
limiting probabilities of the various types equip this limit structure with a
natural probability measure.

proj.
←
→

prob. 1
2

proj.
←
→

prob. 1
256
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The geometry of long loops

Theorem

In the scaling limit of random 2-factors on the Sierpiński graph Xn,
consider a cycle around a fixed hole of the Sierpiński gasket X
(conditioned on the event that such a cycle exists). It is a random closed
curve that is almost surely

continuous everywhere,

non-differentiable everywhere,

and self-avoiding.

Its Hausdorff dimension is almost surely

log 5
2

log 2
≈ 1.32193.
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Spanning trees and the LERW

In earlier work (Teufl and W., 2014), it was shown that random spanning
trees on Xn have a natural limit. This limit can be seen as a random
metric on the Sierpiński gasket that is a real tree.

The connection between random spanning trees and the loop-erased
random walk (LERW) is well established (Wilson’s algorithm). In
particular, the unique path between e.g. the two bottom corners of Xn in
a spanning tree follows the same distribution as the LERW.
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Spanning trees and the LERW
A randomly generated spanning tree on X8 and the unique path from the
bottom left corner to the bottom right corner:
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Spanning trees and the LERW
As a consequence of this correspondence, we also obtained some
properties of the LERW on Sierpiński graphs that were also proven
independently by K. Hattori and M. Mizuno (2014):

Theorem

As n→∞, the loop-erased random walk on the Sierpiński graphs Xn

converges (suitably normalised) to a limit process. The limit curve is
almost surely

continuous everywhere,

non-differentiable everywhere,

and self-avoiding.

Its Hausdorff dimension is almost surely

log
(
4
3 + 1

15

√
205

)
log 2

≈ 1.193995.
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Questions

Can one unify these two instances (and possibly others, such as the
self-avoiding walk)?

Can one associate a natural random walk to random 2-factors?
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