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1. The exit problem for random walks
Let Sn := x + X1 + · · ·+ Xn be a random walk with i.i.d.
increments X1,X2, . . . .
Use Px(·) for the law of walk starting at x and Ex f :=

∫
fdPx .

Denote τB := inf{n ≥ 1 : Sn ∈ B} the hitting time of a set B.
A huge number of works is devoted to the asymptotic of
Px(τB > n) under different assumptions of Sn and B.

• Unbounded B: a rather complete theory have been developed for
B = (−∞, 0) ⊂ R (from Sparre-Andersen ’50s to Rogozin ’72). In
higher dimensions, there are many result on exit times from cones
(resent most by Denisov and Wachtel ’14).
• Bounded B: much less was known (Kesten and Spitzer ’63, Port
and Stone ’67).
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Kesten-Spitzer: For any aperiodic RW in Z1,2 and any finite
B ⊂ Z1,2, there exists

lim
n→∞

Px(τB > n)

P0(τ{0} > n)
:= gB(x), x /∈ B.

The hard case is that of recurrent random walks.
• For Z1, if Sn is centred and asymptotically α-stable with
1 < α ≤ 2, then P0(τ{0} > n) ∼ cn1/α−1L(n).
Moreover, if Var(X1) <∞, then α = 2 and L(n) = const.

• gB(x) is harmonic for the walk killed at hitting B, that is

gB(x) = ExgB(S1) for x ∈ Bc and g(x) := 0 on B.

Why:

Px(τB > n + 1) =

∫
B
Py (τB > n)Px(S1 ∈ dy)

∼ P0(τ{0} > n)ExgB(S1)1{τB>1}.
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Physical interpretation: gB(x) is the potential energy of the field
due to the unit equilibrium charge on B.
Spitzer made this rigorous: for any aperiodic recurrent walk in
Z1,2, the potential kernel

a(x) := lim
n→∞

n∑
k=0

(
P0(Sk = 0)− Px(Sk = 0)

)
exists and solves ∆a = δ0, where ∆ = P − I . For any finite
B ⊂ Z1,2, the equilibrium charge on B is

µ∗(y) =

{
lim|x |→∞ Ez(ST−B

= −y), d = 2 or d = 1, σ2 =∞,
1
2 lim
x→+∞

Ex(ST−B
= −y) + 1

2 lim
x→−∞

Ex(ST−B
= −y), o/w .

The potential hB(x) :=
∑

y∈B a(x − y)µ∗(y) solves ∆hB = µ∗ and
is constant on B, called the capacity. Then

gB(x) = hB(x)− CapB .

This is a very implicit representation.
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2. Our assumptions and a lower bound
Assume that the walk is in R, EX1 = 0, Var(X1) := σ2 ∈ (0,∞).
Let M be the state space of the random walk, that is M := λZ if
the walk is λ-arithmetic for some λ > 0 and M := R if otherwise.
Consider the basic case that B = (−d , d) for some d > 0. Put

pn(x) := Px(τ(−d ,d) > n), x /∈ B, x ∈ M.

Hitting times for half-lines: for any x ≥ 0,

Px(τ(−∞,0) > n) ∼
√

2

π

U>(x)

σ
√
n
,

where U>(x) is the renewal function. It is harmonic for the walk
killed as it enters (−∞, 0) and satisfies U>(x) = Ex(x − Sτ(−∞,0)).
Lower bound: for |x | ≥ d , staying to one side of B gives

pn(x) ≥ Px(T1 > n) ∼
√

2

π

Ud(x)

σ
√
n
, Ud(x) := Ex |x − ST1 |,

where T1 is the first moment of jump over either −d or d .
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3. Results for the basic case
Let Tk be the moment of the kth jump over {−d , d} from the
outside; let Hk := STk

, k ≥ 0 be the overshoots; denote the # of
jumps over (−d , d) before it is hit as κ := min(k ≥ 1 : |Hk | < d).

Theorem 1
Let Sn be a random walk with EX1 = 0, EX 2

1 := σ2 ∈ (0,∞).
Then for any d > 0 and any x from the state space M,

pn(x) ∼
√

2

π

Vd(x)

σ
√
n
, Vd(x) := Ex

[ κ∑
i=1

|Hi − Hi−1|
]
.

Moreover, this holds uniformly for x = o(
√
n). Further,

• Vd(x) is harmonic for the walk killed as it enters (−d , d);
• 0 < Ud(x) ≤ Vd(x) <∞ for |x | ≥ d ;
• Vd(x) ∼ |x | as x →∞.
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4. Ideas of the proof
1. It costs to jump over:
There exists a γ ∈ (0, 1) such that

Px(|H1| ≥ d) ≤ γ.

This follows since H1 converge weakly as x → ±∞ to the
overshoots over “infinitely remote” levels.

2. Regularity of pn(x) in both x and n is needed.
Lemma: For any x ∈ R and n ≥ 1, pn(x) ≤ C |x |n−1/2.
Roughly, Expn−T1(H1)1{|H1|≥d ,T1≤n} is controlled by Ex |H1|.
3. The mechanism of stabilisation:
For any α ∈ (0, 1) it holds that

Ex |H1| ≤ α|x |+ K (α), |x | ≥ d .

This follows from the known Ex |H1| = o(|x |) as |x | → ∞.
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5. General sets
Denote T ′k the moments of jumps over {inf B, supB}; H ′k := S ′Tk

the overshoots; and put κ′ := min{k ≥ 1 : T ′k ≥ τB}.

Theorem 2
Assume that EX1 = 0, EX 2

1 := σ2 ∈ (0,∞), and B is a bounded
Borel set with the non-empty IntM(B). Then for any x ∈ M,

p′n(x) ∼
√

2VB(x)

σ
√
πn

, VB(x) := Ex

[ κ′∑
i=1

∣∣H ′i−H ′i−1∣∣1{H′i−1 /∈Conv(B)}

]
.

Moreover, this holds uniformly for x = o(
√
n). It is true that

0 < VB(x) <∞ for x /∈ Conv(B) and clearly, V(−d ,d)(x) = Vd(x).

Heuristics
1. It costs exponentially in time to stay within Conv(B) \ B.
2. Each return from Bc to Conv(B) \ B costs multiplicatively.
3. The rest is as in the basic case.
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6. Conditional functional limit theorem
Define Ŝn(t): for t = k/n with a k ∈ N put Ŝn(k/n) := Sk/(σ

√
n),

and define the other values by linear interpolation.

Theorem 3
Under assumptions of Thm 2, for any x ∈ M such that VB(x) > 0,

Lawx(Ŝn(·)|τB > n)
D→ Law(ρW+) in C [0, 1],

where W+ is a Brownian meander, ρ is a r.v. independent of W+

with the distribution given by P(ρ = ±1) = 1
2 ±

x−ExSτB
2VB(x)

.

For integer-valued asymptotically α-stable walks (1 ≤ α ≤ 2) the
weak convergence was proved by Belkin ’72.
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7. Applications to the largest problem
Define the largest gap (maximal spacing) within the range of Sn:

Gap({Sk}nk≥1) := Gn := max
1≤k≤n−1

(
S(k+1,n) − S(k,n)

)
,

where mn := S(1,n) ≤ S(2,n) ≤ · · · ≤ S(n,n) =: Mn denote the
elements of S1, . . . ,Sn arranged in the weakly ascending order.

Theorem 4
If EX1 = 0, Var(X1) <∞, then

Gn
D−→ G ,

where G is a non-degenerate proper random variable.
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