Null sequences which are defined by ℓ_p spaces

Kati Ain

University of Tartu

Relations Between Banach Space Theory and Geometric Measure Theory

Kati Ain (University of Tartu)

Null sequences which are defined by ℓ_p spaces

June, 2015

1/14

We establish numerous equivalences for a sequence (x_n) in a Banach space X to be a (p, r)-null sequence.

The talk is based on the following paper:

K. Ain, E. Oja, On (p, r)-null sequences and their relatives, Math. Nachr. (2015) DOI: 10.1002/mana.201400300.

< ロ > < 同 > < 回 > < 回 >

The (p, r)-compactness

Throughout: X Banach space, B_X its closed unit ball. $1 \le p < \infty, 1 \le r \le p^* (1/p + 1/p^* = 1).$

Definition (A–Lillemets–Oja, 2012) $K \subset X$ is relatively (p, r)-compact if $K \subset (p, r)$ -conv $(x_n) := \{\sum_n a_n x_n : (a_n) \in B_{\ell_r}\}$ (where $(a_n) \in B_{c_0}$ if $r = \infty$) for some $(x_n) \in \ell_p(X)$.

Definition (A-Lillemets-Oja, 2012)

 $T \in \mathcal{K}_{(p,r)}(X, Y)$, i.e., linear $T : X \to Y$ is (p, r)-compact if $T(B_X) \subset Y$ is relatively (p, r)-compact in Y.

▶ (p, p*)-compactness = p-compactness (Sinha–Karn, 2002)

< ロ > < 同 > < 回 > < 回 >

p-null sequences

Definition (Delgado-Piñeiro, 2011)

 $(x_n) \subset X$ is *p*-null if for every $\varepsilon > 0$ there exist $(z_k) \in \varepsilon B_{\ell_p(X)}$ and $N \in \mathbb{N}$ such that $x_n \in (p, p^*)$ -conv (z_k) , $n \ge N$.

Theorem (Delgado–Piñeiro–Oja)

 $(x_n) \subset X$ is p-null $\Leftrightarrow (x_n)$ is null and relatively p-compact.

Proof of Theorem relies

- in [Delgado–Piñeiro, 2011] on a version of approximation property depending on p – special case of X,
- in [Oja, 2012] on the description of the space of *p*-null sequences as Chevet–Saphar tensor product,
- ▶ in [Lassalle–Turco, 2014] on the use of the Carl–Stephani theory.

Motivation

- Prove the Theorem in some general (*p*, *r*)-case.
- Use the Carl–Stephani theory in a more efficient way.
- Use the developed direct method for further extended cases.

Preliminaries

b - the class of all bounded subsets in all Banach spaces g(X) := subsets of X that are of type g where $g \subset b$

- **w** := all relatively weakly compact subsets in all Banach spaces
- k := all relatively compact subsets in all Banach spaces
- **k**_(p,r) := all relatively (p, r)-compact subsets in all Banach spaces

For an operator ideal \mathcal{A} , $\mathcal{A}(\boldsymbol{g}) \subset \boldsymbol{b}$ is given by $\mathcal{A}(\boldsymbol{g})(X) := \{ \boldsymbol{E} \subset X : \boldsymbol{E} \subset T(F) \text{ for some } F \in \boldsymbol{g}(Y) \text{ and } T \in \mathcal{A}(Y, X) \}$

Proposition (Grothendieck)

 $\mathbf{k} = \overline{\mathcal{F}}(\mathbf{b}) = \mathcal{K}(\mathbf{b}).$

Theorem

$$\boldsymbol{k}_{(\boldsymbol{p},r)} = \mathcal{N}_{(\boldsymbol{p},1,r^*)}(\boldsymbol{k}) = \mathcal{K}_{(\boldsymbol{p},r)}(\boldsymbol{k}).$$

June, 2015 6 / 14

< ロ > < 同 > < 回 > < 回 >

Carl-Stephani theory

Let $\ensuremath{\mathcal{A}}$ be an operator ideal

Definition (Carl–Stephani, 1985)

 $(x_n) \subset X$ is \mathcal{A} -null if there exist a Banach space Y, $(y_n) \in c_0(Y)$, and $T \in \mathcal{A}(Y, X)$ such that $x_n = Ty_n \forall n$.

Definition (Carl–Stephani, 1985)

 $K \subset X$ is \mathcal{A} -compact if $K \in \mathcal{A}(\mathbf{k})(X)$.

Theorem (Lassalle–Turco, 2012)

 $(x_n) \subset X$ is A-null $\Leftrightarrow (x_n)$ is null and A-compact.

June, 2015 7 / 14

(p, r)-null sequences

Definition (A–Oja, 2012)

 $(x_n) \subset X$ is (p, r)-null if for every $\varepsilon > 0$ there exist $(z_k) \in \varepsilon B_{\ell_p(X)}$ and $N \in \mathbb{N}$ such that $x_n \in (p, r)$ -conv (z_k) , $n \ge N$.

▶ (p, p*)-null = p-null

Definition

 $(x_n) \subset X$ uniformly (p, r)-null if there exists $(z_k) \in B_{\ell_p(X)}$ with the following property: for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $x_n \in \varepsilon (p, r)$ -conv (z_k) for all $n \ge N$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main theorem

Theorem (Delgado-Piñeiro-Oja)

 $(x_n) \subset X$ is p-null $\Leftrightarrow (x_n)$ is null and relatively p-compact.

Theorem

- For $(x_n) \subset X$ TFAE:
 - (x_n) is (p, r)-null,
 - 2 (x_n) is null and relatively (p, r)-compact,
 - **3** (x_n) is null and $\mathcal{N}_{(p,1,r^*)}$ -compact,
 - (x_n) is null and $\mathcal{K}_{(p,r)}$ -compact,
 - **(** x_n **)** is $\mathcal{N}_{(p,1,r^*)}$ -null,
 - (*x_n*) is $\mathcal{K}_{(p,r)}$ -null,
 - (x_n) is uniformly (p, r)-null.

Definition

 $K \subset X$ is relatively unconditionally (p, r)-compact (i.e., $K \in \boldsymbol{u}_{(p,r)}(X)$) if $K \subset (p, r)$ -conv $(x_n) := \{\sum_{n=1}^{\infty} a_n x_n : (a_n) \in B_{\ell_r}\}$ for some $(x_n) \in \ell_p^{\boldsymbol{u}}(X)$.

Definition

Linear $T : Y \to X$ is unconditionally (p, r)-compact (i.e., $T \in \mathcal{U}_{(p,r)}(Y, X)$) if $T(B_Y) \in \boldsymbol{u}_{(p,r)}(X)$.

Definition

 $(x_n) \subset X$ unconditionally (p, r)-null if for every $\varepsilon > 0$ there exist $N \in \mathbb{N}$ and $(z_k) \in \ell_p^u(X)$ with $||(z_k)||_p^w \le \varepsilon$ such that $x_n \in (p, r)$ -conv (z_k) for all $n \ge N$.

Definition

 $(x_n) \subset X$ uniformly unconditionally (p, r)-null if there exists $(z_k) \in B_{\ell_p^u(X)}$ with the following property: for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $x_n \in \varepsilon (p, r)$ -conv (z_k) for all $n \ge N$.

Theorem

For $(x_n) \subset X$ TFAE:

- (x_n) is unconditionally (p, r)-null,
- 2 (x_n) is null and relatively unconditionally (p, r)-compact,
- **3** (x_n) is null and $\mathcal{N}_{(\infty,p^*,r^*)}$ -compact,
- (*x_n*) is null and $\mathcal{U}_{(p,r)}$ -compact,
- \bigcirc (x_n) is $\mathcal{N}_{(\infty,p^*,r^*)}$ -null,
- (is $\mathcal{U}_{(p,r)}$ -null,
- (x_n) is uniformly unconditionally (p, r)-null.

Theorem (Kim 2014)

 $(x_n) \subset X$ is unconditionally p-null $\Leftrightarrow (x_n)$ is null and relatively unconditionally p-compact.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

 $K \subset X$ is relatively weakly (p, r)-compact (i.e., $K \in \boldsymbol{w}_{(p,r)}(X)$) if $K \subset (p, r)$ -conv $(x_n) := \{\sum_{n=1}^{\infty} a_n x_n : (a_n) \in B_{\ell_r}\}$ for some $(x_n) \in \ell_p^{\mathsf{w}}(X)$

Definition

Linear $T : Y \to X$ is weakly (p, r)-compact (i.e., $T \in W_{(p,r)}(Y, X)$) if $T(B_Y) \in \boldsymbol{w}_{(p,r)}(X)$.

Definition

 $(x_n) \subset X$ is weakly (p, r)-null if for every $x^* \in X^*$ and every $\varepsilon > 0$ there exist $(z_k) \in \ell_p^w(X)$ and $N \in \mathbb{N}$ such that $|x^*(x_n)| \le \varepsilon$ and $x_n \in (p, r)$ -conv (z_k) for all $n \ge N$.

Definition

 $(x_n) \subset X$ is uniformly weakly (p, r)-null if there exists $(z_k) \in \ell_p^w(X)$ with the following property: for every $x^* \in X^*$ and every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x^*(x_n)| \le \varepsilon$ and $x_n \in (p, r)$ -conv (z_k) for all $n \ge N$.

Definition

 $(x_n) \subset X$ is weakly \mathcal{A} -null if there exist a Banach space Y, a weakly null sequence (y_n) in Y, and $T \in \mathcal{A}(Y, X)$ such that $x_n = Ty_n$ for all $n \in \mathbb{N}$.

Definition

 $K \subset X$ is weakly A-compact if $K \in A(w)(X)$ where w denotes the class of all relatively weakly compact sets.

Theorem

Let $1 \le p < \infty$ and $1 < r \le p^*$ with $r < \infty$ if p = 1. For $(x_n) \subset X$ TFAE:

- (x_n) is weakly (p, r)-null,
- 2 (x_n) is weakly null and relatively weakly (p, r)-compact,
- (*x_n*) is weakly null and weakly $W_{(p,r)}$ -compact,
- (x_n) is weakly $\mathcal{W}_{(p,r)}$ -null,
- **(** x_n **)** is uniformly weakly (p, r)-null.

Thank you!

June, 2015

イロト イヨト イヨト イヨト

14/14

æ