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Motivation: interpolative puzzels

Let us suppose that we have the following two inequalities at hand, for
certain complex scalar matrix (aij)

N
i,j=1:

N∑
i=1

 N∑
j=1

|aij |2
 1

2

≤ C1 and

N∑
j=1

(
N∑
i=1

|aij |2
) 1

2

≤ C2

for some constant C > 0 and all positive integers N .

How can one find an optimal exponent r and a constant C1 > 0 such
that  N∑

i,j=1

|aij |r
 1

r

≤ C3, for all positive integers N ?

Moreover, how can one get a good (small) constant C3?
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Using a consequence of Minkowski’s inequality and applying Hölder’s
inequality successively:

N∑
i,j=1

|aij |
4
3 =

N∑
i=1

(
N∑

j=1

|aij |
2
3 |aij |

2
3

)

≤
N∑
i=1

( N∑
j=1

|aij |2
) 1

3
(

N∑
j=1

|aij |

) 2
3



≤

 N∑
i=1

(
N∑

j=1

|aij |2
) 1

2


2
3
 N∑

i=1

(
N∑

j=1

|aij |

)2
 1

3

=

 N∑
i=1

(
N∑

j=1

|aij |2
) 1

2


2
3


 N∑

i=1

(
N∑

j=1

|aij |

)2
 1

2


2
3

≤ C
2
3
1 · C

2
3
2

Solution: “interpolation via Hölder’s inequality”.
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inequality successively:

N∑
i,j=1

|aij |
4
3 =

N∑
i=1

(
N∑

j=1

|aij |
2
3 |aij |

2
3

)

≤
N∑
i=1

( N∑
j=1

|aij |2
) 1

3
(

N∑
j=1

|aij |

) 2
3



≤

 N∑
i=1

(
N∑

j=1

|aij |2
) 1

2


2
3
 N∑

i=1

(
N∑

j=1

|aij |

)2
 1

3

=

 N∑
i=1

(
N∑

j=1

|aij |2
) 1

2


2
3


 N∑

i=1

(
N∑

j=1

|aij |

)2
 1

2


2
3

≤ C
2
3
1 · C

2
3
2

Solution: “interpolation via Hölder’s inequality”.
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Mixed Lp spaces

A. Benedek and R. Panzone introduce the mixed Lp spaces notion on:

“The space Lp, with mixed norm”, Duke Math. J. 28 (1961), 301-324.

Let (Xi,Σi, µi) , i = 1, . . . ,m be σ-finite measurable spaces, let

(X,Σ, µ) :=

(
m∏
i=1

Xi,

m∏
i=1

Σi,

m∏
i=1

µi

)

be the product space and p := (p1, . . . , pm) ∈ [1,∞]m.

The space Lp(X) consists in all measurable functions f : X → K with the
following property:

f (x1, . . . , xm−1, ·) ∈ Lpm(Xm), i.e., ‖f‖pm := ‖f (x1, . . . , xm−1, ·)‖pm <∞,

for any (x1, . . . , xm−1) ∈
∏n−1

i=1 Xi and, also ‖f‖pm , results in a measur-

able function; this process is repeated successively: the resulting pm−1-norm,

pm−2-norm,. . . , p1-norm (in this order) are finite.
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Nacib Albuquerque Hölder’s inequality and operators summability



Mixed Lp spaces

A. Benedek and R. Panzone introduce the mixed Lp spaces notion on:

“The space Lp, with mixed norm”, Duke Math. J. 28 (1961), 301-324.

Let (Xi,Σi, µi) , i = 1, . . . ,m be σ-finite measurable spaces, let

(X,Σ, µ) :=

(
m∏
i=1

Xi,
m∏
i=1

Σi,
m∏
i=1

µi

)

be the product space and p := (p1, . . . , pm) ∈ [1,∞]m.

The space Lp(X) consists in all measurable functions f : X → K with the
following property:

f (x1, . . . , xm−1, ·) ∈ Lpm(Xm), i.e., ‖f‖pm := ‖f (x1, . . . , xm−1, ·)‖pm <∞,

for any (x1, . . . , xm−1) ∈
∏n−1

i=1 Xi and, also ‖f‖pm , results in a measur-

able function; this process is repeated successively: the resulting pm−1-norm,

pm−2-norm,. . . , p1-norm (in this order) are finite.
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For instance, when all pi < ∞ a measurable function f : X → K it is
an element of Lp(X) if, and only if,

‖f‖p :=

∫
X1

(
. . .

(∫
Xm

|f |pmdµm
) pm−1

pm

. . .

) p1
p2

dµ1


1
p1

<∞.

Some classical properties and results concerning the Lp spaces:

Lp(X) is a Banach space;

Monotone’s convergence classical theorems;

Lebesgue’s dominated convergence theorem.
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Mixed Hölder’s inequality

We are interested in a “simple” result:

Theorem (Mixed Hölder’s inequality)

Let r ∈ [1,∞)m and ,p(1), . . . ,p(N) ∈ [1,∞]m be such that

1

rj
=

1

pj(1)
+ · · ·+ 1

pj(N)
, for j = 1, . . . ,m.

If fk ∈ Lp(k)(X) for k = 1, . . . , N , then

f1f2 · · · fN ∈ Lr(X)

and, moreover,

‖f1 · · · fN‖r ≤ ‖f1‖p(1) · · · ‖fN‖p(N) .

Nacib Albuquerque Hölder’s inequality and operators summability



Interpolative approach

Corollary [Mixed interpolative Hölder’s inequality]

Let r,p(1), . . . ,p(N) ∈ [1,∞]m and θ1, . . . , θN ∈ [0, 1] be such that

θ1 + · · ·+ θN = 1

and

1

rj
=

N∑
k=1

θk
pj(k)

=
θ1
pj(1)

+ · · ·+ θN
pj(N)

, for j = 1, . . . ,m.

If f ∈ Lp(k)(X) for k = 1, . . . , N , then f ∈ Lr(X) and, moreover,

‖f‖r ≤ ‖f‖
θ1
p(1) · · · ‖f‖

θN
p(N) .
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Mixed norm sequence spaces

Let X be a Banach space and p ∈ [1,∞)m. The mixed norm sequence
space

`p(X) := `p1 (`p2 (. . . (`pm(X)) . . . ))

is formed by all multi-index vector valued matrices (xi)i∈Nm with
finite p-norm that is,

‖(xi)i‖p :=

 ∞∑
i1=1

. . .( ∞∑
im=1

‖xi‖pmX

) pm−1
pm

. . .


p1
p2


1
p1

<∞.

When X = K, we just write `p instead of `p(K).
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Hölder’s interpolative inequality for sequences

The next interpolation result on these mixed norm sequences spaces
has a central role on the results we will present.

Corollary [Hölder’s interpolative inequality for mixed `p spaces]

Let m,n,N be positive integers, r,p(1), . . . ,p(N) ∈ [1,∞]m and
θ1, . . . , θN ∈ [0, 1] be such that θ1 + · · ·+ θN = 1 and

1

rj
=

N∑
k=1

θk
pj(k)

=
θ1
pj(1)

+ · · ·+ θN
pj(N)

, for j = 1, . . . ,m.

Then, for all scalar matrix a := (ai)i∈M(m,n), we have

‖a‖r ≤ ‖a‖
θ1
p(1) · · · ‖a‖

θN
p(N) .
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Hölder’s interpolative inequality for sequences

In particular, if each p(k) ∈ [1,∞), the previous inequality means that

 n∑
i1=1

. . .( n∑
im=1

|ai|rm
) rm−1

rm

. . .


r1
r2


1
r1

≤
N∏
k=1


 n∑
i1=1

. . .( n∑
im=1

|ai|pm(k)

) pm−1(k)

pm(k)

. . .


p1(k)

p2(k)


1

p1(k)

θk

.

Thanks anonymous referee!
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Multilinear Bohnenblust-Hille’s inequality

[1931] H. F. Bohnenblust and E. Hille generalized the
Littlewood’s 4/3-inequality and solved de Harald Bohr’s radius
strip problem.

Theorem (Multilinear Bohnenblust-Hille’s inequality)

For each positive integer m ≥ 1, there exists a constant Cm ≥ 1 such
that  ∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m

m+1


m+1
2m

≤ Cm ‖A‖ ,

for all continuous m-linear forms A : c0 × · · · × c0 → K. Moreover,
the exponent 2m

m+1 is optimal.
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Multilinear Hardy-Littlewood’s inequality

[1934] G. Hardy and J. P. Littlewood provided an `p-version for
the bilinear case (Littlewood’s 4/3 inequality).

[1981] T. Praciano-Pereira obtained a general result for
multilinear forms on `p spaces.

Let us define Xp := `p, 1 ≤ p < +∞ and X∞ := c0.

Theorem (Multilinear Hardy-Littlewood’s inequality)

Let p ∈ [1,+∞]
m

with
∣∣∣ 1p ∣∣∣ := 1

p1
+ · · ·+ 1

pm
≤ 1

2 . Then there exists a

constant Cm,p ≥ 1 such that, for every continuous m-linear form
A : Xp1 × · · · ×Xpm → C,

 ∞∑
i1,...,im=1

|A(ei1 , . . . , eim)|
2m

m+1−2| 1p |


m+1−2| 1p |
2m

≤ Cm,p‖A‖.
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After results...

[2009] Defant and Sevilla-Peris;

[2013] A., Bayart, Pellegrino and Seoane;

[2013] Dimant and Sevilla-Peris.
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Unifying result

Theorem (A., Bayart, Pellegrino, Seoane (2014))

Let p ∈ [1,+∞]m and 1 ≤ s ≤ q ≤ ∞ be such that∣∣∣∣ 1p
∣∣∣∣ < 1

2
+

1

s
−

1

min{q, 2}
.

If λ :=
[
1
2

+ 1
s
− 1

min{q,2} −
∣∣∣ 1p ∣∣∣]−1

> 0 and t1, . . . , tm ∈ [λ,max {λ, s, 2}] are
such that

1

t1
+ · · ·+

1

tm
≤

1

λ
+

m− 1

max{λ, s, 2}
,

then there exists C > 0 satisfying, for every continuous m-linear map
A : Xp1 × · · · ×Xpm → Xs,

+∞∑
i1=1

. . .
 +∞∑

im=1

‖A (ei1 , . . . , eim )‖tm`q


tm−1
tm

. . .


t1
t2


1
t1

≤ C‖A‖.

Moreover, the exponents are optimal except eventually if q ≤ 2 and
∣∣∣ 1p ∣∣∣ > 1

2
.
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Tools for the proof (sufficiency)

norm-mixed estimate for (`λ, `q) or cotype version of
Khinchinte’s inequality [Dimant and Sevilla-Peris (2013)];

Bennet-Carl inequality;

Interpolative Hölder’s inequality.
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Multiple summing operators point of view

From now on, E1, E2, . . . , F shall denote Banach spaces.

Proposition [Bohnenblust-Hille re-written]

If q ∈ [1, 2]m is such that
∣∣∣ 1q ∣∣∣ ≤ 1

2
, then

 ∞∑
j1=1

· · ·( ∞∑
jm=1

∣∣∣T (x(1)j1
, . . . , x

(m)
jm

)∣∣∣qm)
qm−1
qm

· · ·


q1
q2


1
q1

≤ BK
m,(q1,...,qm) ‖T‖

m∏
k=1

∥∥∥∥(x(k)jk

)∞
jk=1

∥∥∥∥
w,1

,

for all bounded m–linear forms T : E1 × · · · × Em → K and all sequences(
x
(k)
jk

)∞
jk=1

∈ `w1 (Ek) , k = 1, . . . ,m.
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Proposition [Hardy-Littlewood re-written]

Let m ≥ 1, p ∈ [1,∞]m. If 0 ≤
∣∣∣ 1p ∣∣∣ ≤ 1

2
and q ∈

[(
1−

∣∣∣ 1p ∣∣∣)−1

, 2

]m
are

such that ∣∣∣∣ 1q
∣∣∣∣ ≤ m+ 1

2
−
∣∣∣∣ 1p
∣∣∣∣ .

Then, for all continuous m–linear forms T : E1 × · · · × Em → K, ∞∑
i1=1

· · ·( ∞∑
im=1

∣∣∣T (x(1)i1
, . . . , x

(m)
im

)∣∣∣qm)
qm−1
qm

· · ·


q1
q2


1
q1

≤ CK
m,p,q ‖T‖

m∏
k=1

∥∥∥(x(k)i

)∞
i=1

∥∥∥
w,p∗

k

,

regardless of the sequences
(
x
(k)
jk

)∞
i=1
∈ `wp∗

k
(Ek) , k = 1, . . . ,m.
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Parttially multiple summnig operators: the designs

For Banach spaces E1, . . . , Em and an element x ∈ Ej , for some j ∈ {1, . . . ,m},
the symbol x · ej represents the vector x · ej ∈ E1 × · · · × Em such that the j-th
coordinate is x ∈ Ej , and 0 otherwise.

Definition

Let E1, . . . , Em, F be Banach spaces, m, k be positive integers with 1 ≤ k ≤ m,
and (p,q) := (p1, . . . , pm, q1, . . . , qk) ∈ [1,∞)m+k. Let also I = {I1, . . . , Ik} a
family of non-void disjoints subsets of {1, . . . ,m} such that ∪ki=1Ii = {1, . . . ,m},
that is, I is a partition of {1, . . . ,m}. A multilinear operator
T : E1 × · · · × Em → F is I–partially multiple (q;p)–summing if there exists a
constant C > 0 such that

∞∑
i1=1

· · ·
 ∞∑

ik=1

∥∥∥∥∥∥T
 k∑

n=1

∑
j∈In

x
(j)
in
· ej

∥∥∥∥∥∥
qk

F


qk−1
qk

· · ·


q1
q2


1
q1

≤ C
m∏

j=1

∥∥∥(x(j)i

)∞
i=1

∥∥∥
w,pj
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Definition

for all
(
x
(j)
i

)∞
i=1
∈ `wpj (Ej) , j = 1, . . . ,m. We represent the class of all

I–partially multiple (q;p)–summing operators by Πk,m,I
(q;p) (E1, . . . , Em;F ).

The infimum taken over all possible constants C > 0 satisfying the previous
inequality defines a norm in Πk,m,I

(q;p) (E1, . . . , Em;F ), which is denoted by

πI(q;p).

Note that when

k = 1, we recover the class of absolutely (q; p1, . . . , pm)–summing
operators, with q := q1;

k = m and q1 = · · · = qm =: q, we recover the class of multiple
(q; p1, . . . , pm)–summing operators.

From now on, m, k are positive integers with 1 ≤ k ≤ m, (p,q) :=
(p1, . . . , pm, q1, . . . , qk) ∈ [1,∞)m+k and I = {I1, . . . , Ik} is a partition
of {1, . . . ,m}.
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BH partially summ. version

Theorem [Bohnenblust-Hille’s partially summ. version]

Let q ∈ [1, 2]k such that
∣∣∣ 1q ∣∣∣ ≤ k+1

2
. Then

 ∞∑
i1=1

· · ·
 ∞∑

ik=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

x
(j)
in
· ej

)∣∣∣∣∣
qk


qk−1
qk

· · ·


q1
q2


1
q1

≤ BK
k,q ‖T‖

m∏
j=1

∥∥∥(x(j)i

)∞
i=1

∥∥∥
w,1

,

for all m–linear forms T : E1 × · · · × Em → K and all sequences(
x
(j)
i

)∞
i=1
∈ `w1 (Ej) , j = 1, . . . ,m.

In other words, when q ∈ [1, 2]k such that
∣∣∣ 1q ∣∣∣ ≤ k+1

2
we have the following

coincidence result:

Πk,m,I
(q;1) (E1, . . . , Em;F ) = L (E1, . . . , Em;K) ,

with 1 := (1,m times. . . , 1).
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HL partially summ. version

Theorem [Hardy-Littlewood’s partially summ. version]

Let 1 ≤ k ≤ m, p ∈ [1,∞]m. If 0 ≤
∣∣∣ 1p ∣∣∣ ≤ 1

2
and q ∈

[(
1−

∣∣∣ 1p ∣∣∣)−1
, 2

]k
are such

that
∣∣∣ 1q ∣∣∣ ≤ k+1

2
−
∣∣∣ 1p ∣∣∣, then, for all continuous m–linear forms

T : E1 × · · · × Em → K,
∞∑

i1=1

· · ·
 ∞∑

ik=1

∣∣∣∣∣∣T
 k∑

n=1

∑
j∈In

x
(j)
in
· ej

∣∣∣∣∣∣
qk


qk−1
qk

· · ·


q1
q2


1
q1

≤ CK
k,m,p,q ‖T‖

m∏
j=1

∥∥∥(x(j)i

)∞
i=1

∥∥∥
w,p∗j

,

regardless of the sequences
(
x
(j)
i

)∞
i=1
∈ `w

p∗j
(Ej) , j = 1, . . . ,m.

In other words,we have the coincidence

Πk,m,I
(q;p∗)(E1, . . . , Em;F ) = L (E1, . . . , Em;K) ,

with p∗ :=
(
p∗1, . . . , p

∗
m

)
.
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Thank you very much!
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