Hölder's inequality on mixed L_{p} spaces and summability of multilinear operators

Nacib Albuquerque

Federal Rural University of Pernambuco

Relations Between Banach Space Theory and Geometric Measure Theory The University of Warwick - Coventry, UK

10th June 2015

Motivation: interpolative puzzels

Let us suppose that we have the following two inequalities at hand, for certain complex scalar matrix $\left(a_{i j}\right)_{i, j=1}^{N}$:

$$
\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} \leq \mathrm{C}_{1} \text { and } \sum_{j=1}^{N}\left(\sum_{i=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} \leq \mathrm{C}_{2}
$$

for some constant $\mathrm{C}>0$ and all positive integers N.

Motivation: interpolative puzzels

Let us suppose that we have the following two inequalities at hand, for certain complex scalar matrix $\left(a_{i j}\right)_{i, j=1}^{N}$:

$$
\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} \leq \mathrm{C}_{1} \text { and } \sum_{j=1}^{N}\left(\sum_{i=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} \leq \mathrm{C}_{2}
$$

for some constant $\mathrm{C}>0$ and all positive integers N.

How can one find an optimal exponent r and a constant $\mathrm{C}_{1}>0$ such that

$$
\left(\sum_{i, j=1}^{N}\left|a_{i j}\right|^{r}\right)^{\frac{1}{r}} \leq \mathrm{C}_{3}, \text { for all positive integers } N ?
$$

Moreover, how can one get a good (small) constant C_{3} ?

Using a consequence of Minkowski's inequality and applying Hölder's inequality successively:

$$
\begin{aligned}
\sum_{i, j=1}^{N}\left|a_{i j}\right|^{\frac{4}{3}} & =\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{\frac{2}{3}}\left|a_{i j}\right|^{\frac{2}{3}}\right) \\
& \leq \sum_{i=1}^{N}\left(\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{3}}\left(\sum_{j=1}^{N}\left|a_{i j}\right|\right)^{\frac{2}{3}}\right) \\
& \leq\left(\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}\right)^{\frac{2}{3}}\left(\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|\right)^{2}\right)^{\frac{1}{3}} \\
& =\left[\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}\right]^{\frac{2}{3}}\left[\left(\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|\right)^{2}\right)^{\frac{1}{2}}\right]^{\frac{2}{3}} \leq \mathrm{C}_{1}^{\frac{2}{3}} \cdot \mathrm{C}_{2}^{\frac{2}{3}}
\end{aligned}
$$

Using a consequence of Minkowski's inequality and applying Hölder's inequality successively:

$$
\begin{aligned}
\sum_{i, j=1}^{N}\left|a_{i j}\right|^{\frac{4}{3}} & =\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{\frac{2}{3}}\left|a_{i j}\right|^{\frac{2}{3}}\right) \\
& \leq \sum_{i=1}^{N}\left(\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{3}}\left(\sum_{j=1}^{N}\left|a_{i j}\right|\right)^{\frac{2}{3}}\right) \\
& \leq\left(\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}\right)^{\frac{2}{3}}\left(\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|\right)^{2}\right)^{\frac{1}{3}} \\
& =\left[\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}\right]^{\frac{2}{3}}\left[\left(\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|a_{i j}\right|\right)^{2}\right)^{\frac{1}{2}}\right]^{\frac{2}{3}} \leq \mathrm{C}_{1}^{\frac{2}{3}} \cdot \mathrm{C}_{2}^{\frac{2}{3}}
\end{aligned}
$$

Solution:"interpolation via Hölder's inequality".

Mixed L_{p} spaces

A. Benedek and R. Panzone introduce the mixed L_{p} spaces notion on:
"The space $L_{\mathbf{p}}$, with mixed norm", Duke Math. J. 28 (1961), 301-324.

Mixed L_{p} spaces

A. Benedek and R. Panzone introduce the mixed L_{p} spaces notion on:
"The space $L_{\mathbf{p}}$, with mixed norm", Duke Math. J. 28 (1961), 301-324.
Let $\left(X_{i}, \Sigma_{i}, \mu_{i}\right), i=1, \ldots, m$ be σ-finite measurable spaces, let

$$
(\mathbf{X}, \Sigma, \mu):=\left(\prod_{i=1}^{m} X_{i}, \prod_{i=1}^{m} \Sigma_{i}, \prod_{i=1}^{m} \mu_{i}\right)
$$

be the product space and $\mathbf{p}:=\left(p_{1}, \ldots, p_{m}\right) \in[1, \infty]^{m}$.

Mixed L_{p} spaces

A. Benedek and R. Panzone introduce the mixed L_{p} spaces notion on:
"The space $L_{\mathbf{p}}$, with mixed norm", Duke Math. J. 28 (1961), 301-324.
Let $\left(X_{i}, \Sigma_{i}, \mu_{i}\right), i=1, \ldots, m$ be σ-finite measurable spaces, let

$$
(\mathbf{X}, \Sigma, \mu):=\left(\prod_{i=1}^{m} X_{i}, \prod_{i=1}^{m} \Sigma_{i}, \prod_{i=1}^{m} \mu_{i}\right)
$$

be the product space and $\mathbf{p}:=\left(p_{1}, \ldots, p_{m}\right) \in[1, \infty]^{m}$.
The space $L_{\mathbf{p}}(\mathbf{X})$ consists in all measurable functions $f: \mathbf{X} \rightarrow \mathbb{K}$ with the following property:
$f\left(x_{1}, \ldots, x_{m-1}, \cdot\right) \in L_{p_{m}}\left(X_{m}\right)$, i.e., $\|f\|_{p_{m}}:=\left\|f\left(x_{1}, \ldots, x_{m-1}, \cdot\right)\right\|_{p_{m}}<\infty$, for any $\left(x_{1}, \ldots, x_{m-1}\right) \in \prod_{i=1}^{n-1} X_{i}$ and, also $\|f\|_{p_{m}}$, results in a measurable function;

Mixed L_{p} spaces

A. Benedek and R. Panzone introduce the mixed L_{p} spaces notion on:
"The space $L_{\mathbf{p}}$, with mixed norm", Duke Math. J. 28 (1961), 301-324.
Let $\left(X_{i}, \Sigma_{i}, \mu_{i}\right), i=1, \ldots, m$ be σ-finite measurable spaces, let

$$
(\mathbf{X}, \Sigma, \mu):=\left(\prod_{i=1}^{m} X_{i}, \prod_{i=1}^{m} \Sigma_{i}, \prod_{i=1}^{m} \mu_{i}\right)
$$

be the product space and $\mathbf{p}:=\left(p_{1}, \ldots, p_{m}\right) \in[1, \infty]^{m}$.
The space $L_{\mathbf{p}}(\mathbf{X})$ consists in all measurable functions $f: \mathbf{X} \rightarrow \mathbb{K}$ with the following property:
$f\left(x_{1}, \ldots, x_{m-1}, \cdot\right) \in L_{p_{m}}\left(X_{m}\right)$, i.e., $\|f\|_{p_{m}}:=\left\|f\left(x_{1}, \ldots, x_{m-1}, \cdot\right)\right\|_{p_{m}}<\infty$, for any $\left(x_{1}, \ldots, x_{m-1}\right) \in \prod_{i=1}^{n-1} X_{i}$ and, also $\|f\|_{p_{m}}$, results in a measurable function; this process is repeated successively: the resulting p_{m-1}-norm, p_{m-2}-norm,..., p_{1}-norm (in this order) are finite.

For instance, when all $p_{i}<\infty$ a measurable function $f: \mathbf{X} \rightarrow \mathbb{K}$ it is an element of $L_{\mathbf{p}}(\mathbf{X})$ if, and only if,

$$
\|f\|_{\mathrm{p}}:=\left(\int_{X_{1}}\left(\cdots\left(\int_{X_{m}}|f|^{p_{m}} d \mu_{m}\right)^{\frac{p_{m-1}}{p_{m}}} \cdots\right)^{\frac{p_{1}}{p_{2}}} d \mu_{1}\right)^{\frac{1}{p_{1}}}<\infty .
$$

For instance, when all $p_{i}<\infty$ a measurable function $f: \mathbf{X} \rightarrow \mathbb{K}$ it is an element of $L_{\mathbf{p}}(\mathbf{X})$ if, and only if,

$$
\|f\|_{\mathbf{p}}:=\left(\int_{X_{1}}\left(\ldots\left(\int_{X_{m}}|f|^{p_{m}} d \mu_{m}\right)^{\frac{p_{m-1}}{p_{m}}} \ldots\right)^{\frac{p_{1}}{p_{2}}} d \mu_{1}\right)^{\frac{1}{p_{1}}}<\infty .
$$

Some classical properties and results concerning the $L_{\mathbf{p}}$ spaces:

- $L_{\mathbf{p}}(\mathbf{X})$ is a Banach space;
- Monotone's convergence classical theorems;

■ Lebesgue's dominated convergence theorem.

Mixed Hölder's inequality

We are interested in a "simple" result:

Theorem (Mixed Hölder's inequality)

Let $\mathbf{r} \in[1, \infty)^{m}$ and $, \mathbf{p}(1), \ldots, \mathbf{p}(N) \in[1, \infty]^{m}$ be such that

$$
\frac{1}{r_{j}}=\frac{1}{p_{j}(1)}+\cdots+\frac{1}{p_{j}(N)}, \quad \text { for } j=1, \ldots, m
$$

If $f_{k} \in L_{\mathbf{p}(k)}(\mathbf{X})$ for $k=1, \ldots, N$, then

$$
f_{1} f_{2} \cdots f_{N} \in L_{\mathbf{r}}(\mathbf{X})
$$

and, moreover,

$$
\left\|f_{1} \cdots f_{N}\right\|_{\mathbf{r}} \leq\left\|f_{1}\right\|_{\mathbf{p}(1)} \cdots\left\|f_{N}\right\|_{\mathbf{p}(N)}
$$

Interpolative approach

Corollary [Mixed interpolative Hölder's inequality]

Let $\mathbf{r}, \mathbf{p}(1), \ldots, \mathbf{p}(N) \in[1, \infty]^{m}$ and $\theta_{1}, \ldots, \theta_{N} \in[0,1]$ be such that

$$
\theta_{1}+\cdots+\theta_{N}=1
$$

and

$$
\frac{1}{r_{j}}=\sum_{k=1}^{N} \frac{\theta_{k}}{p_{j}(k)}=\frac{\theta_{1}}{p_{j}(1)}+\cdots+\frac{\theta_{N}}{p_{j}(N)}, \quad \text { for } j=1, \ldots, m
$$

If $f \in L_{\mathbf{p}(k)}(X)$ for $k=1, \ldots, N$, then $f \in L_{\mathbf{r}}(X)$ and, moreover,

$$
\|f\|_{\mathbf{r}} \leq\|f\|_{\mathbf{p}(1)}^{\theta_{1}} \cdots\|f\|_{\mathbf{p}(N)}^{\theta_{N}} .
$$

Mixed norm sequence spaces

Let X be a Banach space and $\mathbf{p} \in[1, \infty)^{m}$. The mixed norm sequence space

$$
\ell_{\mathbf{p}}(X):=\ell_{p_{1}}\left(\ell_{p_{2}}\left(\ldots\left(\ell_{p_{m}}(X)\right) \ldots\right)\right)
$$

is formed by all multi-index vector valued matrices $\left(x_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{N}^{m}}$ with finite \mathbf{p}-norm that is,

$$
\left\|\left(x_{\mathbf{i}}\right)_{\mathbf{i}}\right\|_{\mathbf{p}}:=\left(\sum_{i_{1}=1}^{\infty}\left(\ldots\left(\sum_{i_{m}=1}^{\infty}\left\|x_{\mathbf{i}}\right\|_{X}^{p_{m}}\right)^{\frac{p_{m-1}}{p_{m}}} \ldots\right)^{\frac{p_{1}}{p_{2}}}\right)^{\frac{1}{p_{1}}}<\infty .
$$

When $X=\mathbb{K}$, we just write $\ell_{\mathbf{p}}$ instead of $\ell_{\mathbf{p}}(\mathbb{K})$.

Hölder's interpolative inequality for sequences

The next interpolation result on these mixed norm sequences spaces has a central role on the results we will present.

Corollary [Hölder's interpolative inequality for mixed $\ell_{\mathbf{p}}$ spaces]

Let m, n, N be positive integers, $\mathbf{r}, \mathbf{p}(1), \ldots, \mathbf{p}(N) \in[1, \infty]^{m}$ and $\theta_{1}, \ldots, \theta_{N} \in[0,1]$ be such that $\theta_{1}+\cdots+\theta_{N}=1$ and

$$
\frac{1}{r_{j}}=\sum_{k=1}^{N} \frac{\theta_{k}}{p_{j}(k)}=\frac{\theta_{1}}{p_{j}(1)}+\cdots+\frac{\theta_{N}}{p_{j}(N)}, \quad \text { for } j=1, \ldots, m
$$

Then, for all scalar matrix $\mathbf{a}:=\left(\mathbf{a}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathcal{M}(m, n)}$, we have

$$
\|\mathbf{a}\|_{\mathbf{r}} \leq\|\mathbf{a}\|_{\mathbf{p}(1)}^{\theta_{1}} \cdots\|\mathbf{a}\|_{\mathbf{p}(N)}^{\theta_{N}} .
$$

Hölder's interpolative inequality for sequences

In particular, if each $\mathbf{p}(k) \in[1, \infty)$, the previous inequality means that

$$
\begin{aligned}
& \left(\sum_{i_{1}=1}^{n}\left(\cdots\left(\sum_{i_{m}=1}^{n}\left|\mathrm{a}_{\mathbf{i}}\right|^{r_{m}}\right)^{\frac{r_{m-1}}{r_{m}}} \cdots\right)^{\frac{r_{1}}{r_{2}}}\right)^{\frac{1}{r_{1}}} \\
& \leq \prod_{k=1}^{N}\left[\left(\sum_{i_{1}=1}^{n}\left(\cdots\left(\sum_{i_{m}=1}^{n}\left|\mathrm{a}_{\mathbf{i}}\right|^{\left.p_{m}(k)\right)^{\frac{p_{m-1}(k)}{p_{m}(k)}}}\right)^{\frac{p_{1}(k)}{p_{2}(k)}}\right)^{\frac{1}{p_{1}(k)}}\right]^{\theta_{k}}\right.
\end{aligned} .
$$

Hölder's interpolative inequality for sequences

In particular, if each $\mathbf{p}(k) \in[1, \infty)$, the previous inequality means that

$$
\begin{aligned}
& \left(\sum_{i_{1}=1}^{n}\left(\cdots\left(\sum_{i_{m}=1}^{n}\left|\mathrm{a}_{\mathbf{i}}\right|^{\left.r_{m}\right)^{\frac{r_{m-1}}{r_{m}}}} \cdots\right)^{\frac{r_{1}}{r_{2}}}\right)^{\frac{1}{r_{1}}}\right. \\
& \leq \prod_{k=1}^{N}\left[\left(\sum_{i_{1}=1}^{n}\left(\cdots\left(\sum_{i_{m}=1}^{n}\left|\mathrm{a}_{\mathbf{i}}\right|^{\left.p_{m}(k)\right)^{\frac{p_{m-1}(k)}{p_{m}(k)}}} \quad\right]^{\frac{p_{1}(k)}{p_{2}(k)}}\right)^{\frac{1}{p_{1}(k)}}\right]^{\theta_{k}}\right.
\end{aligned}
$$

Thanks anonymous referee!

Multilinear Bohnenblust-Hille's inequality

■ [1931] H. F. Bohnenblust and E. Hille generalized the Littlewood's 4/3-inequality and solved de Harald Bohr's radius strip problem.

Theorem (Multilinear Bohnenblust-Hille's inequality)

For each positive integer $m \geq 1$, there exists a constant $C_{m} \geq 1$ such that

$$
\left(\sum_{i_{1}, \ldots, i_{m}=1}^{\infty}\left\|A\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)\right\|^{\frac{2 m}{m+1}}\right)^{\frac{m+1}{2 m}} \leq C_{m}\|A\|
$$

for all continuous m-linear forms $A: c_{0} \times \cdots \times c_{0} \rightarrow \mathbb{K}$. Moreover, the exponent $\frac{2 m}{m+1}$ is optimal.

Multilinear Hardy-Littlewood's inequality

- [1934] G. Hardy and J. P. Littlewood provided an ℓ_{p}-version for the bilinear case (Littlewood's $4 / 3$ inequality).
- [1981] T. Praciano-Pereira obtained a general result for multilinear forms on ℓ_{p} spaces.

Multilinear Hardy-Littlewood's inequality

- [1934] G. Hardy and J. P. Littlewood provided an ℓ_{p}-version for the bilinear case (Littlewood's $4 / 3$ inequality).
- [1981] T. Praciano-Pereira obtained a general result for multilinear forms on ℓ_{p} spaces.
Let us define $X_{p}:=\ell_{p}, 1 \leq p<+\infty$ and $X_{\infty}:=c_{0}$.

Theorem (Multilinear Hardy-Littlewood's inequality)

Let $\mathbf{p} \in[1,+\infty]^{m}$ with $\left|\frac{1}{\mathbf{p}}\right|:=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}} \leq \frac{1}{2}$. Then there exists a constant $C_{m, \mathbf{p}} \geq 1$ such that, for every continuous m-linear form $A: X_{p_{1}} \times \cdots \times X_{p_{m}} \rightarrow \mathbb{C}$,

$$
\left(\sum_{i_{1}, \ldots, i_{m}=1}^{\infty}\left|A\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)\right|^{\frac{2 m}{m+1-2\left|\frac{1}{\mathrm{p}}\right|}}\right)^{\frac{m+1-2\left|\frac{1}{\mathrm{p}}\right|}{2 m}} \leq C_{m, \mathbf{p}}\|A\| .
$$

After results...

- [2009] Defant and Sevilla-Peris;
- [2013] A., Bayart, Pellegrino and Seoane;
- [2013] Dimant and Sevilla-Peris.

Unifying result

Theorem (A., Bayart, Pellegrino, Seoane (2014))

Let $\mathbf{p} \in[1,+\infty]^{m}$ and $1 \leq s \leq q \leq \infty$ be such that

$$
\left|\frac{1}{\mathbf{p}}\right|<\frac{1}{2}+\frac{1}{s}-\frac{1}{\min \{q, 2\}}
$$

If $\lambda:=\left[\frac{1}{2}+\frac{1}{s}-\frac{1}{\min \{q, 2\}}-\left|\frac{1}{\mathbf{p}}\right|\right]^{-1}>0$ and $t_{1}, \ldots, t_{m} \in[\lambda, \max \{\lambda, s, 2\}]$ are such that

$$
\frac{1}{t_{1}}+\cdots+\frac{1}{t_{m}} \leq \frac{1}{\lambda}+\frac{m-1}{\max \{\lambda, s, 2\}}
$$

then there exists $C>0$ satisfying, for every continuous m-linear map $A: X_{p_{1}} \times \cdots \times X_{p_{m}} \rightarrow X_{s}$,

$$
\left(\sum_{i_{1}=1}^{+\infty}\left(\cdots\left(\sum_{i_{m}=1}^{+\infty}\left\|A\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)\right\|_{\ell_{q}}^{t_{m}}\right)^{\frac{t_{m-1}}{t_{m}}} \ldots\right)^{\frac{t_{1}}{t_{2}}}\right)^{\frac{1}{t_{1}}} \leq C\|A\|
$$

Moreover, the exponents are optimal except eventually if $q \leq 2$ and $\left|\frac{1}{\mathbf{p}}\right|>\frac{1}{2}$.

Tools for the proof (sufficiency)

- norm-mixed estimate for $\left(\ell_{\lambda}, \ell_{q}\right)$ or cotype version of Khinchinte's inequality [Dimant and Sevilla-Peris (2013)];

Tools for the proof (sufficiency)

- norm-mixed estimate for $\left(\ell_{\lambda}, \ell_{q}\right)$ or cotype version of Khinchinte's inequality [Dimant and Sevilla-Peris (2013)];
- Bennet-Carl inequality;

Tools for the proof (sufficiency)

- norm-mixed estimate for $\left(\ell_{\lambda}, \ell_{q}\right)$ or cotype version of Khinchinte's inequality [Dimant and Sevilla-Peris (2013)];
- Bennet-Carl inequality;
- Interpolative Hölder's inequality.

Multiple summing operators point of view

From now on, E_{1}, E_{2}, \ldots, F shall denote Banach spaces.

Multiple summing operators point of view

From now on, E_{1}, E_{2}, \ldots, F shall denote Banach spaces.

Proposition [Bohnenblust-Hille re-written]

If $\mathbf{q} \in[1,2]^{m}$ is such that $\left|\frac{1}{\mathbf{q}}\right| \leq \frac{1}{2}$, then

$$
\begin{array}{r}
\left(\sum_{j_{1}=1}^{\infty}\left(\cdots\left(\sum_{j_{m}=1}^{\infty}\left|T\left(x_{j_{1}}^{(1)}, \ldots, x_{j_{m}}^{(m)}\right)\right|^{q_{m}}\right)^{\frac{q_{m-1}}{q_{m}}} \cdots\right)^{\frac{q_{1}}{q_{2}}}\right)^{\frac{1}{q_{1}}} \\
\leq B_{m,\left(q_{1}, \ldots, q_{m}\right)}^{\mathbb{K}}\|T\| \prod_{k=1}^{m}\left\|\left(x_{j_{k}}^{(k)}\right)_{j_{k}=1}^{\infty}\right\|_{w, 1}
\end{array}
$$

for all bounded m-linear forms $T: E_{1} \times \cdots \times E_{m} \rightarrow \mathbb{K}$ and all sequences $\left(x_{j_{k}}^{(k)}\right)_{j_{k}=1}^{\infty} \in \ell_{1}^{w}\left(E_{k}\right), k=1, \ldots, m$.

Proposition [Hardy-Littlewood re-written]

Let $m \geq 1, \mathbf{p} \in[1, \infty]^{m}$. If $0 \leq\left|\frac{1}{\mathbf{p}}\right| \leq \frac{1}{2}$ and $\mathbf{q} \in\left[\left(1-\left|\frac{1}{\mathbf{p}}\right|\right)^{-1}, 2\right]^{m}$ are such that

$$
\left|\frac{1}{\mathbf{q}}\right| \leq \frac{m+1}{2}-\left|\frac{1}{\mathbf{p}}\right| .
$$

Then, for all continuous m-linear forms $T: E_{1} \times \cdots \times E_{m} \rightarrow \mathbb{K}$,

$$
\begin{array}{r}
\left(\sum_{i_{1}=1}^{\infty}\left(\ldots\left(\sum_{i_{m}=1}^{\infty}\left|T\left(x_{i_{1}}^{(1)}, \ldots, x_{i_{m}}^{(m)}\right)\right|^{q_{m}}\right)^{\frac{q_{m-1}}{q_{m}}} \ldots\right)^{\frac{q_{1}}{q_{2}}}\right)^{\frac{1}{q_{1}}} \\
\leq C_{m, \mathbf{p}, \mathbf{q}}^{\mathbb{K}}\|T\| \prod_{k=1}^{m}\left\|\left(x_{i}^{(k)}\right)_{i=1}^{\infty}\right\|_{w, p_{k}^{*}}
\end{array}
$$

regardless of the sequences $\left(x_{j_{k}}^{(k)}\right)_{i=1}^{\infty} \in \ell_{p_{k}^{*}}^{w}\left(E_{k}\right), k=1, \ldots, m$.

Parttially multiple summnig operators: the designs

Parttially multiple summnig operators: the designs

For Banach spaces E_{1}, \ldots, E_{m} and an element $x \in E_{j}$, for some $j \in\{1, \ldots, m\}$, the symbol $x \cdot e_{j}$ represents the vector $x \cdot e_{j} \in E_{1} \times \cdots \times E_{m}$ such that the j-th coordinate is $x \in E_{j}$, and 0 otherwise.

Definition

Let E_{1}, \ldots, E_{m}, F be Banach spaces, m, k be positive integers with $1 \leq k \leq m$, and $(\mathbf{p}, \mathbf{q}):=\left(p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right) \in[1, \infty)^{m+k}$. Let also $\mathcal{I}=\left\{I_{1}, \ldots, I_{k}\right\}$ a family of non-void disjoints subsets of $\{1, \ldots, m\}$ such that $\cup_{i=1}^{k} I_{i}=\{1, \ldots, m\}$, that is, \mathcal{I} is a partition of $\{1, \ldots, m\}$. A multilinear operator $T: E_{1} \times \cdots \times E_{m} \rightarrow F$ is \mathcal{I}-partially multiple $(\mathbf{q} ; \mathbf{p})$-summing if there exists a constant $C>0$ such that

$$
\begin{array}{r}
\left(\sum_{i_{1}=1}^{\infty}\left(\cdots\left(\sum_{i_{k}=1}^{\infty}\left\|T\left(\sum_{n=1}^{k} \sum_{j \in I_{n}} x_{i_{n}}^{(j)} \cdot e_{j}\right)\right\|_{F}^{q_{k}}\right)^{\frac{q_{k-1}}{q_{k}}} \cdots\right)^{\frac{q_{1}}{q_{2}}}\right)^{\frac{1}{q_{1}}} \\
\leq C \prod_{j=1}^{m}\left\|\left(x_{i}^{(j)}\right)_{i=1}^{\infty}\right\| \|_{w, p_{j}}
\end{array}
$$

Definition

for all $\left(x_{i}^{(j)}\right)_{i=1}^{\infty} \in \ell_{p_{j}}^{w}\left(E_{j}\right), j=1, \ldots, m$. We represent the class of all \mathcal{I}-partially multiple ($\mathbf{q} ; \mathbf{p}$)-summing operators by $\prod_{(\mathbf{q} ; \mathbf{p})}^{k, m, \mathcal{I}}\left(E_{1}, \ldots, E_{m} ; F\right)$. The infimum taken over all possible constants $C>0$ satisfying the previous inequality defines a norm in $\Pi_{(\mathbf{q} ; \mathbf{p})}^{k, m, \mathcal{I}}\left(E_{1}, \ldots, E_{m} ; F\right)$, which is denoted by $\pi_{(\mathbf{q} ; \mathbf{p})}^{\mathcal{T}}$.

Definition

for all $\left(x_{i}^{(j)}\right)_{i=1}^{\infty} \in \ell_{p_{j}}^{w}\left(E_{j}\right), j=1, \ldots, m$. We represent the class of all \mathcal{I}-partially multiple ($\mathbf{q} ; \mathbf{p}$)-summing operators by $\Pi_{(\mathbf{q} ; \mathbf{p})}^{k, m, \mathcal{I}}\left(E_{1}, \ldots, E_{m} ; F\right)$. The infimum taken over all possible constants $C>0$ satisfying the previous inequality defines a norm in $\prod_{(\mathbf{q} ; \mathbf{p})}^{k, m, \mathcal{I}}\left(E_{1}, \ldots, E_{m} ; F\right)$, which is denoted by $\pi_{(\mathbf{q} ; \mathbf{p})}^{\mathcal{I}}$.

Note that when
■ $k=1$, we recover the class of absolutely $\left(q ; p_{1}, \ldots, p_{m}\right)$-summing operators, with $q:=q_{1}$;

■ $k=m$ and $q_{1}=\cdots=q_{m}=: q$, we recover the class of multiple $\left(q ; p_{1}, \ldots, p_{m}\right)$-summing operators.

From now on, m, k are positive integers with $1 \leq k \leq m,(\mathbf{p}, \mathbf{q}):=$ $\left(p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right) \in[1, \infty)^{m+k}$ and $\mathcal{I}=\left\{I_{1}, \ldots, I_{k}\right\}$ is a partition of $\{1, \ldots, m\}$.

BH partially summ. version

Theorem [Bohnenblust-Hille's partially summ. version]
Let $\mathbf{q} \in[1,2]^{k}$ such that $\left|\frac{1}{\mathbf{q}}\right| \leq \frac{k+1}{2}$. Then

$$
\begin{array}{r}
\left(\sum_{i_{1}=1}^{\infty}\left(\ldots\left(\sum_{i_{k}=1}^{\infty}\left|T\left(\sum_{n=1}^{k} \sum_{j \in I_{n}} x_{i_{n}}^{(j)} \cdot e_{j}\right)\right|^{q_{k}}\right)^{\frac{q_{k-1}}{q_{k}}} \ldots\right)^{\frac{q_{1}}{q_{2}}}\right)^{\frac{1}{q_{1}}} \\
\leq B_{k, \mathbf{q}}^{\mathbb{K}}\|T\| \prod_{j=1}^{m}\left\|\left(x_{i}^{(j)}\right)_{i=1}^{\infty}\right\|_{w, 1}
\end{array}
$$

for all m-linear forms $T: E_{1} \times \cdots \times E_{m} \rightarrow \mathbb{K}$ and all sequences $\left(x_{i}^{(j)}\right)_{i=1}^{\infty} \in \ell_{1}^{w}\left(E_{j}\right), j=1, \ldots, m$.
In other words, when $\mathbf{q} \in[1,2]^{k}$ such that $\left|\frac{1}{\mathbf{q}}\right| \leq \frac{k+1}{2}$ we have the following coincidence result:

$$
\Pi_{(\mathbf{q} ; 1)}^{k, m, \mathcal{I}}\left(E_{1}, \ldots, E_{m} ; F\right)=\mathcal{L}\left(E_{1}, \ldots, E_{m} ; \mathbb{K}\right)
$$

with $1:=\left(1,{ }^{m} \cdot \stackrel{\text { times }^{\prime}}{ }, 1\right)$.

HL partially summ. version

Theorem [Hardy-Littlewood's partially summ. version]

Let $1 \leq k \leq m, \mathbf{p} \in[1, \infty]^{m}$. If $0 \leq\left|\frac{1}{\mathbf{p}}\right| \leq \frac{1}{2}$ and $\mathbf{q} \in\left[\left(1-\left|\frac{1}{\mathbf{p}}\right|\right)^{-1}, 2\right]^{k}$ are such that $\left|\frac{1}{\mathbf{q}}\right| \leq \frac{k+1}{2}-\left|\frac{1}{\mathbf{p}}\right|$, then, for all continuous m-linear forms $T: E_{1} \times \cdots \times E_{m} \rightarrow \mathbb{K}$,

$$
\begin{aligned}
& \left(\sum_{i_{1}=1}^{\infty}\left(\cdots\left(\sum_{i_{k}=1}^{\infty}\left|T\left(\sum_{n=1}^{k} \sum_{j \in I_{n}} x_{i_{n}}^{(j)} \cdot e_{j}\right)\right|^{q_{k}}\right)^{\frac{q_{k-1}}{q_{k}}} \cdots\right)^{\frac{q_{1}}{q_{2}}}\right)^{\frac{1}{q_{1}}} \\
& \leq C_{k, m, \mathbf{p}, \mathbf{q}}^{\mathbb{K}}\|T\| \prod_{j=1}^{m}\left\|\left(x_{i}^{(j)}\right)_{i=1}^{\infty}\right\|_{w, p_{j}^{*}}
\end{aligned}
$$

regardless of the sequences $\left(x_{i}^{(j)}\right)_{i=1}^{\infty} \in \ell_{p_{j}^{*}}^{w}\left(E_{j}\right), j=1, \ldots, m$.

HL partially summ. version

Theorem [Hardy-Littlewood's partially summ. version]

Let $1 \leq k \leq m, \mathbf{p} \in[1, \infty]^{m}$. If $0 \leq\left|\frac{1}{\mathbf{p}}\right| \leq \frac{1}{2}$ and $\mathbf{q} \in\left[\left(1-\left|\frac{1}{\mathbf{p}}\right|\right)^{-1}, 2\right]^{k}$ are such that $\left|\frac{1}{\mathbf{q}}\right| \leq \frac{k+1}{2}-\left|\frac{1}{\mathbf{p}}\right|$, then, for all continuous m-linear forms $T: E_{1} \times \cdots \times E_{m} \rightarrow \mathbb{K}$,

$$
\begin{array}{r}
\left(\sum_{i_{1}=1}^{\infty}\left(\cdots\left(\sum_{i_{k}=1}^{\infty}\left|T\left(\sum_{n=1}^{k} \sum_{j \in I_{n}} x_{i_{n}}^{(j)} \cdot e_{j}\right)\right|^{q_{k}}\right)^{\frac{q_{k-1}}{q_{k}}} \cdots\right)^{\frac{q_{1}}{q_{2}}}\right)^{\frac{1}{q_{1}}} \\
\leq C_{k, m, \mathbf{p}, \mathbf{q}}^{\mathbb{K}}\|T\| \prod_{j=1}^{m}\left\|\left(x_{i}^{(j)}\right)_{i=1}^{\infty}\right\|_{w, p_{j}^{*}}
\end{array}
$$

regardless of the sequences $\left(x_{i}^{(j)}\right)_{i=1}^{\infty} \in \ell_{p_{j}^{*}}^{w}\left(E_{j}\right), j=1, \ldots, m$.
In other words, we have the coincidence

$$
\Pi_{\left(\mathbf{q} ; \mathbf{p}^{*}\right)}^{k, m, \mathcal{I}}\left(E_{1}, \ldots, E_{m} ; F\right)=\mathcal{L}\left(E_{1}, \ldots, E_{m} ; \mathbb{K}\right)
$$

with $\mathbf{p}^{*}:=\left(p_{1}^{*}, \ldots, p_{m}^{*}\right)$.

References

This lecture is related to papers from 2013-2015 in collaboration with

- G. Araújo (João Pessoa, Brazil);
- F. Bayart (Clermont-Ferrand, France);
- D. Pellegrino (João Pessoa, Brazil);
- D. Nuñez-Alarcón (Recife, Brazil);
- P. Rueda (Valence, Spain);
- J. Seoane (Madrid, Spain);

Thank you very much!

