Extension operators on balls and on spaces of finite sets

Antonio Avilés, joint work with Witold Marciszewski

Universidad de Murcia, Author supported by MINECO and FEDER under project MTM2014-54182-P

Warwick 2015

Extension Opertators

$C(K)=\{f: K \longrightarrow \mathbb{R}$ continuous $\}$,

Extension Opertators

$C(K)=\{f: K \longrightarrow \mathbb{R}$ continuous $\}$,
$\|f\|=\max \{|f(x)|: x \in K\}$.

Extension Opertators

$$
\begin{aligned}
& C(K)=\{f: K \longrightarrow \mathbb{R} \text { continuous }\}, \\
& \|f\|=\max \{|f(x)|: x \in K\} \\
& \text { Let } K \subset L \text { be compact sets, }
\end{aligned}
$$

Extension Opertators

$C(K)=\{f: K \longrightarrow \mathbb{R}$ continuous $\}$,
$\|f\|=\max \{|f(x)|: x \in K\}$.
Let $K \subset L$ be compact sets,

Theorem (Tietze)

Every $f \in C(K)$ extends to a function in $C(L)$.

Extension Opertators

$C(K)=\{f: K \longrightarrow \mathbb{R}$ continuous $\}$,
$\|f\|=\max \{|f(x)|: x \in K\}$.
Let $K \subset L$ be compact sets,

Theorem (Tietze)

Every $f \in C(K)$ extends to a function in $C(L)$.
An extension operator is an operator $E: C(K) \longrightarrow C(L)$ that sends every $f \in C(K)$ to an extension.

Extension opertators as generalized retractions

Let $M(K)=C(K)^{*}$ be the regular Borel measures on K, with weak* topology.

Extension opertators as generalized retractions

Let $M(K)=C(K)^{*}$ be the regular Borel measures on K, with weak* topology.

Generalized retractions

Having an extension operator E is all the same as having a continous $E^{*}: L \longrightarrow M(K)$ such that $E^{*}(x)=\delta_{x}$ for $x \in K$.

Extension opertators as generalized retractions

Let $M(K)=C(K)^{*}$ be the regular Borel measures on K, with weak* topology.

Generalized retractions

Having an extension operator E is all the same as having a continous $E^{*}: L \longrightarrow M(K)$ such that $E^{*}(x)=\delta_{x}$ for $x \in K$. Moreover $\|E\|=\max \left\{\left\|E^{*}(x)\right\|: x \in L\right\}$.

Extension opertators as generalized retractions

Let $M(K)=C(K)^{*}$ be the regular Borel measures on K, with weak* topology.

Generalized retractions

Having an extension operator E is all the same as having a continous $E^{*}: L \longrightarrow M(K)$ such that $E^{*}(x)=\delta_{x}$ for $x \in K$. Moreover $\|E\|=\max \left\{\left\|E^{*}(x)\right\|: x \in L\right\}$.

$$
E(f)(x)=\int f d E^{*}(x)
$$

The Borsuk-Dugundji extension theorem

Theorem (Borsuk, Dugundji)
If K is metric, then there exists a positive extension operator $E: C(K) \longrightarrow C(L)$ with $\|E\|=1$.

Theorem (Borsuk, Dugundji)

If K is metric, then there exists a positive extension operator $E: C(K) \longrightarrow C(L)$ with $\|E\|=1$.

In the non-metric case, we define

$$
\eta(K, L)=\inf \{\|E\|: E: C(K) \longrightarrow C(L) \text { is an extension operator }\}
$$

which might be ∞ if there is no such E exists.

Our compact spaces

Balls in Hilbert space:

$$
r B(\Gamma)=\left\{x \in \ell_{2}(\Gamma):\|x\| \leq r\right\}
$$

with the weak topology of $\ell_{2}(\Gamma)$.

Our compact spaces

Balls in Hilbert space:

$$
r B(\Gamma)=\left\{x \in \ell_{2}(\Gamma):\|x\| \leq r\right\}
$$

with the weak topology of $\ell_{2}(\Gamma)$.

Spaces of finite sets:

$$
\sigma_{n}(\Gamma)=\left\{x \in\{0,1\}^{\Gamma}:|\operatorname{supp}(x)| \leq n\right\}
$$

with the pointwise topology of $\{0,1\}^{\ulcorner }$

Our compact spaces

Balls in Hilbert space:

$$
r B(\Gamma)=\left\{x \in \ell_{2}(\Gamma):\|x\| \leq r\right\}
$$

with the weak topology of $\ell_{2}(\Gamma)$.

Spaces of finite sets:

$$
\sigma_{n}(\Gamma)=\left\{x \in\{0,1\}^{\Gamma}:|\operatorname{supp}(x)| \leq n\right\}
$$

with the pointwise topology of $\{0,1\}^{\Gamma}$

$$
\{1,2,3\},\{1,2,4\},\{1,2,5\}, \ldots \longrightarrow\{1,2\}
$$

Our main results

Theorem (Corson, Lindenstrauss 65)

(1) $r B(\Gamma)$ is not a retract of $s B(\Gamma)$ for Γ uncountable and $r<s$.

Our main results

Theorem (Corson, Lindenstrauss 65)

(1) $r B(\Gamma)$ is not a retract of $s B(\Gamma)$ for Γ uncountable and $r<s$.
(2) $\eta\left(\sigma_{1}(\Gamma), L\right)$ is either odd integer or ∞.

Our main results

Theorem (Corson, Lindenstrauss 65)

(1) $r B(\Gamma)$ is not a retract of $s B(\Gamma)$ for Γ uncountable and $r<s$.
(2) $\eta\left(\sigma_{1}(\Gamma), L\right)$ is either odd integer or ∞.

Theorem (A., Marciszewski)
There is no extension operator from $r B(\Gamma)$ to $s B(\Gamma)$ for Γ uncountable and $r<s$.

Our main results

Theorem (Corson, Lindenstrauss 65)

(1) $r B(\Gamma)$ is not a retract of $s B(\Gamma)$ for Γ uncountable and $r<s$.
(2) $\eta\left(\sigma_{1}(\Gamma), L\right)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $r B(\Gamma)$ to $s B(\Gamma)$ for Γ uncountable and $r<s$.

Theorem (A., Marciszewski)

$\eta\left(\sigma_{m}(\Gamma), \sigma_{n}(\Gamma)\right)$ is an odd integer that depends on m, n, and $|\Gamma|$. It takes values:

Our main results

Theorem (Corson, Lindenstrauss 65)

(1) $r B(\Gamma)$ is not a retract of $s B(\Gamma)$ for Γ uncountable and $r<s$.
(2) $\eta\left(\sigma_{1}(\Gamma), L\right)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $r B(\Gamma)$ to $s B(\Gamma)$ for Γ uncountable and $r<s$.

Theorem (A., Marciszewski)

$\eta\left(\sigma_{m}(\Gamma), \sigma_{n}(\Gamma)\right)$ is an odd integer that depends on m, n, and $|\Gamma|$. It takes values:
(1) 1 , if $|\Gamma| \leq \aleph_{0}$.

Our main results

Theorem (Corson, Lindenstrauss 65)

(1) $r B(\Gamma)$ is not a retract of $s B(\Gamma)$ for Γ uncountable and $r<s$.
(2) $\eta\left(\sigma_{1}(\Gamma), L\right)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $r B(\Gamma)$ to $s B(\Gamma)$ for Γ uncountable and $r<s$.

Theorem (A., Marciszewski)
$\eta\left(\sigma_{m}(\Gamma), \sigma_{n}(\Gamma)\right)$ is an odd integer that depends on m, n, and $|\Gamma|$. It takes values:
(1) 1 , if $|\Gamma| \leq \aleph_{0}$.
(2) $2 n-2 m+1$, if $|\Gamma|=\mathfrak{\aleph}_{1}$.

Our main results

Theorem (Corson, Lindenstrauss 65)

(1) $r B(\Gamma)$ is not a retract of $s B(\Gamma)$ for Γ uncountable and $r<s$.
(2) $\eta\left(\sigma_{1}(\Gamma), L\right)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $r B(\Gamma)$ to $s B(\Gamma)$ for Γ uncountable and $r<s$.

Theorem (A., Marciszewski)

$\eta\left(\sigma_{m}(\Gamma), \sigma_{n}(\Gamma)\right)$ is an odd integer that depends on m, n, and $|\Gamma|$. It takes values:
(1) 1 , if $|\Gamma| \leq \aleph_{0}$.
(2) $2 n-2 m+1$, if $|\Gamma|=\mathfrak{\aleph}_{1}$.
(3) $\sum_{k=0}^{m}\binom{n}{k}\binom{n-k-1}{m-k}$, if $|\Gamma| \geq \boldsymbol{\aleph}_{\omega}$ 。

What is an extension operator from $\sigma_{m}(\Gamma)$ to $\sigma_{n}(\Gamma)$?

Let us think of $m=1, n=2$.

What is an extension operator from $\sigma_{m}(\Gamma)$ to $\sigma_{n}(\Gamma)$?

Let us think of $m=1, n=2$. We need to associate to each set of cardinality ≤ 2, a measure on the sets of cardinality ≤ 1.

What is an extension operator from $\sigma_{m}(\Gamma)$ to $\sigma_{n}(\Gamma)$?

Let us think of $m=1, n=2$. We need to associate to each set of cardinality ≤ 2, a measure (a formal linear combination) on the sets of cardinality ≤ 1.

What is an extension operator from $\sigma_{m}(\Gamma)$ to $\sigma_{n}(\Gamma)$?

Let us think of $m=1, n=2$. We need to associate to each set of cardinality ≤ 2, a measure (a formal linear combination) on the sets of cardinality ≤ 1. This has to extend continuously to $\{x\} \mapsto \delta_{\{x\}}$ and $\emptyset \mapsto \emptyset$.

What is an extension operator from $\sigma_{m}(\Gamma)$ to $\sigma_{n}(\Gamma)$?

Let us think of $m=1, n=2$. We need to associate to each set of cardinality ≤ 2, a measure (a formal linear combination) on the sets of cardinality ≤ 1. This has to extend continuously to $\{x\} \mapsto \delta_{\{x\}}$ and $\emptyset \mapsto \emptyset$.

- The function $\{p<q\} \mapsto \frac{q-1}{q} \delta_{\{p\}}+\frac{1}{q} \delta_{\{q\}}$ gives an extension operator of norm 1 when $\Gamma=\mathbb{N}$.

What is an extension operator from $\sigma_{m}(\Gamma)$ to $\sigma_{n}(\Gamma)$?

Let us think of $m=1, n=2$. We need to associate to each set of cardinality ≤ 2, a measure (a formal linear combination) on the sets of cardinality ≤ 1. This has to extend continuously to $\{x\} \mapsto \delta_{\{x\}}$ and $\emptyset \mapsto \emptyset$.

- The function $\{p<q\} \mapsto \frac{q-1}{q} \delta_{\{p\}}+\frac{1}{q} \delta_{\{q\}}$ gives an extension operator of norm 1 when $\Gamma=\mathbb{N}$.
- The function $\{x, y\} \mapsto \boldsymbol{\delta}_{\{x\}}+\boldsymbol{\delta}_{\{y\}}-\boldsymbol{\delta}_{\emptyset}$ gives an extension operator of norm 3. This is optimal for sizes $\geq \aleph_{1}$.

Cardinals and naturality

The results can be interpreted without appealing to uncountable cardinals.

Cardinals and naturality

The results can be interpreted without appealing to uncountable cardinals. For example:

Cardinals and naturality

The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_{m} and σ_{n}

Cardinals and naturality

The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_{m} and σ_{n} to a family of extension operators $E_{\Gamma}: C\left(\sigma_{m}(\Gamma)\right) \longrightarrow C\left(\sigma_{n}(\Gamma)\right)$

Cardinals and naturality

The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_{m} and σ_{n} to a family of extension operators $E_{\Gamma}: C\left(\sigma_{m}(\Gamma)\right) \longrightarrow C\left(\sigma_{n}(\Gamma)\right)$ such that all diagrams

$$
\begin{gathered}
C\left(\sigma_{m}(\Gamma)\right) \xrightarrow{E_{\Gamma}} C\left(\sigma_{n}(\Gamma)\right) \\
\uparrow \\
C\left(\sigma_{m}(\Delta)\right) \xrightarrow{E_{\Delta}} C\left(\sigma_{n}(\Delta)\right)
\end{gathered}
$$

commute for $\Delta \subset \Gamma$.

Cardinals and naturality

The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_{m} and σ_{n} to a family of extension operators $E_{\Gamma}: C\left(\sigma_{m}(\Gamma)\right) \longrightarrow C\left(\sigma_{n}(\Gamma)\right)$ such that all diagrams

$$
\begin{gathered}
C\left(\sigma_{m}(\Gamma)\right) \xrightarrow{E_{\Gamma}} C\left(\sigma_{n}(\Gamma)\right) \\
\uparrow \\
C\left(\sigma_{m}(\Delta)\right) \xrightarrow{E_{\Delta}} C\left(\sigma_{n}(\Delta)\right)
\end{gathered}
$$

commute for $\Delta \subset \Gamma$.

Theorem (A., Marciszewski)

$\eta\left(\sigma_{m}\left(\aleph_{\omega}\right), \sigma_{n}\left(\aleph_{\omega}\right)\right)$ equals the least norm of a natural extension operator from σ_{m} to σ_{n}

Cardinals and naturality

There is essentially a unique formula for a natural extension operator from σ_{m} to σ_{n} :

$$
A \mapsto \sum_{B \in[A] \leq m}(-1)^{m-|B|}\binom{|A|-|B|-1}{m-|B|} \delta_{B}
$$

Combinatorics behind optimality

Getting free sets
Suppose $|\Gamma| \geq \aleph_{n}$.

Combinatorics behind optimality

Getting free sets
Suppose $|\Gamma| \geq \aleph_{n}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ.

Combinatorics behind optimality

Getting free sets
Suppose $|\Gamma| \geq \aleph_{n}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A|=n+1$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Combinatorics behind optimality

Getting free sets

Suppose $|\Gamma| \geq \aleph_{n}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A|=n+1$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Getting free sets (case $n=1$)

Suppose $|\Gamma| \geq \aleph_{1}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z|=2$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Combinatorics behind optimality

Getting free sets

Suppose $|\Gamma| \geq \aleph_{n}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A|=n+1$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Getting free sets (case $n=1$)
Suppose $|\Gamma| \geq \aleph_{1}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z|=2$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \boldsymbol{\aleph}_{1}$ and any $n \in \mathbb{N}$.

Combinatorics behind optimality

Getting free sets

Suppose $|\Gamma| \geq \aleph_{n}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A|=n+1$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Getting free sets (case $n=1$)
Suppose $|\Gamma| \geq \aleph_{1}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z|=2$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \mathfrak{N}_{1}$ and any $n \in \mathbb{N}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ.

Combinatorics behind optimality

Getting free sets

Suppose $|\Gamma| \geq \aleph_{n}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A|=n+1$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Getting free sets (case $n=1$)
Suppose $|\Gamma| \geq \aleph_{1}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z|=2$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \mathfrak{N}_{1}$ and any $n \in \mathbb{N}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ.Then, there exists $Z=\left\{z_{1}, \ldots, z_{n}\right\} \subset \Gamma$ such that $F(A) \cap Z=\emptyset$ for all

Combinatorics behind optimality

Getting free sets

Suppose $|\Gamma| \geq \aleph_{n}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A|=n+1$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Getting free sets (case $n=1$)
Suppose $|\Gamma| \geq \aleph_{1}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z|=2$ such that $F(A) \cap Z=\emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \mathfrak{N}_{1}$ and any $n \in \mathbb{N}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ.Then, there exists $Z=\left\{z_{1}, \ldots, z_{n}\right\} \subset \Gamma$ such that $F(A) \cap Z=\emptyset$ for all intervals $A \subset Z$.

Another related Banach space problem

Problem (Enflo, Rosenthal 73)

Does a nonseparable $L_{p}(\mu)$ have an unconditional basis when $p \neq 2$?

Another related Banach space problem

Problem (Enflo, Rosenthal 73)

Does a nonseparable $L_{p}(\mu)$ have an unconditional basis when $p \neq 2$?

They get a negative answer for density at least \aleph_{ω}.

Another related Banach space problem

Problem (Enflo, Rosenthal 73)

Does a nonseparable $L_{p}(\mu)$ have an unconditional basis when $p \neq 2$?

They get a negative answer for density at least \aleph_{ω}. The combinatorics behind it are again free sets.

Another related Banach space problem

Problem (Enflo, Rosenthal 73)

Does a nonseparable $L_{p}(\mu)$ have an unconditional basis when $p \neq 2$?

They get a negative answer for density at least \aleph_{ω}. The combinatorics behind it are again free sets. The new free set property in \aleph_{1} is not strong enough to solve this problem.

Balls in the Hilbert space

For every $r<s$ we can produce produce diagrams:

$$
\begin{array}{ccc}
B(\Gamma) & s B(\Gamma) \\
\uparrow & \uparrow \\
\sigma_{m}(\Gamma) \longrightarrow & \sigma_{n}(\Gamma) \longrightarrow \subset
\end{array}
$$

Balls in the Hilbert space

For every $r<s$ we can produce produce diagrams:

$$
\begin{array}{ccc}
B(\Gamma) & s B(\Gamma) \\
\uparrow & \uparrow \\
\sigma_{m}(\Gamma) \longrightarrow & \sigma_{n}(\Gamma) \longrightarrow \subset
\end{array}
$$

with the left vertical arrow admitting extension operator of norm 1 , and $n-m$ arbitrarily large.

Balls in the Hilbert space

For every $r<s$ we can produce produce diagrams:

$$
\begin{array}{ccc}
B(\Gamma) & & s B(\Gamma) \\
\uparrow & \uparrow \\
\sigma_{m}(\Gamma) \longrightarrow & \sigma_{n}(\Gamma) \longrightarrow \subset
\end{array}
$$

with the left vertical arrow admitting extension operator of norm 1 , and $n-m$ arbitrarily large. But $\eta\left(\sigma_{m}(\Gamma), \sigma_{n}(\Gamma)\right) \geq 2 n-2 m+1 \ldots$

Balls in the Hilbert space

For every $r<s$ we can produce produce diagrams:

$$
\begin{array}{ccc}
B(\Gamma) & & s B(\Gamma) \\
\uparrow & \uparrow \\
\sigma_{m}(\Gamma) \longrightarrow & \sigma_{n}(\Gamma) \longrightarrow \subset
\end{array}
$$

with the left vertical arrow admitting extension operator of norm 1 , and $n-m$ arbitrarily large. But $\eta\left(\sigma_{m}(\Gamma), \sigma_{n}(\Gamma)\right) \geq 2 n-2 m+1 \ldots$

Open Problem: A non-separable Miljutin theorem?
Is $C(B(\Gamma))$ isomorphic to $C\left(\sigma_{1}(\Gamma)^{\mathbb{N}}\right)$?

