Extension operators on balls and on spaces of finite sets

Antonio Avilés, joint work with Witold Marciszewski

Universidad de Murcia, Author supported by MINECO and FEDER under project MTM2014-54182-P

Warwick 2015

<ロ> (四) (四) (三) (三) (三)

$$C(K) = \{f: K \longrightarrow \mathbb{R} \text{ continuous}\},\$$

・ロト ・回 ・ モト ・ モー ・ うへで

$$C(K) = \{f : K \longrightarrow \mathbb{R} \text{ continuous}\},\$$
$$\|f\| = \max\{|f(x)| : x \in K\}.$$

・ロト ・回 ・ モト ・ モー ・ うへで

$$C(K) = \{f : K \longrightarrow \mathbb{R} \text{ continuous}\},\$$
$$||f|| = \max\{|f(x)| : x \in K\}.$$

Let $K \subset L$ be compact sets,

$$C(K) = \{f : K \longrightarrow \mathbb{R} \text{ continuous}\},\$$

- $||f|| = \max\{|f(x)| : x \in K\}.$
- Let $K \subset L$ be compact sets,

Theorem (Tietze)

Every $f \in C(K)$ extends to a function in C(L).

$$C(K) = \{f: K \longrightarrow \mathbb{R} \text{ continuous}\},\$$

- $||f|| = \max\{|f(x)| : x \in K\}.$
- Let $K \subset L$ be compact sets,

Theorem (Tietze)

Every $f \in C(K)$ extends to a function in C(L).

An extension operator is an operator $E : C(K) \longrightarrow C(L)$ that sends every $f \in C(K)$ to an extension.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ● のへ⊙

Generalized retractions

Having an extension operator E is all the same as having a continous $E^*: L \longrightarrow M(K)$ such that $E^*(x) = \delta_x$ for $x \in K$.

Generalized retractions

Having an extension operator E is all the same as having a continous $E^* : L \longrightarrow M(K)$ such that $E^*(x) = \delta_x$ for $x \in K$. Moreover $||E|| = \max\{||E^*(x)|| : x \in L\}$.

Generalized retractions

Having an extension operator E is all the same as having a continous $E^* : L \longrightarrow M(K)$ such that $E^*(x) = \delta_x$ for $x \in K$. Moreover $||E|| = \max\{||E^*(x)|| : x \in L\}$.

$$E(f)(x) = \int f \ dE^*(x)$$

Theorem (Borsuk, Dugundji)

If K is metric, then there exists a positive extension operator $E: C(K) \longrightarrow C(L)$ with ||E|| = 1.

Theorem (Borsuk, Dugundji)

If K is metric, then there exists a positive extension operator $E: C(K) \longrightarrow C(L)$ with ||E|| = 1.

In the non-metric case, we define

$$\eta(K,L) = \inf\{||E|| : E : C(K) \longrightarrow C(L) \text{ is an extension operator}\}$$

which might be ∞ if there is no such *E* exists.

Balls in Hilbert space:

$$rB(\Gamma) = \{x \in \ell_2(\Gamma) : ||x|| \le r\}$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

with the weak topology of $\ell_2(\Gamma)$.

Balls in Hilbert space:

$$rB(\Gamma) = \{x \in \ell_2(\Gamma) : ||x|| \le r\}$$

with the weak topology of $\ell_2(\Gamma)$.

Spaces of finite sets:

$$\sigma_n(\Gamma) = \{x \in \{0,1\}^{\Gamma} : |supp(x)| \le n\}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

with the pointwise topology of $\{0,1\}^{\Gamma}$

Balls in Hilbert space:

$$rB(\Gamma) = \{x \in \ell_2(\Gamma) : ||x|| \le r\}$$

with the weak topology of $\ell_2(\Gamma)$.

Spaces of finite sets:

$$\sigma_n(\Gamma) = \{x \in \{0,1\}^{\Gamma} : |supp(x)| \le n\}$$

with the pointwise topology of $\{0,1\}^{\Gamma}$

$$\{1,2,3\},\{1,2,4\},\{1,2,5\},\ldots \longrightarrow \{1,2\}$$

・ロ・・西・・田・・日・ のへの

Theorem (Corson, Lindenstrauss 65)

• $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and r < s.

Theorem (Corson, Lindenstrauss 65)

• $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and r < s.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

② $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (Corson, Lindenstrauss 65)

• $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and r < s.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

② $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and r < s.

Theorem (Corson, Lindenstrauss 65)

- $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and r < s.
- ② $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and r < s.

Theorem (A., Marciszewski)

Theorem (Corson, Lindenstrauss 65)

- $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and r < s.
- ② $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and r < s.

Theorem (A., Marciszewski)

• 1, if
$$|\Gamma| \leq \aleph_0$$
.

Theorem (Corson, Lindenstrauss 65)

- $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and r < s.
- ② $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and r < s.

Theorem (A., Marciszewski)

2
$$2n - 2m + 1$$
, if $|\Gamma| = \aleph_1$.

Theorem (Corson, Lindenstrauss 65)

- $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and r < s.
- ② $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and r < s.

Theorem (A., Marciszewski)

2
$$2n - 2m + 1$$
, if $|\Gamma| = \aleph_1$.

$$3 \ \sum_{k=0}^{m} \binom{n}{k} \binom{n-k-1}{m-k}, \text{ if } |\Gamma| \geq \aleph_{\omega}.$$

What is an extension operator from $\sigma_m(\Gamma)$ to $\sigma_n(\Gamma)$?

Let us think of m = 1, n = 2.

Let us think of m = 1, n = 2. We need to associate to each set of cardinality ≤ 2 , a measure on the sets of cardinality ≤ 1 .

Let us think of m = 1, n = 2. We need to associate to each set of cardinality ≤ 2 , a measure (a formal linear combination) on the sets of cardinality ≤ 1 .

Let us think of m = 1, n = 2. We need to associate to each set of cardinality ≤ 2 , a measure (a formal linear combination) on the sets of cardinality ≤ 1 . This has to extend continuously to $\{x\} \mapsto \delta_{\{x\}}$ and $\emptyset \mapsto \emptyset$.

Let us think of m = 1, n = 2. We need to associate to each set of cardinality ≤ 2 , a measure (a formal linear combination) on the sets of cardinality ≤ 1 . This has to extend continuously to $\{x\} \mapsto \delta_{\{x\}}$ and $\emptyset \mapsto \emptyset$.

• The function $\{p < q\} \mapsto \frac{q-1}{q} \delta_{\{p\}} + \frac{1}{q} \delta_{\{q\}}$ gives an extension operator of norm 1 when $\Gamma = \mathbb{N}$.

Let us think of m = 1, n = 2. We need to associate to each set of cardinality ≤ 2 , a measure (a formal linear combination) on the sets of cardinality ≤ 1 . This has to extend continuously to $\{x\} \mapsto \delta_{\{x\}}$ and $\emptyset \mapsto \emptyset$.

- The function $\{p < q\} \mapsto \frac{q-1}{q} \delta_{\{p\}} + \frac{1}{q} \delta_{\{q\}}$ gives an extension operator of norm 1 when $\Gamma = \mathbb{N}$.
- The function {x, y} → δ_{x} + δ_{{y}} − δ_∅ gives an extension operator of norm 3. This is optimal for sizes ≥ ℵ₁.

The results can be interpreted without appealing to uncountable cardinals.

The results can be interpreted without appealing to uncountable cardinals. For example:

The results can be interpreted without appealing to uncountable cardinals. For example:

(日) (同) (E) (E) (E)

Natural extensions

Let us call a natural extension operator between σ_m and σ_n

The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_m and σ_n to a family of extension operators $E_{\Gamma} : C(\sigma_m(\Gamma)) \longrightarrow C(\sigma_n(\Gamma))$

(日) (同) (E) (E) (E)

The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_m and σ_n to a family of extension operators $E_{\Gamma} : C(\sigma_m(\Gamma)) \longrightarrow C(\sigma_n(\Gamma))$ such that all diagrams

$$\begin{array}{ccc} C(\sigma_m(\Gamma)) & \stackrel{E_{\Gamma}}{\longrightarrow} & C(\sigma_n(\Gamma)) \\ & \uparrow & & \uparrow \\ C(\sigma_m(\Delta)) & \stackrel{E_{\Delta}}{\longrightarrow} & C(\sigma_n(\Delta)) \end{array}$$

(日) (同) (E) (E) (E)

commute for $\Delta \subset \Gamma$.

The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_m and σ_n to a family of extension operators $E_{\Gamma} : C(\sigma_m(\Gamma)) \longrightarrow C(\sigma_n(\Gamma))$ such that all diagrams

$$\begin{array}{ccc} C(\sigma_m(\Gamma)) & \stackrel{E_{\Gamma}}{\longrightarrow} & C(\sigma_n(\Gamma)) \\ & \uparrow & & \uparrow \\ C(\sigma_m(\Delta)) & \stackrel{E_{\Delta}}{\longrightarrow} & C(\sigma_n(\Delta)) \end{array}$$

commute for $\Delta \subset \Gamma$.

Theorem (A., Marciszewski)

 $\eta(\sigma_m(\aleph_\omega), \sigma_n(\aleph_\omega))$ equals the least norm of a natural extension operator from σ_m to σ_n

There is essentially a unique formula for a natural extension operator from σ_m to σ_n :

$$A\mapsto \sum_{B\in [A]^{\leq m}}(-1)^{m-|B|}{|A|-|B|-1 \choose m-|B|}\delta_B$$

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Combinatorics behind optimality

Getting free sets

Suppose $|\Gamma| \geq \aleph_n$.

Suppose $|\Gamma| \ge \aleph_n$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ .

(ロ) (四) (三) (三) (三) (三) (○) (○)

Suppose $|\Gamma| \ge \aleph_n$.Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |A| = n+1 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Suppose $|\Gamma| \ge \aleph_n$.Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |A| = n+1 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case n = 1)

Suppose $|\Gamma| \ge \aleph_1$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |Z| = 2 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Suppose $|\Gamma| \ge \aleph_n$.Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |A| = n+1 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case n = 1)

Suppose $|\Gamma| \ge \aleph_1$. Let *F* be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |Z| = 2 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \aleph_1$ and any $n \in \mathbb{N}$.

Suppose $|\Gamma| \ge \aleph_n$.Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |A| = n+1 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case n = 1)

Suppose $|\Gamma| \ge \aleph_1$. Let *F* be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |Z| = 2 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \ge \aleph_1$ and any $n \in \mathbb{N}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ .

Suppose $|\Gamma| \ge \aleph_n$.Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |A| = n+1 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case n = 1)

Suppose $|\Gamma| \ge \aleph_1$. Let *F* be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |Z| = 2 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \ge \aleph_1$ and any $n \in \mathbb{N}$.Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ .Then, there exists $Z = \{z_1, \ldots, z_n\} \subset \Gamma$ such that $F(A) \cap Z = \emptyset$ for all

Suppose $|\Gamma| \ge \aleph_n$.Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |A| = n+1 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case n = 1)

Suppose $|\Gamma| \ge \aleph_1$. Let *F* be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z \subset \Gamma$ with |Z| = 2 such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \ge \aleph_1$ and any $n \in \mathbb{N}$. Let F be a function that sends each finte subsets of Γ to a another disjoint finite subset of Γ . Then, there exists $Z = \{z_1, \ldots, z_n\} \subset \Gamma$ such that $F(A) \cap Z = \emptyset$ for all **intervals** $A \subset Z$.

Does a nonseparable $L_p(\mu)$ have an unconditional basis when $p \neq 2$?

Does a nonseparable $L_p(\mu)$ have an unconditional basis when $p \neq 2$?

They get a negative answer for density at least \aleph_{ω} .

Does a nonseparable $L_p(\mu)$ have an unconditional basis when $p \neq 2$?

イロト (部) (日) (日) (日) (日)

They get a negative answer for density at least \aleph_{ω} . The combinatorics behind it are again free sets.

Does a nonseparable $L_p(\mu)$ have an unconditional basis when $p \neq 2$?

They get a negative answer for density at least \aleph_{ω} . The combinatorics behind it are again free sets. The new free set property in \aleph_1 is not strong enough to solve this problem.

$$\begin{array}{cccc} B(\Gamma) & \longrightarrow & sB(\Gamma) \\ & \uparrow & & \uparrow \\ & \sigma_m(\Gamma) & \longrightarrow & \sigma_n(\Gamma) & \stackrel{\subset}{\longrightarrow} & \{0, 1/\sqrt{m}\}^{\Gamma} \end{array}$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

$$\begin{array}{cccc} B(\Gamma) & \longrightarrow & sB(\Gamma) \\ \uparrow & & \uparrow \\ & & \uparrow \\ \sigma_m(\Gamma) & \longrightarrow & \sigma_n(\Gamma) & \stackrel{\subset}{\longrightarrow} & \{0, 1/\sqrt{m}\}^{\Gamma} \end{array}$$

with the left vertical arrow admitting extension operator of norm 1, and n - m arbitrarily large.

$$\begin{array}{cccc} B(\Gamma) & \longrightarrow & sB(\Gamma) \\ & \uparrow & & \uparrow \\ & \sigma_m(\Gamma) & \longrightarrow & \sigma_n(\Gamma) & \stackrel{\subset}{\longrightarrow} & \{0, 1/\sqrt{m}\}^{\Gamma} \end{array}$$

with the left vertical arrow admitting extension operator of norm 1, and n-m arbitrarily large. But $\eta(\sigma_m(\Gamma), \sigma_n(\Gamma)) \ge 2n-2m+1...$

$$\begin{array}{cccc} B(\Gamma) & \longrightarrow & sB(\Gamma) \\ & \uparrow & & \uparrow \\ & & \sigma_m(\Gamma) & \longrightarrow & \sigma_n(\Gamma) & \stackrel{\subset}{\longrightarrow} & \{0, 1/\sqrt{m}\}^{\Gamma} \end{array}$$

with the left vertical arrow admitting extension operator of norm 1, and n-m arbitrarily large. But $\eta(\sigma_m(\Gamma), \sigma_n(\Gamma)) \ge 2n-2m+1...$

Open Problem: A non-separable Miljutin theorem?

Is $C(B(\Gamma))$ isomorphic to $C(\sigma_1(\Gamma)^{\mathbb{N}})$?