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Extension Opertators

C (K ) = {f : K −→ R continuous},

‖f ‖= max{|f (x)| : x ∈ K}.

Let K ⊂ L be compact sets,

Theorem (Tietze)

Every f ∈ C (K ) extends to a function in C (L).

An extension operator is an operator E : C (K )−→ C (L) that sends
every f ∈ C (K ) to an extension.
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Extension opertators as generalized retractions

Let M(K ) = C (K )∗ be the regular Borel measures on K , with
weak∗ topology.

Generalized retractions

Having an extension operator E is all the same as having a
continous E ∗ : L−→M(K ) such that E ∗(x) = δx for x ∈ K .

Moreover ‖E‖= max{‖E ∗(x)‖ : x ∈ L}.

E (f )(x) =
∫

f dE ∗(x)
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The Borsuk-Dugundji extension theorem

Theorem (Borsuk, Dugundji)

If K is metric, then there exists a positive extension operator
E : C (K )−→ C (L) with ‖E‖= 1.

In the non-metric case, we define

η(K ,L) = inf{‖E‖ : E : C (K )−→ C (L) is an extension operator}

which might be ∞ if there is no such E exists.
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Our compact spaces

Balls in Hilbert space:

rB(Γ) = {x ∈ `2(Γ) : ‖x‖ ≤ r}

with the weak topology of `2(Γ).

Spaces of finite sets:

σn(Γ) = {x ∈ {0,1}Γ : |supp(x)| ≤ n}

with the pointwise topology of {0,1}Γ

{1,2,3},{1,2,4},{1,2,5}, . . .−→ {1,2}
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Our main results

Theorem (Corson, Lindenstrauss 65)

1 rB(Γ) is not a retract of sB(Γ) for Γ uncountable and r < s.

2 η(σ1(Γ),L) is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from rB(Γ) to sB(Γ) for Γ
uncountable and r < s.

Theorem (A., Marciszewski)

η(σm(Γ),σn(Γ)) is an odd integer that depends on m,n, and |Γ|. It
takes values:

1 1, if |Γ| ≤ℵ0.

2 2n−2m+ 1, if |Γ|= ℵ1.

3 ∑
m
k=0

(n
k

)(n−k−1
m−k

)
, if |Γ| ≥ℵω .



Our main results

Theorem (Corson, Lindenstrauss 65)

1 rB(Γ) is not a retract of sB(Γ) for Γ uncountable and r < s.

2 η(σ1(Γ),L) is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from rB(Γ) to sB(Γ) for Γ
uncountable and r < s.

Theorem (A., Marciszewski)

η(σm(Γ),σn(Γ)) is an odd integer that depends on m,n, and |Γ|. It
takes values:

1 1, if |Γ| ≤ℵ0.

2 2n−2m+ 1, if |Γ|= ℵ1.

3 ∑
m
k=0

(n
k

)(n−k−1
m−k

)
, if |Γ| ≥ℵω .



Our main results

Theorem (Corson, Lindenstrauss 65)

1 rB(Γ) is not a retract of sB(Γ) for Γ uncountable and r < s.

2 η(σ1(Γ),L) is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from rB(Γ) to sB(Γ) for Γ
uncountable and r < s.

Theorem (A., Marciszewski)

η(σm(Γ),σn(Γ)) is an odd integer that depends on m,n, and |Γ|. It
takes values:

1 1, if |Γ| ≤ℵ0.

2 2n−2m+ 1, if |Γ|= ℵ1.

3 ∑
m
k=0

(n
k

)(n−k−1
m−k

)
, if |Γ| ≥ℵω .



Our main results

Theorem (Corson, Lindenstrauss 65)

1 rB(Γ) is not a retract of sB(Γ) for Γ uncountable and r < s.

2 η(σ1(Γ),L) is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from rB(Γ) to sB(Γ) for Γ
uncountable and r < s.

Theorem (A., Marciszewski)

η(σm(Γ),σn(Γ)) is an odd integer that depends on m,n, and |Γ|. It
takes values:

1 1, if |Γ| ≤ℵ0.

2 2n−2m+ 1, if |Γ|= ℵ1.

3 ∑
m
k=0

(n
k

)(n−k−1
m−k

)
, if |Γ| ≥ℵω .



Our main results

Theorem (Corson, Lindenstrauss 65)

1 rB(Γ) is not a retract of sB(Γ) for Γ uncountable and r < s.

2 η(σ1(Γ),L) is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from rB(Γ) to sB(Γ) for Γ
uncountable and r < s.

Theorem (A., Marciszewski)

η(σm(Γ),σn(Γ)) is an odd integer that depends on m,n, and |Γ|. It
takes values:

1 1, if |Γ| ≤ℵ0.

2 2n−2m+ 1, if |Γ|= ℵ1.

3 ∑
m
k=0

(n
k

)(n−k−1
m−k

)
, if |Γ| ≥ℵω .



Our main results

Theorem (Corson, Lindenstrauss 65)

1 rB(Γ) is not a retract of sB(Γ) for Γ uncountable and r < s.

2 η(σ1(Γ),L) is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from rB(Γ) to sB(Γ) for Γ
uncountable and r < s.

Theorem (A., Marciszewski)

η(σm(Γ),σn(Γ)) is an odd integer that depends on m,n, and |Γ|. It
takes values:

1 1, if |Γ| ≤ℵ0.

2 2n−2m+ 1, if |Γ|= ℵ1.

3 ∑
m
k=0

(n
k

)(n−k−1
m−k

)
, if |Γ| ≥ℵω .



Our main results

Theorem (Corson, Lindenstrauss 65)

1 rB(Γ) is not a retract of sB(Γ) for Γ uncountable and r < s.

2 η(σ1(Γ),L) is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from rB(Γ) to sB(Γ) for Γ
uncountable and r < s.

Theorem (A., Marciszewski)

η(σm(Γ),σn(Γ)) is an odd integer that depends on m,n, and |Γ|. It
takes values:

1 1, if |Γ| ≤ℵ0.

2 2n−2m+ 1, if |Γ|= ℵ1.

3 ∑
m
k=0

(n
k

)(n−k−1
m−k

)
, if |Γ| ≥ℵω .



What is an extension operator from σm(Γ) to σn(Γ)?

Let us think of m = 1, n = 2.

We need to associate to each set of
cardinality ≤ 2, a measure on the sets of cardinality ≤ 1. This has
to extend continuously to {x} 7→ δ{x} and /0 7→ /0.

The function {p < q} 7→ q−1
q δ{p}+ 1

qδ{q} gives an extension
operator of norm 1 when Γ = N.

The function {x ,y} 7→ δ{x}+ δ{y}−δ /0 gives an extension
operator of norm 3. This is optimal for sizes ≥ℵ1.
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Cardinals and naturality

The results can be interpreted without appealing to uncountable
cardinals.

For example:

Natural extensions

Let us call a natural extension operator between σm and σn to a
family of extension operators EΓ : C (σm(Γ))−→ C (σn(Γ)) such
that all diagrams

C (σm(Γ))
EΓ−−−−→ C (σn(Γ))x x

C (σm(∆))
E∆−−−−→ C (σn(∆))

commute for ∆⊂ Γ.

Theorem (A., Marciszewski)

η(σm(ℵω ),σn(ℵω )) equals the least norm of a natural extension
operator from σm to σn
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Cardinals and naturality

There is essentially a unique formula for a natural extension
operator from σm to σn:

A 7→ ∑
B∈[A]≤m

(−1)m−|B|
(
|A|− |B|−1

m−|B|

)
δB



Combinatorics behind optimality

Getting free sets

Suppose |Γ| ≥ℵn.

Let F be a function that sends each finte
subsets of Γ to a another disjoint finite subset of Γ. Then, there
exists Z ⊂ Γ with |A|= n+ 1 such that F (A)∩Z = /0 for all A⊂ Z .

Getting free sets (case n = 1)

Suppose |Γ| ≥ℵ1. Let F be a function that sends each finte
subsets of Γ to a another disjoint finite subset of Γ. Then, there
exists Z ⊂ Γ with |Z |= 2 such that F (A)∩Z = /0 for all A⊂ Z .

Theorem (A., Marciszewski)

Suppose |Γ| ≥ℵ1 and any n ∈ N.Let F be a function that sends
each finte subsets of Γ to a another disjoint finite subset of
Γ.Then, there exists Z = {z1, . . . ,zn} ⊂ Γ such that F (A)∩Z = /0
for all intervals A⊂ Z .
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for all intervals A⊂ Z .



Another related Banach space problem

Problem (Enflo, Rosenthal 73)

Does a nonseparable Lp(µ) have an unconditional basis when
p 6= 2?

They get a negative answer for density at least ℵω . The
combinatorics behind it are again free sets. The new free set
property in ℵ1 is not strong enough to solve this problem.
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Balls in the Hilbert space

For every r < s we can produce produce diagrams:

B(Γ) −−−−→ sB(Γ)x x
σm(Γ) −−−−→ σn(Γ)

⊂−−−−→ {0,1/
√
m}Γ

with the left vertical arrow admitting extension operator of norm 1,
and n−m arbitrarily large. But η(σm(Γ),σn(Γ))≥ 2n−2m+ 1...

Open Problem: A non-separable Miljutin theorem?

Is C (B(Γ)) isomorphic to C (σ1(Γ)N)?
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