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Whitney’s Theorems of 1934

Theorem (Whitney’s approximation theorem)

Let U ⊆ Rn be open, f ∈ Ck(U), k = 0, 1, 2, ..., and ε : U → (0,∞)
continuous. Then there exists g : U → R real analytic such that

|Djf − Djg| ≤ ε on U for every j = 0, ..., k.

The proof combines integral convolutions with the heat kernel, and what
we could call real-analytic approximations to partitions of unity.
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Whitney’s Theorems of 1934

Theorem (Whitney’s extension theorem, for m finite)
Let C ⊂ Rn be closed. A necessary and sufficient condition, for a function
f : C→ R and a family of functions {fα}|α|≤m defined on C satisfying
f = f0 and

fα(x) =
∑

|β|≤m−|α|

fα+β(y)

β!
(x− y)β + Rα(x, y)

for all x, y ∈ C and all multi-indices α with |α| ≤ m, to admit a Cm

extension F to all of Rn such that DαF = fα on C for all |α| ≤ m, is that

lim
|x−y|→0

Rα(x, y)

|x− y|m−|α|
= 0 (Wm)

uniformly on compact subsets of C, for every |α| ≤ m.
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Whitney’s Theorems of 1934

If, instead of the functions fα, for every y ∈ C we are given a polynomial
Py : Rn → R with degree(Py) ≤ m and Py(y) = f (y) (Py=candidate for
Taylor polynomial of f of order m at y), then Whitney’s condition (Wm)
can be reformulated by saying that

lim
δ→0+

ρm(K, δ) = 0 for each compact subset K of C,

where we denote

ρm(K, δ) = sup{
‖DjPy(z)− DjPz(z)‖

|y− z|m−j : j = 0, ...,m, y, z ∈ K, 0 < |y−z| ≤ δ}.

If this condition is met, then Whitney’s theorem provides us with a function
F ∈ Cm(Rn) such that DjF(y) = DjPy(y) for every j = 0, ...,m and y ∈ C.
In other words, each Py is the Taylor polynomial of order m of F at y.
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Whitney’s Theorems of 1934

Sketch of the proof of Whitney’s extension theorem.
Step 1. Construct a family of Whitney cubes: a covering F = {Qj}j∈N of
U = Rn \ C by dyadic cubes with pairwise disjoint interiors and such that

1 diam(Qj) ≤ dist(Qj,C) ≤ 4diam(Qj) for every j;
2 for every Q ∈ F there are at most N := 12n cubes in F which touch

Q;
3 for every x ∈ U there are at most N cubes Q∗j which contain x,

where Q∗j := 9
8 Qj.

Step 2. Construct a Whitney partition of unity: a family of C∞ functions
ϕj : Rn → [0, 1] such that

1 ϕj = 1 on Qj, and ϕj = 0 on Q∗j ;
2
∑

j ϕj = 1 on U;
3 for each multi-index α there exists a constant Aα > 0 such that∣∣∂|α|ϕk

∂xα
(x)
∣∣ ≤ Aαdiam(Qk)

−|α|,

for every x ∈ U and k ∈ N.
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Whitney’s Theorems of 1934

Step 3. Define the extension F : Rn → R by

F(x) =

{
f (x) if x ∈ C;∑∞

j=1 Pyj(x)ϕj(x) if x /∈ C,

where the yj ∈ C are such that dist(C,Qj) = dist(yj,Qj). Check that F does
the job.
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Whitney’s Theorems of 1934

Let us call {Pm
y }y∈C,m∈N∪{0} a compatible family of polynomials for C∞

extension of a function f defined on C, where Pm
y is a polynomial of degree

up to m such that Pm
y (y) = f (y), if for every k > j the polynomial Pj

y is the
Taylor polynomial of order j at y of the polynomial Pk

y. In other words,
{Pm

y }y∈C,m∈N∪{0} is compatible if for every k > j the polynomial Pj
y is

obtained from Pk
y by discarding all of its homogeneous terms of order

greater than j.

Theorem (Whitney’s extension theorem, for m =∞)

If {Pm
y }y∈C,m∈N∪{0} is a compatible family of polynomials for C∞

extension of a function f such that for each m ∈ N the subfamily {Pm
y }y∈C

satisfies Whitney’s condition (Wm), then there is a function F ∈ C∞(Rn)
such that Pm

y is the Taylor polynomial of order m of F at y (denoted by
Jm

y F), for every y ∈ C and m ∈ N. (The converse is trivially true.)
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Whitney’s Theorems of 1934

Sketch of the proof of Whitney’s extension theorem in the case m =∞.
Steps 1 and 2 are the same as in the case m ∈ N.
Step 3. Define F by

F(x) =

{
f (x) if x ∈ C;∑∞

j=1 Pmj
yj (x)ϕj(x) if x /∈ C,

where the yj ∈ C are such that dist(C,Qj) = dist(yj,Qj), and the mj ↗∞
are carefully chosen.
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The Whitney Extension Problem

Problem (Whitney’s extension problem)
Let n,m positive integers. If C is an arbitrary subset of Rn and we are
given a function f : C→ R, how can we decide whether there exists
F ∈ Cm(Rn) such that F = f on C?

If C is closed and we guess that a family of polynomials {Pm
y }y∈C is going

to satisfy (Wm) then we are done (if our guess is correct). But of course the
problem asks for a method of deciding without having to guess.
Solutions:

H. Whitney (1934) solved the problem for n = 1 and all m.
G. Glaeser (1958) solved the problem for m = 1 and all n.
Y. Brudnyi and P. Shvartsman (2001) solved an analogous problem for
the class C1,ω(Rn).
E. Bierstone, P. Milman and W. Pawlucki (2003) solved it for C
subanalytic (and all n,m).
C. Fefferman (2006) solved it in general. He had previously solved
(2005) the analogous problem for the class Cm,ω(Rn).

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



The Whitney Extension Problem

Problem (Whitney’s extension problem)
Let n,m positive integers. If C is an arbitrary subset of Rn and we are
given a function f : C→ R, how can we decide whether there exists
F ∈ Cm(Rn) such that F = f on C?

If C is closed and we guess that a family of polynomials {Pm
y }y∈C is going

to satisfy (Wm) then we are done (if our guess is correct). But of course the
problem asks for a method of deciding without having to guess.

Solutions:
H. Whitney (1934) solved the problem for n = 1 and all m.
G. Glaeser (1958) solved the problem for m = 1 and all n.
Y. Brudnyi and P. Shvartsman (2001) solved an analogous problem for
the class C1,ω(Rn).
E. Bierstone, P. Milman and W. Pawlucki (2003) solved it for C
subanalytic (and all n,m).
C. Fefferman (2006) solved it in general. He had previously solved
(2005) the analogous problem for the class Cm,ω(Rn).

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



The Whitney Extension Problem

Problem (Whitney’s extension problem)
Let n,m positive integers. If C is an arbitrary subset of Rn and we are
given a function f : C→ R, how can we decide whether there exists
F ∈ Cm(Rn) such that F = f on C?

If C is closed and we guess that a family of polynomials {Pm
y }y∈C is going

to satisfy (Wm) then we are done (if our guess is correct). But of course the
problem asks for a method of deciding without having to guess.
Solutions:

H. Whitney (1934) solved the problem for n = 1 and all m.

G. Glaeser (1958) solved the problem for m = 1 and all n.
Y. Brudnyi and P. Shvartsman (2001) solved an analogous problem for
the class C1,ω(Rn).
E. Bierstone, P. Milman and W. Pawlucki (2003) solved it for C
subanalytic (and all n,m).
C. Fefferman (2006) solved it in general. He had previously solved
(2005) the analogous problem for the class Cm,ω(Rn).

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



The Whitney Extension Problem

Problem (Whitney’s extension problem)
Let n,m positive integers. If C is an arbitrary subset of Rn and we are
given a function f : C→ R, how can we decide whether there exists
F ∈ Cm(Rn) such that F = f on C?

If C is closed and we guess that a family of polynomials {Pm
y }y∈C is going

to satisfy (Wm) then we are done (if our guess is correct). But of course the
problem asks for a method of deciding without having to guess.
Solutions:

H. Whitney (1934) solved the problem for n = 1 and all m.
G. Glaeser (1958) solved the problem for m = 1 and all n.

Y. Brudnyi and P. Shvartsman (2001) solved an analogous problem for
the class C1,ω(Rn).
E. Bierstone, P. Milman and W. Pawlucki (2003) solved it for C
subanalytic (and all n,m).
C. Fefferman (2006) solved it in general. He had previously solved
(2005) the analogous problem for the class Cm,ω(Rn).

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



The Whitney Extension Problem

Problem (Whitney’s extension problem)
Let n,m positive integers. If C is an arbitrary subset of Rn and we are
given a function f : C→ R, how can we decide whether there exists
F ∈ Cm(Rn) such that F = f on C?

If C is closed and we guess that a family of polynomials {Pm
y }y∈C is going

to satisfy (Wm) then we are done (if our guess is correct). But of course the
problem asks for a method of deciding without having to guess.
Solutions:

H. Whitney (1934) solved the problem for n = 1 and all m.
G. Glaeser (1958) solved the problem for m = 1 and all n.
Y. Brudnyi and P. Shvartsman (2001) solved an analogous problem for
the class C1,ω(Rn).

E. Bierstone, P. Milman and W. Pawlucki (2003) solved it for C
subanalytic (and all n,m).
C. Fefferman (2006) solved it in general. He had previously solved
(2005) the analogous problem for the class Cm,ω(Rn).

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



The Whitney Extension Problem

Problem (Whitney’s extension problem)
Let n,m positive integers. If C is an arbitrary subset of Rn and we are
given a function f : C→ R, how can we decide whether there exists
F ∈ Cm(Rn) such that F = f on C?

If C is closed and we guess that a family of polynomials {Pm
y }y∈C is going

to satisfy (Wm) then we are done (if our guess is correct). But of course the
problem asks for a method of deciding without having to guess.
Solutions:

H. Whitney (1934) solved the problem for n = 1 and all m.
G. Glaeser (1958) solved the problem for m = 1 and all n.
Y. Brudnyi and P. Shvartsman (2001) solved an analogous problem for
the class C1,ω(Rn).
E. Bierstone, P. Milman and W. Pawlucki (2003) solved it for C
subanalytic (and all n,m).

C. Fefferman (2006) solved it in general. He had previously solved
(2005) the analogous problem for the class Cm,ω(Rn).

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



The Whitney Extension Problem

Problem (Whitney’s extension problem)
Let n,m positive integers. If C is an arbitrary subset of Rn and we are
given a function f : C→ R, how can we decide whether there exists
F ∈ Cm(Rn) such that F = f on C?

If C is closed and we guess that a family of polynomials {Pm
y }y∈C is going

to satisfy (Wm) then we are done (if our guess is correct). But of course the
problem asks for a method of deciding without having to guess.
Solutions:

H. Whitney (1934) solved the problem for n = 1 and all m.
G. Glaeser (1958) solved the problem for m = 1 and all n.
Y. Brudnyi and P. Shvartsman (2001) solved an analogous problem for
the class C1,ω(Rn).
E. Bierstone, P. Milman and W. Pawlucki (2003) solved it for C
subanalytic (and all n,m).
C. Fefferman (2006) solved it in general. He had previously solved
(2005) the analogous problem for the class Cm,ω(Rn).

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



The Whitney Extension Problem

Theorem (C. Fefferman, 2006)
Let n,m be positive integers. If C is an arbitrary subset of Rn and
f : C→ R is an arbitrary function, then f has an extension F ∈ Cm(Rn) if
and only if for every x ∈ C the stable Glaeser refinement of f at x is
nonempty.
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Smooth approximations of Lipschitz and C1 functions on Banach spaces
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

Smooth approximations and partitions of unity in Banach spaces have
been studied, among others, by Kurzweil, Eells, Bonic, Frampton,
Toruńczyk... For instance, every separable Banach space with a Ck smooth
bump function has Ck smooth partitions of unity. Therefore it is possible to
uniformly approximate continuous functions by Ck functions on such
spaces.

Unfortunately, the method of approximation by partitions of unity tends to
obliterate good properties of functions (for instance: Lipschitzness in
infinite-dimensional spaces, and convexity even in Rn).
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

It follows from the work of Moulis (1971) that if one is able to
approximate a Lipschitz functions defined on a ball by Ck smooth
Lipschitz functions, with a control of the Lipschitz constants of the
approximating functions, then one is also able to approximate C1 functions
by Ck smooth functions, in the C1 fine topology.

Moulis was able to do this for the classical spaces `2, c0, `p, p ≥ 2, with
k ≥ 2 appropriately defined in each case (so that the space has a Ck smooth
norm). In fact her proof works also for all separable spaces with
unconditional bases.
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

For instance:

Theorem (Moulis, 1971)
Let U be an open subset of a separable Banach space with an
unconditional basis and a Ck smooth Lipschitz bump function, let Y be a
normed space, and let f ∈ C1(U,Y), ε ∈ C(U) with ε > 0. Then there
exists g ∈ Ck(U,Y) such that |f − g| ≤ ε and ‖Df − Dg‖ ≤ ε.

For instance, if X = `2 then g ∈ C∞(U,Y).
Roughly, the main idea of the proof is to approximate the identity on X by
a Ck smooth Lipschitz mapping whose image is locally contained in
finite-dimensional subspaces, on which one can use integral convolution
tenhniques, and then to glue all local approximations together by means of
a partition of unity.
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

Thus, apart from being a natural question, it is useful to know when
Lipschitz functions can be approximated by smooth Lipschitz functions,
with a control of the Lipschitz constants of the approximating functions.

R. Fry was the first one to get a result in this direction beyond the spaces
with unconditional bases.

Theorem (R. Fry, 2004)

Let X be a separable Banach space with a Ck smooth Lipschitz bump
function, and let f : X → R be uniformly continuous. Then for every ε
there exists a Lipschitz function g ∈ Ck(X) such that |f − g| ≤ ε.
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

The essential point in Fry’s approach was to construct what, later on, P.
Hajek and M. Johanis very adequately called a Ck sup-partition of unity
{ψj(x)}, and to replace the usual quotient of sums∑

j ajψj(x)∑
j ψj(x)

with the expression
‖{ajψj(x)}∞j=1‖c0

‖{ψj(x)}∞j=1‖c0

,

where ‖ · ‖c0 is a C∞ equivalent norm in c0 with the property that
‖{λj}∞j=1‖c0 ≤ ‖{µj}∞j=1}‖c0 whenever 0 ≤ λj ≤ µj for all j.
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

Theorem (Existence of smooth Lipschitz sup-partitions of unity. Fry, 2004)

Let X be a separable Banach space with a Lipschitz Ck smooth bump
function (k ∈ N ∪ {∞}). Then there exists M > 0 such that for every δ > 0
there exists a family of Ck functions {ψj}j∈N such that:

diam(supp(ψj)) ≤ δ;

Lip(ψj) ≤ M/δ for all j;

0 ≤ ψj ≤ 1 for every j;

for every x there exist nx ∈ N and a neighborhood Ux of x so that
ψj = 0 on Ux for all j ≥ nx;

for every x ∈ X there exists jx ∈ N such that ψjx(x) = 1.
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

However, Fry’s method of approximation

‖{ajψj(x)}∞j=1‖c0

‖{ψj(x)}∞j=1‖c0

,

had one important fault concerning the control of Lipschitz constants: it
gives

Lip(g) ≤ C
ε
‖f‖∞Lip(f ),

while we should like to have

Lip(g) ≤ CLip(f ),

where C is a constant independent of f and ε.
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

Hájek and Johanis were able to surmount this difficulty, and they proved
very general results on smooth approximation of Lipschitz functions and of
C1 functions (even functions taking values in some Banach spaces):

Theorem (Hájek-Johanis, 2010)

Let X be a separable Banach space that admits a Ck smooth Lipschitz
bump function. Let Y be a Banach space. If at least one of the spaces X, Y
is a separable C(K), then there is a constant M > 0 such that for every
Lipschitz function f : X → Y and every continuous function ε : X → (0,∞)
there exists a Ck smooth Lipschitz function g : X → Y such that

‖f − g‖Y ≤ ε, and

Lip(g) ≤ MLip(f ).
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

Hájek-Johanis’s proof combines, among other things, bi-Lipschitz
embeddings into c0(Γ), some results of Lindenstrauss’s on absolute
Lipschitz retracts, sup-partitions of unity, and their following previous
result (which relies on integral convolutions defined locally with respect
finitely many coordinates in c0(Γ)):

Theorem (Hájek-Johanis)

Let Γ be an arbitrary set, Y be a Banach space, M ⊂ c0(Γ), U ⊂ c0(Γ) be
a uniform neighbourhood of M, f : U → Y be an L-Lipschitz mapping, and
let ε > 0. Then there is a mapping g ∈ C∞ (c0(Γ),Y) which locally
depends on finitely many coordinates, such that ‖f − g‖ ≤ ε on M, and g is
L-Lipschitz on M.
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

Hájek and Johanis also applied these results to obtain approximation of C1

functions by Ck functions in the C1-fine topology.

Theorem (Hájek-Johanis, 2010)

Let X be a separable Banach space that admits a Ck smooth Lipschitz
bump. Let Y be a Banach space. If at least one of the spaces X, Y is a
separable C(K), or if at least one of X, Y has an unconditional basis and a
separable dual, then, for every U ⊂ X open, for every f ∈ C1(U,Y) and
every continuous function ε : U → (0,∞) there exists g ∈ Ck(U,Y) such
that

‖f − g‖Y ≤ ε, and

‖Df − Dg‖ ≤ ε.
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Smooth approximations of Lipschitz and C1 functions on Banach spaces

As for the approximation of Lipschitz functions by real analytic-functions,
we proved:

Theorem (A-Fry-Keener, 2012)
Let X be a separable Banach space with a separating polynomial. Then
there exists M > 0 such that for every Lipschitz function f : X → R, and
every ε > 0, there exists a Lipschitz, real analytic function g : X → R such
that

1 |f (x)− g(x)| ≤ ε, and
2 Lip(g) ≤ MLip(f ).

The main tool here was to construct real analytic approximations to the
sup-partitions of unity (in such a way that these approximations have
holomorphic extensions to a neighborhood of X of uniform width in the
complexification X̃ of X).
The proof was later simplified by M. Johanis.
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Another application of the smooth approximation of Lipschitz functions: C1 extensions of functions defined on closed subsets of Banach spaces

The extension of a smooth function from a closed subset C of a Banach
space X to the whole X is not a trivial matter, even when C is a closed
subspace, because the only Banach space all of whose closed subspaces are
complemented is the Hilbert space.

Theorem (A-Fry-Keener, 2010)
Let X be a Banach space with a separable dual. Let Y ⊂ X be a closed
subspace, and f ∈ C1(Y) smooth function. Then there exists F ∈ C1(X)
such that F = f on Y.

The proof combines:
the Bartle-Graves selector theorem (to construct a continuous
G : Y → X∗ which is a candidate for DF restricted to Y).
ideas from the proof of the classical Tietze extension theorem.
Namely, an inductive construction of a series defining the extension
function, making use of
the mentioned results on smooth approximation of Lipschitz
functions, so that the series of derivatives converges too.
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Another application of the smooth approximation of Lipschitz functions: C1 extensions of functions defined on closed subsets of Banach spaces

By substituting, in this scheme, the use of the Bartle-Graves theorem with a
suitable infinite-dimensional analogue (W1) of Whitney’s extension
condition (W1), M. Jiménez-Sevilla and Luis Sánchez-González proved:

Theorem (Jiménez-Sevilla and Sánchez-González, 2011)
Let C be a closed subset of a Banach space X with a separable dual. Let
f : C→ R and G : C→ X∗ be continuous mappings so that for every
x ∈ C and every ε > 0 there exists δ > 0 such that

y, z ∈ C ∩ B(x, δ), 0 < |y− z| ≤ δ =⇒ |f (z)− f (y)− G(y)(x− y)|
|x− y|

≤ ε.

(W1)
Then there exists F ∈ C1(X) such that F = f on C.

The converse is also true (a simple exercise).
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Smooth convex approximations of convex functions on Rn

Given an open convex subset U ⊆ Rd and a convex function f : U → R,
how can we approximate f by smooth convex functions, uniformly on U?

Classical methods:

Integral convolution with mollifiers provides uniform approximation
on compact sets (and global approximation only when f is Lipschitz).

Partitions of unity can be used to pass from approximation on compact
sets to global approximation only if the function f is strongly convex.

A function f : U → R is said to be strongly convex if for every x ∈ U there
exist r > 0 and ϕ ∈ C2(B(x, r)) with D2ϕ > 0 such that f − ϕ is still
convex on B(x, r).
For instance, if f and g are C2 with D2f > 0, D2g > 0 then
x 7→ max{f (x), g(x)} is strongly convex. On the other hand, x 7→ x4 is
convex, but not strongly convex.
Therefore, the global smooth approximation problem for convex functions
f : U ⊆ Rn → R cannot be solved only by these classical methods if f is
not Lipschitz or strongly convex.
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Smooth convex approximations of convex functions on Rn

Theorem (A, 2013)

Let U ⊆ Rd be open and convex. For every convex function f : U → R and
every ε > 0 there exists a real-analytic convex function g : U → R such
that f − ε ≤ g ≤ f .

The proof combines:

A new method of gluing semilocal smooth convex approximations
into global smooth convex approximations;

Whitney’s approximation theorem, and

some insight into the global structure of convex functions f : Rn → R.
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Smooth convex approximations of convex functions on Rn

Meaning that the global geometrical behaviour of a convex function
f : Rd → R is rather rigid:

Theorem (A, 2013)

Let f : Rd → R be a convex function. The following conditions are
equivalent:

1 f cannot be uniformly approximated by strictly convex functions.
2 f cannot be uniformly approximated by strongly convex functions.
3 There exist k < d, a linear projection P : Rd → Rk, a convex function

c : Rk → R and a linear function ` : Rd → R such that f = c ◦ P + `.
4 f cannot be written in the form f = `+ c, where ` is linear and

lim|x|→∞ c(x) =∞.
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Smooth convex approximations of convex functions on Banach spaces

Classical methods: the inf-convolutions with squares of norms

fλ(x) = inf
y∈X
{f (y) +

1
2λ
|x− y|2}

work fine on Banach spaces X with dual LUR norms, providing C1 convex
approximations of functions on bounded sets whenever f is bounded on
bounded sets.

By combining this method with a refinement of the new
gluing procedure for convex approximations mentioned before, one can
show:

Theorem (A-Mudarra, 2014)
Let U be an open convex subset of a Banach space X with a separable
dual, and let f : U → R be convex and continuous (not necessarily
bounded on bounded sets). Then, for every ε > 0 there exists a convex
function g ∈ C1(X) such that |f − g| ≤ ε on U.
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Smooth convex approximations of convex functions on Banach spaces

What about higher order smoothness?

Open Problem
Can every continuous convex function f : `2 → R be approximated by C∞

smooth convex functions, uniformly on `2?

It would suffice to solve this problem in the special case when f is convex
and Lipschitz.
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Smooth convex approximations of convex functions on Banach spaces

As for the problem of approximation of bounded convex bodies by higher
order smooth convex bodies: Deville-Fonf-Hajek, and Hajek-Talponen
have provided a complete answer.

Theorem (Hajek-Talponen 2014, resp. Deville-Fonf-Hajek 1998)

Let X be a separable Banach space with a Ck smooth equivalent norm,
k ∈ N ∪ {∞} (resp. let X be L2n[0, 1], or `2n, or c0). For every bounded
convex body C in X and every ε > 0 there exists a Ck smooth (resp. real
analytic) convex body D such that C ⊂ D ⊂ C + εB(0, 1).
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C1 convex extensions of functions

Problem
Let C ⊂ Rn be closed, and let f : C→ R, G : C→ Rn be continuous
mappings satisfying Whitney’s extension condition (W1), that is,

lim
x,y∈C, |x−y|→0+

f (x)− f (y)− 〈G(y), x− y〉
|x− y|

= 0,

uniformly on compact subsets of C. What additional conditions on f ,G, if
any, will guarantee that there exists a convex function F ∈ C1(Rn) such
that F = f on C and∇F = G on C?

Previous results of M. Ghomi (2002) and, independently, M. Yan (2014),
imply that if C is compact and convex, and if f ∈ C2 satisfies D2f > 0 on a
neighbourhood of C then this is always possible, with no further
assumptions on f ,G.
However, positive definiteness of D2f is a very strong condition, far from
necessary.
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C1 convex extensions of functions

Obstructions: if C is not compact, even in a most nice situation (for
instance, when we assume C to be convex with a smooth boundary, and f is
assumed to have C∞ smooth extensions with strictly positive Hessian on a
neighborhood of C) there may not be any such F.
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C1 convex extensions of functions

These are the instructions to find a counterexample:

1. Avoid using the shower.
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C1 convex extensions of functions

2. Get in a bathtub...
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C1 convex extensions of functions

... preferrably without a girl.
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C1 convex extensions of functions

The following example is due to Schulz and Schwartz (1979).

Example

Let C = {(x, y) ∈ R2 : x > 0, xy ≥ 1}, and define

f (x, y) = −2
√

xy

for every (x, y) ∈ C. The set C is convex and closed, with a nonempty
interior, and f is convex on a neighborhood of C. However, f does not have
any convex extension to all of R2.
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C1 convex extensions of functions
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C1 convex extensions of functions

A variation of this bathtub-like example shows that the obstruction persists
if we require that D2f > 0 on a neighborhood of C.

Example

Let C = {(x, y) ∈ R2 : x > 0, xy ≥ 1}, and define

f (x, y) = −2
√

xy +
1

x + 1
+

1
y + 1

for every (x, y) ∈ C. The set C is convex and closed, with a nonempty
interior, and f has a strictly positive Hessian on a neighborhood of C.
However, f does not have any convex extension to all of R2.
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C1 convex extensions of functions

However, if we require that C be compact, there are geometrical conditions
which, together with (W1), are necessary and sufficient for f to have a
convex extension F ∈ C1(Rn) such that F = f on C and ∇F = G on C.

Namely,

(C) f (x)− f (y) ≥ 〈G(y), x− y〉 for all x, y ∈ C;

(CW1) f (x)− f (y) = 〈G(y), x− y〉 =⇒ G(x) = G(y) for all x, y ∈ C.

Theorem (A-Mudarra, 2015)
Let C be a compact (not necessarily convex) subset of Rn. Let f : C→ R
be an arbitrary function, and G : C→ Rn be a continuous mapping. Then
there exists a convex function F ∈ C1(Rn) with F = f and∇F = G on C if
and only if f and G satisfy the conditions (C), (W1), and (CW1) on C.
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C1 convex extensions of functions

Note that (W1) is a local condition, while (C) and (CW1) are not.

Nevertheless, if C is convex with nonempty interior, and f ,G satisfy (W1)
on C, then it can be checked that the conditions (C) and (CW1) are
automatically fulfilled. Therefore we have:

Corollary (A-Mudarra, 2015)
Let C be a compact convex subset of Rn with non-empty interior. Let
f : C→ R be a convex function, and G : C→ Rn be a continuous mapping
satisfying Whitney’s extension condition (W1) on C. Then there exists a
convex function F ∈ C1(Rn) such that F(y) = f (y) and∇F(y) = G(y) for
every y ∈ C.
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C1 convex extensions of functions

Idea of the proof of the Theorem:
Using Whitney’s extension theorem, we may assume that f ∈ C1(Rn), with
∇f = G on C, and that f satisfies conditions (C) and (CW1) on C.

Consider m(f ) : Rn → R defined by

m(f )(x) = sup
y∈C
{f (y) + 〈∇f (y), x− y〉}.

This function is Lipschitz and convex on Rn

And we have m(f ) = f on C.
(In the case when C is convex and has nonempty interior, it is easy to see
that if h : Rn → R is convex and h = f on C, then m(f ) ≤ h. Thus, in this
case, m(f ) is the minimal convex extension of f to all of Rn, which explains
the notation. However, if C is convex but has empty interior then there is
no minimal convex extension operator. )
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C1 convex extensions of functions

If the function m(f ) were differentiable on Rn, there would be nothing else
to say. Unfortunately, there are examples showing that m(f ) need not be
differentiable outside C, even when C is convex and f satisfies (CW1).

Nevertheless, a crucial step of the proof is:

Lemma

Let f ∈ C1(Rn), let C be a compact subset of Rn (not necessarily convex),
and assume that f satisfies (C) and (CW1) on C. Then, for each x0 ∈ C,
the function m(f ) is differentiable at x0, with∇m(f )(x0) = ∇f (x0).

Now, the differentiability of m(f ) on ∂C can be used, in combination with
Whitney’s approximation theorem, to construct a (not necessarily convex)
differentiable function g such that g = f on C, g ≥ m(f ) on Rn, and
lim|x|→∞ g(x) =∞.
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C1 convex extensions of functions

Indeed, define

H(x) = |f (x)− m(f )(x)|+ 2d(x,C)2,

where d(x,C) stands for the distance from x to C.

It’s easy to see that H is differentiable on C, with∇H(x0) = 0 for every
x0 ∈ C.
Then, according to Whitney’s approximation theorem, we can find
ϕ ∈ C∞(Rn \ C) such that

|ϕ(x)− H(x)| ≤ d(x,C)2 for every x ∈ Rn \ C.

Define ϕ̃ : Rn → R by ϕ̃ = ϕ on Rn \ C and ϕ̃ = 0 on C.
Again, it’s easy to see that ϕ̃ is differentiable on all of Rn, and has a null
gradient on C.
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C1 convex extensions of functions

Put g := f + ϕ̃. The function g is differentiable on Rn, and coincides with f
on C.

And, for x ∈ Rn \ C, we have

g(x) ≥ f (x) + H(x)− d(x,C)2 = f (x) + |f (x)− m(f )(x)|+ d(x,C)2 ≥
m(f )(x) + d(x,C)2.

In particular g ≥ m(f ). On the other hand, we know that m(f ) is Lipschitz
on Rn, and therefore m(f ) may decay only linearly at infinity, while
d(·,C)2 grows quadratically at infinity. Hence the above inequality also
implies that lim|x|→∞ g(x) =∞.
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C1 convex extensions of functions

Now we use a differentiability property of the convex envelope of a
function ψ : Rn → R, defined by

conv(ψ)(x) = sup{h(x) : h is convex , h ≤ ψ}.

Namely,

Theorem (Kirchheim-Kristensen, 2001)

If ψ : Rn → R is differentiable and lim|x|→∞ ψ(x) =∞, then
conv(ψ) ∈ C1(Rn).

If we define F = conv(g) we thus get that F is convex on Rn and
F ∈ C1(Rn). And it’s easy to see that F = f and∇F = G on C. �
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C∞ convex extensions of functions

C∞ convex extensions of functions
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C∞ convex extensions of functions

Problem
Let C ⊂ Rn be compact and convex, and let f : C→ R, G : C→ Rn be
continuous mappings satisfying Whitney’s extension condition (Wm). What
additional conditions on f and {Pm

y }y∈C, if any, will guarantee that there
exists a convex function F ∈ Cm(Rn) such that F = f on C and Pm

y is the
Taylor polynomial of order m of f at y, for each y ∈ C?
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C∞ convex extensions of functions

Definition
Let m ∈ N, m ≥ 2. We will say that f , together with a family of
polynomials {Pm

y }y∈C of degree up to m such that Pm
y (y) = f (y), satisfy the

condition (CWm) provided that

lim inf
t→0+

1
tm−2

(
D2Pm

y (y)(v)2 + · · ·+ tm−2

(m− 2)!
DmPm

y (y)(wm−2, v2)

)
≥ 0

uniformly on y ∈ C,w, v ∈ Sn−1.

This condition is necessary for f to have a Cm convex extension F with
Taylor polynomials Pm

y at each y ∈ C, as is easily seen by writing the
Taylor expansion of D2F at points y ∈ C and using that D2F ≥ 0 on Rn.
We do not know whether this condition is sufficient as well if C has
nonempty interior.
We do know that the condition is insufficient if int(C) = ∅.
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C∞ convex extensions of functions

However, in the case m =∞ we have a complete answer to our extension
problem for C convex and compact (no matter whether or not C has empty
interior).

Theorem (A-Mudarra, 2015)
Let C be a compact convex subset of Rn. Let f : C→ R be a function, and
let {Pm

y }y∈C,m∈N be a compatible family of polynomials for C∞ extension
of f . Then f has a convex, C∞ extension F to all of Rn, with Jm

y F = Pm
y for

every y ∈ C and m ∈ N, if and only if {Pm
y }y∈C satisfies (Wm) and (CWm)

on C, for every m ∈ N, m ≥ 2.
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C∞ convex extensions of functions

Idea of the proof: We may assume f ∈ C∞(Rn), and f convex on C.

First step. We estimate the possible lack of convexity of f outside C: by
using the conditions (CWm), a Whitney partition of unity, and some ideas
from the proof of the Whitney extension theorem in the C∞ case, we
construct a function η ∈ C∞(R) such that η ≥ 0, η−1(0) = (−∞, 0], and
min|v|=1 D2f (x)(v)2 ≥ −η (d(x,C)) for every x ∈ Rn.

Second step. Then we compensate the lack of convexity of f outside C
with the construction of a convex function ψ ∈ C∞(Rn) such that ψ ≥ 0,
ψ−1(0) = C, and min|v|=1 D2ψ(x)(v)2 ≥ 2η (d(x,C)). Then, by setting
F := f + ψ we conclude the proof.
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C∞ convex extensions of functions

In order to construct this function ψ, we consider a function g ∈ C∞(R)
with g−1(0) = (−∞, 0] and g′′(t) > 0 for all t > 0, and with some other
essential properties coming from the estimations done in the first step that
we ignore here.

We may assume that 0 ∈ C. Now, for every w ∈ Sn, define
h(w) = maxz∈C〈z,w〉, the support function of C. Then define the function
ϕ : Rn −→ R by

ϕ(x) =

∫
Sn

g (〈x,w〉 − h(w)) dw for every x ∈ Rn.

We have ϕ−1(0) = C and ϕ is convex, with

D2ϕ(x)(v)2 =

∫
Sn

g′′(〈x,w〉 − h(w))〈w, v〉2 dw.
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C∞ convex extensions of functions

For given x ∈ Rn \ C and v ∈ Sn−1 we find a region W = W(x, v) of Sn−1

of sufficient volume (depending only, and conveniently, on d(x,C)) on
which we have good lower estimates for g′′(〈x,w〉 − h(w))〈w, v〉2. This
only involves a careful selection of angles and directions, and provides the
lower estimates on D2ϕ(x)(v2) that we need.

Unfortunately, this region is a hyperspherical cap whose volume is of the
order of d(x,C)n−1, and this is essentially the reason why the proof only
works for m =∞.
For m finite, the proof can be adapted to get an extension result with loss of
differentiability.

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



C∞ convex extensions of functions

For given x ∈ Rn \ C and v ∈ Sn−1 we find a region W = W(x, v) of Sn−1

of sufficient volume (depending only, and conveniently, on d(x,C)) on
which we have good lower estimates for g′′(〈x,w〉 − h(w))〈w, v〉2. This
only involves a careful selection of angles and directions, and provides the
lower estimates on D2ϕ(x)(v2) that we need.
Unfortunately, this region is a hyperspherical cap whose volume is of the
order of d(x,C)n−1, and this is essentially the reason why the proof only
works for m =∞.

For m finite, the proof can be adapted to get an extension result with loss of
differentiability.

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



C∞ convex extensions of functions

For given x ∈ Rn \ C and v ∈ Sn−1 we find a region W = W(x, v) of Sn−1

of sufficient volume (depending only, and conveniently, on d(x,C)) on
which we have good lower estimates for g′′(〈x,w〉 − h(w))〈w, v〉2. This
only involves a careful selection of angles and directions, and provides the
lower estimates on D2ϕ(x)(v2) that we need.
Unfortunately, this region is a hyperspherical cap whose volume is of the
order of d(x,C)n−1, and this is essentially the reason why the proof only
works for m =∞.
For m finite, the proof can be adapted to get an extension result with loss of
differentiability.

Daniel Azagra Smooth approximations and extensions of convex functions Warwick, June 12, 2015



C∞ convex extensions of functions

Namely,

Theorem
Let C be a compact convex subset of Rn. Let f : C→ R be a function,
m ∈ N with m ≥ n + 3, and let {Pm

y }y∈C be a family of polynomials of
degree less than or equal to m and Pm

y (y) = f (y) for every y ∈ C. Assume
that {Pm

y }y∈C satisfies (Wm) and (CWm). Then there exists a convex
function F ∈ Cm−n−1(Rn) such that Jm−n−1

y F = Pm−n−1
y for every y ∈ C.

This result is probably not optimal, at least in the case when C has
nonempty interior. However, examples show that if C has empty interior
then one cannot expect to find smooth convex extensions (of functions
satisfying (Wm) and (CWm) on C) without experiencing a certain loss of
differentiability.
The examples also show that in R2 this loss amounts to at least two orders
of smoothness, and that the situation does not improve as m grows large
(unless m =∞).
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C∞ convex extensions of functions

What about similar results in Banach spaces?
There are important obstructions even when C is a subspace and one only
looks for continuous convex extensions of f : C→ R.

Borwein, Montesinos and Vanderwerff showed that : there are
infinite-dimensional Banach spaces X, closed subspaces E ⊂ X and
continuous convex functions f : E → R which have no continuous convex
extensions to X.
However, they showed that if X is a Banach space and X/E is separable,
then each continuous convex function on E admits a continuous convex
extension to X.
Vesely and Zajicek showed that this is still true even if X is a noncomplete
normed space.
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C∞ convex extensions of functions

As for smooth convex extensions of functions defined on Banach spaces,
there seems to be severe limitations too.

For instance:

Theorem (V. Zizler, 1989)

A separable C(K) space is isomorphic to c0 if and only if for every Banach
space X containing it, every equivalent Gâteaux differentiable norm on
C(K) extends to an equivalent Gâteaux differentiable norm on X.
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C∞ convex extensions of functions

Open Problems
1 Let C be a compact convex body of Rn, and let f : C→ R be convex

and satisfy (W2). Is it true that there always exists a convex function
F ∈ C2(Rn) such that F = f on C?

2 If K is compact (not necessarily convex), and f : K → R is given, how
can we decide whether there exists a convex function F ∈ Cm(Rn)
such that F = f on K?
(This is the most general form of the Whitney extension problem for
convex functions.)
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C∞ convex extensions of functions

Thank you for your attention!
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