σ -Porosity of the set of strict contractions in a space of non-expansive mappings

Christian Bargetz

joint work with Michael Dymond

Relations Between Banach Space Theory and Geometric Measure Theory 8–12 June 2015

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

The setting

Let X be a Banach space and $C \subset X$ a closed, convex and bounded set. We consider the space

$$\mathcal{M} = \{f \colon C \to C \colon \forall x, y \in C \colon \|f(x) - f(y)\| \le \|x - y\|\}$$

equipped with the metric

$$d(f,g) = \sup_{x \in C} \|f(x) - g(x)\|$$

of uniform convergence. ${\cal M}$ is a complete metric space.

The setting

Let X be a Banach space and $C \subset X$ a closed, convex and bounded set. We consider the space

$$\mathcal{M} = \{f \colon C \to C \colon \forall x, y \in C \colon \|f(x) - f(y)\| \le \|x - y\|\}$$

equipped with the metric

$$d(f,g) = \sup_{x\in C} \|f(x) - g(x)\|$$

of uniform convergence.

 ${\mathcal M}$ is a complete metric space.

The setting

Let X be a Banach space and $C \subset X$ a closed, convex and bounded set. We consider the space

$$\mathcal{M} = \{f \colon C \to C \colon \forall x, y \in C \colon \|f(x) - f(y)\| \le \|x - y\|\}$$

equipped with the metric

$$d(f,g) = \sup_{x\in C} \|f(x) - g(x)\|$$

of uniform convergence. \mathcal{M} is a complete metric space.

How small is the set of strict contrations?

We consider the set

$$\mathcal{N} = \{f \in \mathcal{M} \colon \operatorname{Lip}(f) < 1\}$$

of strict contractions.

Question

"How small" is the set of strict contractions in \mathcal{M} ?

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

How small is the set of strict contrations?

We consider the set

$$\mathcal{N} = \{f \in \mathcal{M} \colon \operatorname{Lip}(f) < 1\}$$

of strict contractions.

Question

"How small" is the set of strict contractions in \mathcal{M} ?

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

$\sigma\text{-porous sets}$

A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $||y - x|| \le \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

$\sigma\text{-porous sets}$

A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $||y - x|| \le \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.

The set A is called σ -porous if it is a countable union of porous sets.

$\sigma\text{-porous sets}$

A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $||y - x|| \le \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.

The set A is called σ -porous if it is a countable union of porous sets.

Note that σ -porous sets are of first category in the sense of the Baire category theorem.

The Hilbert space case

Theorem (De Blasi and Myjak, 1989)

If X is a Hilbert space the set N of strict contractions on C is a σ -porous subset of M.

Proof sketch.

Take a sequence $(L_k)_{k\in\mathbb{N}}$ with $L_n \nearrow 1$ and set

$$\mathcal{N}_k = \{f \in \mathcal{M} \colon \operatorname{Lip}(f) \leq L_k\}.$$

Given $f \in \mathcal{N}_k$ and $\varepsilon > 0$ set g to the identity on a small ball around the fixed point x^* of f and to f outside a bigger ball around x^* then use Kirszbraun's extension theorem to get a close enough midpoint of a ball outside \mathcal{N}_k .

The Hilbert space case

Theorem (De Blasi and Myjak, 1989)

If X is a Hilbert space the set N of strict contractions on C is a σ -porous subset of M.

Proof sketch.

Take a sequence $(L_k)_{k\in\mathbb{N}}$ with $L_n \nearrow 1$ and set

$$\mathcal{N}_k = \{f \in \mathcal{M} \colon \operatorname{Lip}(f) \leq L_k\}.$$

Given $f \in \mathcal{N}_k$ and $\varepsilon > 0$ set g to the identity on a small ball around the fixed point x^* of f and to f outside a bigger ball around x^* then use Kirszbraun's extension theorem to get a close enough midpoint of a ball outside \mathcal{N}_k .

・ 回 ト ・ ヨ ト ・ ヨ ト

The Hilbert space case

Theorem (De Blasi and Myjak, 1989)

If X is a Hilbert space the set N of strict contractions on C is a σ -porous subset of M.

Proof sketch.

Take a sequence $(L_k)_{k\in\mathbb{N}}$ with $L_n \nearrow 1$ and set

$$\mathcal{N}_k = \{f \in \mathcal{M} \colon \operatorname{Lip}(f) \leq L_k\}.$$

Given $f \in \mathcal{N}_k$ and $\varepsilon > 0$ set g to the identity on a small ball around the fixed point x^* of f and to f outside a bigger ball around x^* then use Kirszbraun's extension theorem to get a close enough midpoint of a ball outside \mathcal{N}_k .

(人間) トイヨト イヨト

Theorem (B. and Dymond, 2015)

Let X be a Banach space and $C \subset X$ a closed, convex and bounded set. Then the set \mathcal{N} of all strict contractions is a σ -porous subset of \mathcal{M} .

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

We define

$$\mathcal{N}^p_{a,b} = \left\{ f \in \mathcal{N} \colon a < \operatorname{Lip}(f, \Gamma) \leq b, \ \operatorname{Lip}(f) \leq 1 - \frac{1}{p} \right\}.$$

Fix $f \in \mathcal{N}^p_{a,b}$. Choose $x_0 \in \Gamma$ such that

$$\liminf_{t \to 0+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \ge a.$$

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

(日) (周) (三) (三)

We define

$$\mathcal{N}^p_{a,b} = \left\{ f \in \mathcal{N} \colon a < \operatorname{Lip}(f, \Gamma) \leq b, \ \operatorname{Lip}(f) \leq 1 - \frac{1}{p} \right\}.$$

Fix $f \in \mathcal{N}^p_{a,b}$. Choose $x_0 \in \Gamma$ such that

$$\liminf_{t \to 0+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \ge a.$$

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

(日) (同) (三) (三)

We define

$$\mathcal{N}^p_{a,b} = \left\{ f \in \mathcal{N} \colon a < \operatorname{Lip}(f, \Gamma) \leq b, \ \operatorname{Lip}(f) \leq 1 - \frac{1}{p} \right\}.$$

Fix $f \in \mathcal{N}^p_{a,b}$. Choose $x_0 \in \Gamma$ such that

$$\liminf_{t \to 0+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \ge a.$$

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

(日) (周) (三) (三)

We define

$$\mathcal{N}^p_{a,b} = \left\{ f \in \mathcal{N} \colon a < \operatorname{Lip}(f, \Gamma) \leq b, \ \operatorname{Lip}(f) \leq 1 - \frac{1}{p} \right\}.$$

Fix $f \in \mathcal{N}^p_{a,b}$. Choose $x_0 \in \Gamma$ such that

$$\liminf_{t \to 0+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \ge a.$$

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

(日) (同) (三) (三)

We define

$$\mathcal{N}^p_{a,b} = \left\{ f \in \mathcal{N} \colon a < \operatorname{Lip}(f, \Gamma) \leq b, \ \operatorname{Lip}(f) \leq 1 - \frac{1}{p} \right\}.$$

Fix $f \in \mathcal{N}^p_{a,b}$. Choose $x_0 \in \Gamma$ such that

$$\liminf_{t \to 0+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \ge a.$$

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

(日) (同) (三) (三)

We define

$$\mathcal{N}^p_{a,b} = \left\{ f \in \mathcal{N} \colon a < \operatorname{Lip}(f, \Gamma) \leq b, \ \operatorname{Lip}(f) \leq 1 - \frac{1}{p} \right\}.$$

Fix $f \in \mathcal{N}^{p}_{a,b}$. Choose $x_0 \in \Gamma$ such that

$$\liminf_{t \to 0+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \ge a.$$

Christian Bargetz (University of Innsbruck) σ -Porosity of the set of strict contractions

We define

$$\mathcal{N}^p_{a,b} = \left\{ f \in \mathcal{N} \colon a < \operatorname{Lip}(f, \Gamma) \leq b, \ \operatorname{Lip}(f) \leq 1 - \frac{1}{p} \right\}.$$

Fix $f \in \mathcal{N}^{p}_{a,b}$. Choose $x_0 \in \Gamma$ such that

$$\liminf_{t\to 0+}\frac{\|f(x_0+te)-f(x_0)\|}{t}\geq a.$$

3

Fix $\alpha > 0$, $\varepsilon > 0$. Now set

$$g(x) = f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

where $\sigma \phi_{\varepsilon}(e^*(x-x_0))(e-(x-x_0))$ stretches along Γ to increase the Lipschitz constant.

- $g \in \mathcal{M}$
- $d(f,g) < R\varepsilon$

•
$$B(g, \alpha R\varepsilon) \cap \mathcal{N}^p_{a,b} = \emptyset.$$

• • = • • = •

Fix $\alpha > 0$, $\varepsilon > 0$. Now set

$$g(x) = f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

where $\sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))$ stretches along Γ to increase the Lipschitz constant.

Setting R = diam(C), if b - a is small enough, we obtain

- $g \in \mathcal{M}$
- $d(f,g) \leq R\varepsilon$
- $B(g, \alpha R\varepsilon) \cap \mathcal{N}^p_{a,b} = \emptyset.$

Hence $\mathcal{N}_{a,b}^p$ is porous.

Fix $\alpha > 0$, $\varepsilon > 0$. Now set

$$g(x) = f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

where $\sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))$ stretches along Γ to increase the Lipschitz constant.

Setting R = diam(C), if b - a is small enough, we obtain

- $g \in \mathcal{M}$
- $d(f,g) \leq R\varepsilon$
- $B(g, \alpha R\varepsilon) \cap \mathcal{N}_{a,b}^p = \emptyset.$

Hence $\mathcal{N}^{p}_{a,b}$ is porous.

Fix $\alpha > 0$, $\varepsilon > 0$. Now set

$$g(x) = f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

where $\sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))$ stretches along Γ to increase the Lipschitz constant.

Setting R = diam(C), if b - a is small enough, we obtain

- $g \in \mathcal{M}$
- $d(f,g) \leq R\varepsilon$
- $B(g, \alpha R\varepsilon) \cap \mathcal{N}^{p}_{a,b} = \emptyset.$

Hence $\mathcal{N}_{a,b}^p$ is porous.

Fix $\alpha > 0$, $\varepsilon > 0$. Now set

$$g(x) = f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

where $\sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))$ stretches along Γ to increase the Lipschitz constant.

Setting R = diam(C), if b - a is small enough, we obtain

• $g \in \mathcal{M}$ • $d(f,g) \leq R\varepsilon$ • $B(g, \alpha R\varepsilon) \cap \mathcal{N}_{a,b}^{p} = \emptyset$. Hence $\mathcal{N}_{a,b}^{p}$ is porous. Additionally to the condition that b - a has to be small enough, it has to be big enough so that we can cover the whole interval (0, 1). Writing

$$\mathcal{N} = \left(\bigcup_{k,p} \mathcal{N}^p_{a_{k,p}, b_{k,p}}\right) \cup \left(\bigcup_{k,p} \mathcal{N}^p_{a'_{k,p}, b'_{k,p}}\right) \cup \mathcal{N}_0.$$

for suitable sequences $(a_{k,p})_{k,p}$, $(b_{k,p})_{k,p}$, $(a'_{k,p})_{k,p}$ and $(b'_{k,p})_{k,p}$ and

$$\mathcal{N}_0 = \{ f \in \mathcal{M} \colon f|_{\Gamma} = \text{const.} \}$$

finishes the proof.

Additionally to the condition that b - a has to be small enough, it has to be big enough so that we can cover the whole interval (0,1). Writing

$$\mathcal{N} = \left(\bigcup_{k,p} \mathcal{N}^{p}_{a_{k,p}, b_{k,p}}\right) \cup \left(\bigcup_{k,p} \mathcal{N}^{p}_{a'_{k,p}, b'_{k,p}}\right) \cup \mathcal{N}_{0}.$$

for suitable sequences $(a_{k,p})_{k,p}$, $(b_{k,p})_{k,p}$, $(a'_{k,p})_{k,p}$ and $(b'_{k,p})_{k,p}$ and

$$\mathcal{N}_0 = \{ f \in \mathcal{M} \colon f|_{\Gamma} = \text{const.} \}$$

finishes the proof.

The case of separable Banach spaces

If X is a separable Banach space we get the following stronger result:

Theorem (B. and Dymond, 2015)

Let X be a separable Banach space. Then there exists a σ -porous set $\widetilde{\mathcal{N}} \subset \mathcal{M}$ such that for every $f \in \mathcal{M} \setminus \widetilde{\mathcal{N}}$, the set

$$R(f) = \{x \in C: \quad \operatorname{Lip}(f, x) = 1\}$$

is a residual subset of C.

Put differently, this Theorem says that outside of a negligible set, all mappings in the space \mathcal{M} have the maximal possible Lipschitz constant 1 at typical points of their domain C.

< 回 ト < 三 ト < 三 ト

The case of separable Banach spaces

If X is a separable Banach space we get the following stronger result:

Theorem (B. and Dymond, 2015)

Let X be a separable Banach space. Then there exists a σ -porous set $\widetilde{\mathcal{N}} \subset \mathcal{M}$ such that for every $f \in \mathcal{M} \setminus \widetilde{\mathcal{N}}$, the set

$$R(f) = \{x \in C: \quad \operatorname{Lip}(f, x) = 1\}$$

is a residual subset of C.

Put differently, this Theorem says that outside of a negligible set, all mappings in the space \mathcal{M} have the maximal possible Lipschitz constant 1 at typical points of their domain C.

Outlook

Denote by g_{ε} the function

$$g_{\varepsilon} \colon C \to C, x \mapsto f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

The curve

$$[0,\varepsilon_0) o \mathcal{C}(X;X), \varepsilon \mapsto g_{\varepsilon}$$

is Lipschitz.

Question

Can such a curve be chosen differentiable, to get information on the directions from which the midpoints g_{ε} are approaching f?

E Sac

イロン イヨン イヨン イヨン

Outlook

Denote by g_{ε} the function

$$g_{\varepsilon} \colon C \to C, x \mapsto f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

The curve

$$[0,\varepsilon_0)\to \mathcal{C}(X;X),\varepsilon\mapsto g_\varepsilon$$

is Lipschitz.

Question

Can such a curve be chosen differentiable, to get information on the directions from which the midpoints g_{ε} are approaching f?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Outlook

Denote by g_{ε} the function

$$g_{\varepsilon} \colon C \to C, x \mapsto f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

The curve

$$[0,\varepsilon_0)\to \mathcal{C}(X;X),\varepsilon\mapsto g_\varepsilon$$

is Lipschitz.

Question

Can such a curve be chosen differentiable, to get information on the directions from which the midpoints g_{ε} are approaching f?

- 4 同 6 4 日 6 4 日 6

References

F.S. De Blasi and J. Myjak.

Sur la porosité de l'ensemble des contractions sans point fixe.

C. R. Acad. Sci. Paris Sér. I Math., 308(2):51–54, 1989.

C. Bargetz and M. Dymond.

 $\sigma\mbox{-}\mbox{Porosity}$ of the set of strict contractions in a space of non-expansive mappings.

Preprint, 2015. http://arxiv.org/abs/1505.07656.