Sobolev and BV classes on infinite-dimensional domains

Vladimir Bogachev

Moscow State University, Russia

(ロ)、(型)、(E)、(E)、 E) の(の)

SOBOLEV SPACES ON \mathbb{R}^d 1. Via Sobolev derivatives:

$$\int \varphi \partial_{x_i} f \, dx = -\int f \partial_{x_i} \varphi \, dx$$

 $W^{p,1}(\mathbb{R}^d) = \{ f \in L^p(\mathbb{R}^d) : \partial_{x_i} f \in L^p(\mathbb{R}^d) \}$ with norm

$$\|f\|_{p,1} = \|f\|_{L^p} + \|\nabla f\|_{L^p}, \quad \nabla f = (\partial_{x_i}f).$$

2. Via completions: =completion of $C_0^{\infty}(\mathbb{R}^d)$ or with respect to $\|f\|_{p,1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. Via directional derivatives: $W^{p,1}(\mathbb{R}^d)$ consists of functions $f \in L^p(\mathbb{R}^d)$ such that for every *i* there is a version of *f* such that the functions

$$t\mapsto f(x+te_i)$$

are absolutely continuous on compact intervals and

$$\|f\|_{p,1}<\infty,$$

where ∇f is formed by $\partial_{x_i} f$ defined via these versions.

INFINITE DIMENSIONS: $X = \mathbb{R}^{\infty}$ or $X = \ell^2$ (for simplicity) Examples: product-measures, Gaussian standard product-measure, Gibbs measures Difficulty:

no canonical measure a là Lebesgue

Integration by parts:

$$\int \partial_{x_i} \varphi(x_1, \dots, x_n) \, \mu(dx) =$$
$$= -\int \varphi(x_1, \dots, x_n) \beta_i(x) \, \mu(dx)$$
all $\varphi \in C_b^{\infty}(\mathbb{R}^n)$.
is called the Fomin derivative of μ along

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$e_i=(0,\ldots,0,1,0,\ldots).$$

for

 β_i

Example: $\mu = \prod_{i=1}^{\infty} \varrho_i(x_i) dx_i$, $\varrho_i \in W^{1,1}$, then

$$\beta_i = \partial_{x_i} \varrho_i / \varrho_i.$$

Let μ be standard Gaussian on \mathbb{R}^{∞} . For $h = (h_n) \in H = \ell^2$ let

$$\widehat{h}(x) = \sum_{n=1}^{\infty} h_n x_n.$$

Then

$$\int \partial_h \varphi \, \mu = \int \widehat{h} \varphi \, \mu.$$

Let μ be a Borel probability measure on \mathbb{R}^{∞} having logarithmic derivatives β_i along the vectors e_i . Let $f \in L^p(\mu)$. Let $\beta_i \in L^{p'}(\mu)$, p' = p/(p-1). We say that f has a Sobolev derivative

$$\partial_{x_i}f = \partial_{e_i}f \in L^p(\mu)$$

if for all φ of class C_b^{∞} in x_1, \ldots, x_n we have

$$\int \varphi \partial_{x_i} f \mu =$$

$$= -\int f \partial_{x_i} \varphi \mu - \int \varphi f \beta_i \mu.$$

In \mathbb{R}^d for $\mu = \rho \, dx$ with nice ρ the second integral on the right is

$$\int \varphi f \frac{\partial_{x_i} \varrho}{\varrho} \varrho \, dx =$$
$$= \int \varphi f \partial_{x_i} \varrho \, dx.$$

On \mathbb{R}^{∞} only the "ratio" $\beta_i = \partial_{x_i} \varrho / \varrho$ makes sense.

Finally, the directional version has a natural analog.

Let $W^{p,1}(\mu)$ be the class of all f with finite norm

$$\|f\|_p+\|\nabla f\|_p, \quad \nabla f=(\partial_{x_i}f).$$

But what is the norm of ∇f ? For the standard Gaussian measure a natural (not the only possible) choice is the ℓ^2 -norm.

IN GENERAL: suppose $H \subset \mathbb{R}^{\infty}$ is a continuously embedded Hilbert space with norm $|h|_{H}$ in which the linear span of e_i is dense. Let

$$|\nabla f|_H := \sup\Big\{|\partial_h f|, \ |h|_H \le 1\Big\},$$

$$h = \sum_{i=1}^{n} h_i e_i.$$
$$\partial_h f = h_1 \partial_{e_1} f + \dots + h_n \partial_{e_n} f.$$

Sobolev classes on infinite-dimensional domains.

What is a domain?

H-open set Ω : $(\Omega - x) \cap H$ is open in *H* for all x. $\Omega = \left\{ x: \sum_{n=1}^{\infty} n^{-2} x_n^2 < \infty
ight\}$ is not open, but *H*-open.

Sobolev classes on *H*-open convex domains: Definition N3 (directional property) applies

Two other definitions: modifications needed Difficulty: what is the replacement for the class of smooth finitely based functions? (concerns both integration by parts and completion) ONE POSSIBILITY: take the class of functions φ with the property: for any straight line L intersecting Ω , $\varphi|_L$ has compact support in $L \cap \Omega$ and is smooth.

BV spaces On \mathbb{R}^d : $f \in L^1(\mathbb{R}^d)$ is in BV if the derivatives $\partial_{x_i} f$ in the sense of distributions are bounded (signed) measures ν_i , i.e.

$$\int \partial_{x_i} \varphi \, f \, dx = -\int \varphi \, \nu_i$$

for all $\varphi \in C_0^\infty$.

The Skorohod derivative of a measure ν along e_i is a bounded measure $d_{e_i}\nu$ such that

$$\int \partial_{\mathbf{x}_i} \varphi \, \nu = -\int \varphi \, \mathbf{d}_{\mathbf{e}_i} \nu$$

for all smooth φ in finitely many variables.

When f was Sobolev, $\nu_i = d_{e_i} \nu$ was

$$\nu_i = \partial_{x_i} f \cdot \mu + f \beta_i \cdot \mu.$$

NOW take

$$D_if := \nu_i - f\beta_i \cdot \mu.$$

This is a finite measure if $f\beta_i \in L^1(\mu)$; in the case of the standard Gaussian measure $\beta_i(x) = -x_i$, so we need $x_i f \in L^1(\mu)$.

Next step: take vector measure with components $D_i f$. With values in ℓ^2 ? ℓ^2 -valued measures: bounded variation and bounded semivariation.

$\eta: \mathcal{B} \to \ell^2$ vector measure Variation:

$$Var(\eta) = \sup \|\eta(B_1)\| + \cdots + \|\eta(B_n)\|$$

over finite partitions of the space in $B_1, \ldots, B_n \in \mathcal{B}$. Semivariation:

$$\|\eta\| = \sup \|\langle \ell, \eta \rangle\|$$

over functionals ℓ with unit norm

AGAIN μ standard Gaussian on \mathbb{R}^{∞} . Let SBV = all $f \in L^1(\mu)$ such that $\widehat{fh} \in L^1(\mu) \ \forall h \in H$

and there is an *H*-valued measure Λf of bounded SEMIVARIATION such that the measure $f \cdot \mu$ has Skorohod derivatives $d_{e_i}(f \cdot \mu)$ and

$$d_{e_i}(f \cdot \mu) = (\Lambda f, e_i) - x_i f \cdot \mu.$$

The class BV = those $f \in SBV$ for which Λf has bounded variation. $BV \neq SBV$ both are Banach w.r.t. natural norms: for SBV

$$\|f\|_{L^1} + \sup_{|h| \le 1} \|\widehat{h}f\|_{L^1} + \|\Lambda f\|,$$

similarly for BV

Indicator functions I_V : not in $W^{p,1}$ (but may belong to $H^{p,r}$) CONVEX Borel V: I_V may not be in BV for bounded convex

Borel, but is in BV for open convex BETTER for SBV: $I_V \in SBV$. EXTENSION on \mathbb{R}^d : V a bounded convex domain: $f \in W^{p,1}(V)$ extends to $\widehat{f} \in W^{p,1}(\mathbb{R}^d)$ there is a bounded linear extension operator $f \mapsto \widehat{f}$

NOW

 μ is the countable power of the standard Gaussian measure $H = \ell^2$ the Cameron–Martin space V a convex Borel set, $\mu(V) > 0$

M. Hino, Dirichlet spaces on *H*-convex sets in Wiener space, Bull. Sci. Math. 135 (2011) 667–683. Functions with extensions are dense in the Sobolev norm

THEOREM. There is open convex V and $f \in W^{p,1}(\mu, V)$ with no extension $\widehat{f} \in W^{p,1}(\mu)$. One can also find V convex H-open with compact closure in \mathbb{R}^{∞} .

THE CASE OF UNIT BALL IN HILBERT SPACE ???

REMARK. If each $f \in W^{p,1}(\mu, V)$ extends to some $\widehat{f} \in W^{p,1}(\mu)$, then \widehat{f} can be found with $\|\widehat{f}\|_{p,1} \leq C \|f\|_{p,1,V}.$

THEOREM. Every $f \in SBV(\mu, V) \cap L^{\infty}$ extended by 0 outside V belongs to SBV. If $I_V \in BV$, the same is true for BV.

POSITIVE APPROACH: Define $\widehat{W}^{p,1}(V) =$ those that are restrictions $\|f\|_{p,1,*} = \inf\{\|g\|_{p,1}: g|_V = f\}.$ Then $\widehat{W}^{p,1}(V)$ is Banach and each f in $\widehat{W}^{p,1}(V)$ is extendible.