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Sets containing a point of differentiability of every
Lipschitz function.

A set S ⊆ Rd is called a universal differentiability set if S
contains a point of differentiability of every Lipschitz function
f : Rd → R.

A set E ⊆ Rd is called a non-universal differentiability set if
there exists a Lipschitz function f : Rd → R such that f is
nowhere differentiable in E.
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Examples.

By Rademacher’s theorem, any subset of Rd of positive
Lebesgue measure is a universal differentiability set.

Universal differentiabilty sets in R are precisely the sets of
positive Lebesgue measure.
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Existence of exceptional universal differentiability sets.

(Preiss 1990) For d ≥ 2, there exist UDSs in Rd with
Lebesgue measure zero.

(Doré, Maleva 2011) For d ≥ 1, Rd contains compact UDSs
with Hausdorff dimension one.

(D., Maleva 2014) For d ≥ 1, Rd contains compact UDSs
with Minkowski dimension one.

(Preiss, Speight 2014) (Alberti, Csörnyei, Preiss 2010)
(Csörnyei, Jones) Rd contains Lebesgue null UDSs for
Lipschitz mappings f : Rd → Rl if and only if l < d.
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(Doré, Maleva 2011) For d ≥ 1, Rd contains compact UDSs
with Hausdorff dimension one.

(D., Maleva 2014) For d ≥ 1, Rd contains compact UDSs
with Minkowski dimension one.

(Preiss, Speight 2014) (Alberti, Csörnyei, Preiss 2010)
(Csörnyei, Jones) Rd contains Lebesgue null UDSs for
Lipschitz mappings f : Rd → Rl if and only if l < d.

Michael Dymond Universität Innsbruck

On the structure of universal differentiability sets.



Connection to porosity.

Definition

A subset P of Rd is called porous if there exists c ∈ (0, 1) such
that for every x ∈ P and every ε > 0 there exists h ∈ Rd with
‖h− x‖ ≤ ε and B(h, c ‖h− x‖) ∩ P = ∅. P is called σ-porous if
P can be expressed as a countable union of porous sets.

Every porous subset of Rd is a
non-universal differentiability set.

(Kirchheim, Preiss, Zaj́ıček, 2001) Every σ-porous subset
of Rd is a non-universal differentiability set.
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Can a universal differentiability set be decomposed?

Given a universal differentiability set S ⊆ Rd, is it possible to
write S = A ∪B where A and B are non-universal
differentiability sets?

Equivalently: Given a universal differentiabilty set S ⊆ Rd is it
possible to find a pair of Lipschitz functions f, g : Rd → R such
that f and g have no common points of differentiability in S.
Simultaneous differentiability of Lipschitz functions.

1 (Lindenstrauss, Tǐser, Preiss, 2012) Every pair (f, g) of
Lipschitz functions on a Hilbert space have a common
point of differentiability.

2 Open Question: Does every triple (f, g, h) of Lipschitz
functions on a Hilbert space have a common point of
differentiability?
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Can a universal differentiability set be decomposed?

Does there exist a universal differentiability set S ⊆ Rd such
that S = A ∪B where A and B are non-universal
differentiability sets?

Equivalently: Does there exist a universal differentiabilty set
S ⊆ Rd for which it is possible to find a pair of Lipschitz
functions f, g : Rd → R such that f and g have no common
points of differentiability in S.

The answer is yes.

1 (Csörnyei, Preiss, Tǐser, 2004), (Alberti, Csörnyei, Preiss,
2010) Case d = 2.
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Structural results for universal differentiability sets.

Theorem (D., 2014)

1 Let S = A ∪B ⊆ Rd be a universal differentiability set
where A is a closed subset of S. Then either A or B is a
universal differentiability set.

2 Let S =
⋃∞
i=1Ai ⊆ Rd be a universal differentiability set,

where each Ai is a closed subset of S. Then at least one Ai
is a universal differentiability set.

Recall: (Csörnyei, Preiss, Tǐser, 2004) There exists a
universal differentiability set S = A ∪B ⊆ Rd such that
both A and B are non-universal differentiability sets.
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Structural results for universal differentiability sets.

Theorem (D., 2014)

1 Let S = A ∪B ⊆ Rd be a universal differentiability set
where A is a closed subset of S. Then either A or B is a
universal differentiability set.

2 Let S =
⋃∞
i=1Ai ⊆ Rd be a universal differentiability set,

where each Ai is a closed subset of S. Then at least one Ai
is a universal differentiability set.

(Csörnyei, Preiss, Tǐser, 2004) There exists a universal
differentiability set S = A ∪B ⊆ Rd such that A is a Gδ set
and both A and B are non-universal differentiability sets.

Michael Dymond Universität Innsbruck

On the structure of universal differentiability sets.



The kernel of a universal differentiability set.

Theorem (D., 2014)

Let S be a universal differentiability set and define

ker(S) = S \ {x ∈ S : ∃r > 0 s.t. B(x, r) ∩ S is a non-UDS} .

Then,

1 ker(S) is a universal differentiability set.

2 ker(ker(S)) = ker(S).
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Open questions.

1 Does every universal differentiability set contain a closed
universal differentiability set?

2 Does every subset of Rd with positive Lebesgue measure
contain a universal differentiability set of Lebesgue measure
zero?
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Thank you for listening.
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