On the structure of universal differentiability sets.

Michael Dymond

Universität Innsbruck

Relations between Banach Space Theory and Geometric Measure Theory, University of Warwick, Wednesday 10th June 2015.

Image: Image:

Universität Innsbruck

Michael Dymond

Sets containing a point of differentiability of every Lipschitz function.

A set $S \subseteq \mathbb{R}^d$ is called a *universal differentiability set* if S contains a point of differentiability of every Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}$.

Michael Dymond

Sets containing a point of differentiability of every Lipschitz function.

A set $S \subseteq \mathbb{R}^d$ is called a *universal differentiability set* if S contains a point of differentiability of every Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}$.

A set $E \subseteq \mathbb{R}^d$ is called a *non-universal differentiability set* if there exists a Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}$ such that f is nowhere differentiable in E.

Universität Innsbruck

Michael Dymond

Examples.

- By Rademacher's theorem, any subset of ℝ^d of positive Lebesgue measure is a universal differentiability set.
- Universal differentiability sets in ℝ are precisely the sets of positive Lebesgue measure.

Universität Innsbruck

• (Preiss 1990) For $d \ge 2$, there exist UDSs in \mathbb{R}^d with Lebesgue measure zero.

< □ > < // >

Michael Dymond

- (Preiss 1990) For $d \ge 2$, there exist UDSs in \mathbb{R}^d with Lebesgue measure zero.
- (Doré, Maleva 2011) For $d \ge 1$, \mathbb{R}^d contains compact UDSs with Hausdorff dimension one.

On the structure of universal differentiability sets.

Michael Dymond

- (Preiss 1990) For $d \ge 2$, there exist UDSs in \mathbb{R}^d with Lebesgue measure zero.
- (Doré, Maleva 2011) For $d \ge 1$, \mathbb{R}^d contains compact UDSs with Hausdorff dimension one.
- (D., Maleva 2014) For $d \ge 1$, \mathbb{R}^d contains compact UDSs with Minkowski dimension one.

Universität Innsbruck

- (Preiss 1990) For $d \ge 2$, there exist UDSs in \mathbb{R}^d with Lebesgue measure zero.
- (Doré, Maleva 2011) For $d \ge 1$, \mathbb{R}^d contains compact UDSs with Hausdorff dimension one.
- (D., Maleva 2014) For $d \ge 1$, \mathbb{R}^d contains compact UDSs with Minkowski dimension one.
- (Preiss, Speight 2014) (Alberti, Csörnyei, Preiss 2010) (Csörnyei, Jones) ℝ^d contains Lebesgue null UDSs for Lipschitz mappings f : ℝ^d → ℝ^l if and only if l < d.

< □ > < / → >

Universität Innsbruck

Connection to porosity.

Definition

A subset P of \mathbb{R}^d is called porous if there exists $c \in (0, 1)$ such that for every $x \in P$ and every $\epsilon > 0$ there exists $h \in \mathbb{R}^d$ with $||h - x|| \le \epsilon$ and $B(h, c ||h - x||) \cap P = \emptyset$. P is called σ -porous if P can be expressed as a countable union of porous sets.

Universität Innsbruck

Michael Dymond

Connection to porosity.

Definition

A subset P of \mathbb{R}^d is called porous if there exists $c \in (0, 1)$ such that for every $x \in P$ and every $\epsilon > 0$ there exists $h \in \mathbb{R}^d$ with $||h - x|| \le \epsilon$ and $B(h, c ||h - x||) \cap P = \emptyset$. P is called σ -porous if P can be expressed as a countable union of porous sets.

Universität Innsbruck

 Every porous subset of R^d is a non-universal differentiability set.

Connection to porosity.

Definition

A subset P of \mathbb{R}^d is called porous if there exists $c \in (0, 1)$ such that for every $x \in P$ and every $\epsilon > 0$ there exists $h \in \mathbb{R}^d$ with $||h - x|| \le \epsilon$ and $B(h, c ||h - x||) \cap P = \emptyset$. P is called σ -porous if P can be expressed as a countable union of porous sets.

- Every porous subset of R^d is a non-universal differentiability set.
- (Kirchheim, Preiss, Zajíček, 2001) Every σ-porous subset of R^d is a non-universal differentiability set.

Universität Innsbruck

Given a universal differentiability set $S \subseteq \mathbb{R}^d$, is it possible to write $S = A \cup B$ where A and B are non-universal differentiability sets?

Michael Dymond

Given a universal differentiability set $S \subseteq \mathbb{R}^d$, is it possible to write $S = A \cup B$ where A and B are non-universal differentiability sets?

Equivalently: Given a universal differentiability set $S \subseteq \mathbb{R}^d$ is it possible to find a pair of Lipschitz functions $f, g : \mathbb{R}^d \to \mathbb{R}$ such that f and g have no common points of differentiability in S.

Universität Innsbruck

Given a universal differentiability set $S \subseteq \mathbb{R}^d$, is it possible to write $S = A \cup B$ where A and B are non-universal differentiability sets?

Equivalently: Given a universal differentiability set $S \subseteq \mathbb{R}^d$ is it possible to find a pair of Lipschitz functions $f, g : \mathbb{R}^d \to \mathbb{R}$ such that f and g have no common points of differentiability in S. Simultaneous differentiability of Lipschitz functions.

I (Lindenstrauss, Tišer, Preiss, 2012) Every pair (f, g) of Lipschitz functions on a Hilbert space have a common point of differentiability.

Image: Image:

Universität Innsbruck

Given a universal differentiability set $S \subseteq \mathbb{R}^d$, is it possible to write $S = A \cup B$ where A and B are non-universal differentiability sets?

Equivalently: Given a universal differentiability set $S \subseteq \mathbb{R}^d$ is it possible to find a pair of Lipschitz functions $f, g : \mathbb{R}^d \to \mathbb{R}$ such that f and g have no common points of differentiability in S. Simultaneous differentiability of Lipschitz functions.

- I (Lindenstrauss, Tišer, Preiss, 2012) Every pair (f, g) of Lipschitz functions on a Hilbert space have a common point of differentiability.
- 2 Open Question: Does every triple (f, g, h) of Lipschitz functions on a Hilbert space have a common point of differentiability?

Universität Innsbruck

Does there exist a universal differentiability set $S \subseteq \mathbb{R}^d$ such that $S = A \cup B$ where A and B are non-universal differentiability sets?

Equivalently: Does there exist a universal differentiability set $S \subseteq \mathbb{R}^d$ for which it is possible to find a pair of Lipschitz functions $f, g : \mathbb{R}^d \to \mathbb{R}$ such that f and g have no common points of differentiability in S.

Universität Innsbruck

Does there exist a universal differentiability set $S \subseteq \mathbb{R}^d$ such that $S = A \cup B$ where A and B are non-universal differentiability sets?

Equivalently: Does there exist a universal differentiability set $S \subseteq \mathbb{R}^d$ for which it is possible to find a pair of Lipschitz functions $f, g : \mathbb{R}^d \to \mathbb{R}$ such that f and g have no common points of differentiability in S.

The answer is yes.

(Csörnyei, Preiss, Tišer, 2004), (Alberti, Csörnyei, Preiss, 2010) Case d = 2.

Universität Innsbruck

Theorem (D., 2014)

1 Let $S = A \cup B \subseteq \mathbb{R}^d$ be a universal differentiability set where A is a closed subset of S. Then either A or B is a universal differentiability set.

Universität Innsbruck

Michael Dymond

Theorem (D., 2014)

- **1** Let $S = A \cup B \subseteq \mathbb{R}^d$ be a universal differentiability set where A is a closed subset of S. Then either A or B is a universal differentiability set.
- **2** Let $S = \bigcup_{i=1}^{\infty} A_i \subseteq \mathbb{R}^d$ be a universal differentiability set, where each A_i is a closed subset of S. Then at least one A_i is a universal differentiability set.

Universität Innsbruck

Michael Dymond

Theorem (D., 2014)

- **1** Let $S = A \cup B \subseteq \mathbb{R}^d$ be a universal differentiability set where A is a closed subset of S. Then either A or B is a universal differentiability set.
- **2** Let $S = \bigcup_{i=1}^{\infty} A_i \subseteq \mathbb{R}^d$ be a universal differentiability set, where each A_i is a closed subset of S. Then at least one A_i is a universal differentiability set.
 - Recall: (Csörnyei, Preiss, Tišer, 2004) There exists a universal differentiability set $S = A \cup B \subseteq \mathbb{R}^d$ such that both A and B are non-universal differentiability sets.

Universität Innsbruck

Theorem (D., 2014)

- **1** Let $S = A \cup B \subseteq \mathbb{R}^d$ be a universal differentiability set where A is a closed subset of S. Then either A or B is a universal differentiability set.
- **2** Let $S = \bigcup_{i=1}^{\infty} A_i \subseteq \mathbb{R}^d$ be a universal differentiability set, where each A_i is a closed subset of S. Then at least one A_i is a universal differentiability set.
- (Csörnyei, Preiss, Tišer, 2004) There exists a universal differentiability set $S = A \cup B \subseteq \mathbb{R}^d$ such that A is a G_{δ} set and both A and B are non-universal differentiability sets.

Universität Innsbruck

The kernel of a universal differentiability set.

Theorem (D., 2014)

Let S be a universal differentiability set and define

 $\ker(S) = S \setminus \{x \in S : \exists r > 0 \text{ s.t. } B(x,r) \cap S \text{ is a non-UDS} \}.$

Then,

<ロト < 部ト < 国ト < 国ト < 国ト < 国 の Q () Universität Innsbruck

Michael Dymond

The kernel of a universal differentiability set.

Theorem (D., 2014)

Let S be a universal differentiability set and define

 $\ker(S) = S \setminus \{x \in S : \exists r > 0 \text{ s.t. } B(x,r) \cap S \text{ is a non-UDS} \}.$

(日)

Universität Innsbruck

Then,

1 $\ker(S)$ is a universal differentiability set.

Michael Dymond

The kernel of a universal differentiability set.

Theorem (D., 2014)

Let S be a universal differentiability set and define

 $\ker(S) = S \setminus \{x \in S : \exists r > 0 \ s.t. \ B(x,r) \cap S \ is \ a \ non-UDS\}.$

(日)

Universität Innsbruck

Then,

- **1** $\ker(S)$ is a universal differentiability set.
- $2 \operatorname{ker}(\operatorname{ker}(S)) = \operatorname{ker}(S).$

Michael Dymond

Does every universal differentiability set contain a closed universal differentiability set?

Michael Dymond On the structure of universal differentiability sets.

Open questions.

- Does every universal differentiability set contain a closed universal differentiability set?
- 2 Does every subset of R^d with positive Lebesgue measure contain a universal differentiability set of Lebesgue measure zero?

Universität Innsbruck

Thank you for listening.

Michael Dymond