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(X , ‖ · ‖) a Banach space, V ⊂ X a subspace.

Question. ?Is V ∗ ⊂ X ∗?
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(X , ‖ · ‖) a Banach space, V ⊂ X a subspace.

Question. ?Is V ∗ ⊂ X ∗ (up to an isometry)?

Why is the question interesting?

If so, that is V ∗ S≡ Y ⊂ X ∗, then the mapping

X ∗ 3 x∗ 7−→ S
(
x∗|V ) =: Px∗

generates a linear norm-one projection on X ∗, with PX ∗ = Y .

Examples
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Definition 1 (Borwein-Moors 00)
Let E be a Banach space and let S(E) denote the family of all closed
linear separable subspaces.

A subfamily R ⊂ S(E) is called rich if
• R is cofinal, that is, for every Z ∈ S(E) there is U ∈ R so that
U ⊃ Z, and
• R is σ-complete, that is, if U1 ⊂ U2 ⊂ · · · is a sequence in R, then⋃

Ui ∈ R.

Proposition 2
(Important) If R1,R2 are rich families, then R1 ∩R2 is rich.
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Definition 3 (Borwein-Moors 00)
Let E be a Banach space and let S(E) denote the family of all closed
linear separable subspaces. A subfamily R ⊂ S(E) is called rich if
• R is cofinal, that is, for every Z ∈ S(E) there is U ∈ R so that
U ⊃ Z, and
• R is σ-complete, that is, if U1 ⊂ U2 ⊂ · · · is a sequence in R, then⋃

Ui ∈ R.

Proposition 4
(Important) If R1,R2, . . . are rich families, then R1 ∩R2 ∩ · · · is rich.

Joke. Given a Banach space X , by a rectangle we understand any
product V × Y where V ∈ S(X ) and Y ∈ S(X ∗).

Let S<=(X × X ∗) denote the family of all such rectangles.

Clearly, S<=(X × X ∗) is a rich subfamily of S(X × X ∗).
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Theorem 5
For a Banach space (X , ‖ · ‖) the following assertions are mutually
equivalent:

(i) X is Asplund, that is, for every Z ∈ S(X ) the dual Z ∗ is separable.
(ii) There exists a rich family A ⊂ S<=(X × X ∗) such that
for every V × Y ∈ A the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗

is a surjective isometry; moreover, the “projection”

πX (A) :=
{

V ∈ S(X ) : V × Y ∈ A for some Y ∈ S(X ∗)
}

is a rich family in S(X ).
(iii) There exists a cofinal family C ⊂ S<=(X × X ∗) such that
for every V × Y ∈ C the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗ is
surjective.

Proof. (ii)⇒(iii) is trivial and (iii)⇒(i) is very easy.

(i)⇒(ii) profits from a long bow of ideas across half a century:
[Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, John-Zizler74,
Gul’ko79, Fabian-Godefroy88, Stegall94,Cúth-Fabian15].
Even if the norm ‖ · ‖ on X is Fréchet smooth, a non-negligible work is
needed.
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Even if the norm ‖ · ‖ on X is Fréchet smooth, a non-negligible work is
needed.
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Even if the norm ‖ · ‖ on X is Fréchet smooth, a non-negligible work is
needed.
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Marek Cúth, Mari án Fabian Rich families in Asplund spaces and separable reduction of Fr échet (sub)differentiability
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Theorem 5
For a Banach space (X , ‖ · ‖) the following assertions are mutually
equivalent:

(i) X is Asplund, that is, for every Z ∈ S(X ) the dual Z ∗ is separable.
(ii) There exists a rich family A ⊂ S<=(X × X ∗) such that
for every V × Y ∈ A the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗

is a surjective isometry; moreover, the “projection”

πX (A) :=
{

V ∈ S(X ) : V × Y ∈ A for some Y ∈ S(X ∗)
}

is a rich family in S(X ).
(iii) There exists a cofinal family C ⊂ S<=(X × X ∗) such that
for every V × Y ∈ C the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗ is
surjective.

Proof. (ii)⇒(iii) is trivial and (iii)⇒(i) is very easy.

(i)⇒(ii) profits from a long bow of ideas across half a century:
[Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, John-Zizler74,
Gul’ko79, Fabian-Godefroy88, Stegall94,Cúth-Fabian15].
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Sketch how to produce the rich family A ⊂ S<=(X × X ∗) from the
existence of a function f : X −→ [0,+∞] which is C1-smooth on
dom f ,

and satisfies that f ′(V )|V is dense in V ∗ for every V ∈ S(X ).

(Such an f exists if the norm ‖ · ‖ on X is Frećhet smooth.)

The candidate for A may look as:
the family consisting of all rectangles

spC × spf ′(spQC), C ⊂ X countable

which moreover satisfy

spf ′(spQC) 3 x∗ 7−→ x∗|spC ∈
(
spC

)∗
.
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Sketch how to produce the rich family A ⊂ S<=(X × X ∗) from the
existence of a function f : X −→ [0,+∞] which is C1-smooth on
dom f , and satisfies that f ′(V )|V is dense in V ∗ for every V ∈ S(X ).

(Such an f exists if the norm ‖ · ‖ on X is Frećhet smooth.)
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The candidate for A may look as:
the family consisting of all rectangles

spC × spf ′(spQC), C ⊂ X countable

which moreover satisfy

spf ′(spQC) 3 x∗ 7−→ x∗|spC ∈
(
spC

)∗
.
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APPLICATION FOR FRÉCHET SUBDIFFERENTIABILITY

“Definition”. Fréchet subdifferentiability means the lower/bottom part
of Fréchet differentiability.

More exactly

Let (X , ‖ · ‖) be a Banach space, let f : X −→ (−∞,+∞] be any
proper function, i.e. f 6≡ +∞, and let x ∈dom f .

The Fréchet subdifferential ∂f (x) of f at x is the (possibly empty) set
consisting of all x∗ ∈ X ∗ such that

f (x + h)− f (x)− 〈x∗, h〉 > −o(‖h‖) for all 0 6= h ∈ X

where o : (0,+∞) −→ [0,+∞] statisfies that o(t)
t → 0 as t ↓ 0.

Easy fact. If ∂f (x) 6= ∅ and also ∂(−f )(x) 6= ∅, then f is Fréchet
differentiable at x .
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“Definition”. Fréchet subdifferentiability means the lower/bottom part
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Theorem 6
(Fabian-Živkov85, Fabian 89, Fabian-Ioffe15) Let (X , ‖ · ‖) be any
Banach space and let f : X −→ (−∞,+∞] be any proper function,
i.e. f 6≡ +∞.

Then there exists a cofinal, even rich, family R ⊂ S(X )
such that for every V ∈ R and for every x ∈ V,
if ∃ v∗ ∈ ∂(f |V )(x), then ∃ x∗ ∈ ∂f (x), i.e. ∂(f |V )(x) 6= ∅ ⇒ ∂f (x) 6= ∅.

Theorem 7
(Main, Cúth-Fabian15) Let (X , ‖ · ‖) be any Asplund space and
f : X −→ (−∞,+∞] any proper function. Then there exists a rich
family R ⊂ A ⊂ S<=(X × X ∗) such that for every V × Y ∈ R(

the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗ is a surjective isometry
)

and for every x ∈ V,
if ∃ v∗ ∈ ∂(f |V )(x), then
∃ x∗ ∈ ∂f (x), even
∃ x∗ ∈ ∂f (x) such that x∗|V = v∗, even
∃ x∗ ∈ ∂f (x) such that x∗|V = v∗ and that ‖x∗‖ = ‖v∗‖, even
∃ !x∗ ∈ ∂f (x) ∩ Y such that x∗|V = v∗ and that ‖x∗‖ = ‖v∗‖;

Summarizing: ∂(f |V )(x) =
(
∂f (x)∩Y

)
|V =

(
∂f (x)

)
|V for every x ∈ V.
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(Fabian-Živkov85, Fabian 89, Fabian-Ioffe15) Let (X , ‖ · ‖) be any
Banach space and let f : X −→ (−∞,+∞] be any proper function,
i.e. f 6≡ +∞. Then there exists a cofinal, even rich, family R ⊂ S(X )
such that for every V ∈ R and for every x ∈ V,
if ∃ v∗ ∈ ∂(f |V )(x), then ∃ x∗ ∈ ∂f (x), i.e. ∂(f |V )(x) 6= ∅ ⇒ ∂f (x) 6= ∅.

Theorem 7
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Theorem 6
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Some applications

(Preiss84, Zajı́ček12) Fréchet differentiability of any function on an
Asplund space is separably reducible via a suitable cofinal, even
rich, family.

Proof. Let R1, R2 be the rich families separably reducing the Fréchet
subdifferentiability of f and −f respectively. Put then R := R1 ∩R2.
This R works.

(Mordukhovič-Fabian02) Non-zeroness of Fréchet cone (∂ιΩ(x) on an
Asplund space is separably reducible via a suitable cofinal, even
rich, family.

(Fabian89, Mordukhovič-Fabian02) Fuzzy calculus for Fréchet
subdifferentials on an Asplund space is separably reducible via a
suitable cofinal, even rich, family.
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Žitná 25, 115 67 Praha 1, Czech Republic
fabian@math.cas.cz

Marek Cúth
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