New topologies for some spaces of n-homogeneous polynomials and applications on hypercyclicity of convolution operators

Vinícius V. Fávaro
(joint work with D. Pellegrino)

Relations Between Banach Space Theory and
Geometric Measure Theory
08-12 June 2015

Table of Contents

(1) Introduction
(2) The technique
(3) Application
(4) Bibliography

Hypercyclicity

- A mapping $f: X \longrightarrow X$, where X is a topological space, is hypercyclic if the set $\left\{x, f(x), f^{2}(x), \ldots\right\}$ is dense in X for some $x \in X$.
- The study of hypercyclic translation and differentiation operators on spaces of entire functions of one complex variable can be traced back to Birkhoff (1929) [3] and MacLane (1952) [8].

Hypercyclicity

- A mapping $f: X \longrightarrow X$, where X is a topological space, is hypercyclic if the set $\left\{x, f(x), f^{2}(x), \ldots\right\}$ is dense in X for some $x \in X$.
- The study of hypercyclic translation and differentiation operators on spaces of entire functions of one complex variable can be traced back to Birkhoff (1929) [3] and MacLane (1952) [8].
- In 1991, Godefroy and Shapiro [6] pushed these results quite further by proving that every convolution operator on $\mathcal{H}\left(\mathbb{C}^{n}\right)$ which is not a scalar multiple of the identity is hypercyclic.

Hypercyclicity

- A mapping $f: X \longrightarrow X$, where X is a topological space, is hypercyclic if the set $\left\{x, f(x), f^{2}(x), \ldots\right\}$ is dense in X for some $x \in X$.
- The study of hypercyclic translation and differentiation operators on spaces of entire functions of one complex variable can be traced back to Birkhoff (1929) [3] and MacLane (1952) [8].
- In 1991, Godefroy and Shapiro [6] pushed these results quite further by proving that every convolution operator on $\mathcal{H}\left(\mathbb{C}^{n}\right)$ which is not a scalar multiple of the identity is hypercyclic.
- In 2007, Carando, Dimant and Muro [4] proved some far-reaching results that encompass as particular cases several hypercyclic results for convolution operators.

```
results include a solution to a problem posed in 2004 by
Aron and Markose [1], about hypercyclic convolution
operators acting on the space }\mp@subsup{\mathcal{H}}{\textrm{Nh}}{}(E)\mathrm{ of all entire
functions of nuclear-bounded type on a complex Banach
space E having separable dual.
```

- In 2007, Carando, Dimant and Muro [4] proved some far-reaching results that encompass as particular cases several hypercyclic results for convolution operators. Their results include a solution to a problem posed in 2004 by Aron and Markose [1], about hypercyclic convolution operators acting on the space $\mathcal{H}_{N b}(E)$ of all entire functions of nuclear-bounded type on a complex Banach space E having separable dual.
- In 2013, using the theory of holomorphy types, Bertoloto, Botelho, F. and Jatobá [2] generalize the results of $[4]$ to a more general setting.
- In 2007, Carando, Dimant and Muro [4] proved some far-reaching results that encompass as particular cases several hypercyclic results for convolution operators. Their results include a solution to a problem posed in 2004 by Aron and Markose [1], about hypercyclic convolution operators acting on the space $\mathcal{H}_{N b}(E)$ of all entire functions of nuclear-bounded type on a complex Banach space E having separable dual.
- In 2013, using the theory of holomorphy types, Bertoloto, Botelho, F. and Jatobá [2] generalize the results of [4] to a more general setting.

> Godefroy and Shapiro [6] on the hypercyclicity of convolution operators on $\mathcal{H}\left(\mathbb{C}^{n}\right)$:

- In 2007, Carando, Dimant and Muro [4] proved some far-reaching results that encompass as particular cases several hypercyclic results for convolution operators. Their results include a solution to a problem posed in 2004 by Aron and Markose [1], about hypercyclic convolution operators acting on the space $\mathcal{H}_{N b}(E)$ of all entire functions of nuclear-bounded type on a complex Banach space E having separable dual.
- In 2013, using the theory of holomorphy types, Bertoloto, Botelho, F. and Jatobá [2] generalize the results of [4] to a more general setting. For instance, the following theorem from [2], when restricted to $E=\mathbb{C}^{n}$ and $\mathcal{P}_{\Theta}\left({ }^{m} \mathbb{C}^{n}\right)=\mathcal{P}\left({ }^{m} \mathbb{C}^{n}\right)$ recovers the famous result of Godefroy and Shapiro [6] on the hypercyclicity of convolution operators on $\mathcal{H}\left(\mathbb{C}^{n}\right)$:

Theorem

Let E^{\prime} be separable and $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ be a π_{1}-holomorphy type from E to \mathbb{C}. Then every convolution operator on $\mathcal{H}_{\Theta b}(E)$ which is not a scalar multiple of the identity is hypercyclic.

However, the spaces $\mathcal{P}_{\Theta}\left({ }^{m} E\right)$ need to be Banach spaces and thus $\mathcal{H}_{\Theta b}(E)$ becomes a Fréchet space. When the spaces $\mathcal{P}_{\Theta}\left({ }^{m} E\right)$ are quasi-Banach, the respective space $\mathcal{H}_{\Theta b}(E)$ is not Fréchet and then th the Hynercyclicity Criterion obtained independently by Kitai [7] and Gethner and Shapiro [5]. do not work.

Theorem

Let E^{\prime} be separable and $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ be a π_{1}-holomorphy type from E to \mathbb{C}. Then every convolution operator on $\mathcal{H}_{\Theta b}(E)$ which is not a scalar multiple of the identity is hypercyclic.

However, the spaces $\mathcal{P}_{\Theta}\left({ }^{m} E\right)$ need to be Banach spaces and thus $\mathcal{H}_{\Theta b}(E)$ becomes a Fréchet space.
quasi-Banach, the respective space $\mathcal{H}_{\ominus b}(E)$ is not Fréchet and then the arguments used to prove the result above, for instance the Hypercyclicity Criterion obtained independently by Kitai [7] and Gethner and Shapiro [5], do not work.

Theorem

Let E^{\prime} be separable and $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ be a π_{1}-holomorphy type from E to \mathbb{C}. Then every convolution operator on $\mathcal{H}_{\Theta b}(E)$ which is not a scalar multiple of the identity is hypercyclic.

However, the spaces $\mathcal{P}_{\Theta}\left({ }^{m} E\right)$ need to be Banach spaces and thus $\mathcal{H}_{\Theta b}(E)$ becomes a Fréchet space. When the spaces $\mathcal{P}_{\Theta}\left({ }^{m} E\right)$ are quasi-Banach, the respective space $\mathcal{H}_{\Theta b}(E)$ is not Fréchet and then the arguments used to prove the result above, for instance the Hypercyclicity Criterion obtained independently by Kitai [7] and Gethner and Shapiro [5], do not work.

In this talk we present a general approach that allow us to deal with some "problematic" cases of hypercyclicity.

In this talk we present a general approach that allow us to deal with some "problematic" cases of hypercyclicity. We create a slightly different domain where this criterion and results of [2] are applicable.

$E=$ complex Banach space;

$E=$ complex Banach space; E^{\prime} and $E^{\prime \prime}$ its dual and bidual, respectively;
$\mathcal{P}\left({ }^{n} E\right)=$ Banach space of all continuous n-homogeneous
$E=$ complex Banach space; E^{\prime} and $E^{\prime \prime}$ its dual and bidual, respectively;
$\mathcal{P}\left({ }^{n} E\right)=$ Banach space of all continuous n-homogeneous polynomials from E to $\mathbb{C}, n \in \mathbb{N}$;
$\mathcal{P}_{f}\left({ }^{n} E\right)=$ subspace of $\mathcal{P}\left({ }^{n} E\right)$ of all finite type n-homogeneous
$E=$ complex Banach space; E^{\prime} and $E^{\prime \prime}$ its dual and bidual, respectively;
$\mathcal{P}\left({ }^{n} E\right)=$ Banach space of all continuous n-homogeneous polynomials from E to $\mathbb{C}, n \in \mathbb{N}$;
$\mathcal{P}_{f}\left({ }^{n} E\right)=$ subspace of $\mathcal{P}\left({ }^{n} E\right)$ of all finite type n-homogeneous polynomials.
$E=$ complex Banach space; E^{\prime} and $E^{\prime \prime}$ its dual and bidual, respectively;
$\mathcal{P}\left({ }^{n} E\right)=$ Banach space of all continuous n-homogeneous polynomials from E to $\mathbb{C}, n \in \mathbb{N}$;
$\mathcal{P}_{f}\left({ }^{n} E\right)=$ subspace of $\mathcal{P}\left({ }^{n} E\right)$ of all finite type n-homogeneous polynomials.

Suppose that $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right),\|\cdot\|_{\Delta}\right)$ is a quasi-normed space of n-homogeneous polynomials defined on E
$E=$ complex Banach space; E^{\prime} and $E^{\prime \prime}$ its dual and bidual, respectively;
$\mathcal{P}\left({ }^{n} E\right)=$ Banach space of all continuous n-homogeneous polynomials from E to $\mathbb{C}, n \in \mathbb{N}$;
$\mathcal{P}_{f}\left({ }^{n} E\right)=$ subspace of $\mathcal{P}\left({ }^{n} E\right)$ of all finite type n-homogeneous polynomials.

Suppose that $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right),\|\cdot\|_{\Delta}\right)$ is a quasi-normed space of n-homogeneous polynomials defined on E such that the inclusion $\mathcal{P}_{\Delta}\left({ }^{n} E\right) \hookrightarrow \mathcal{P}\left({ }^{n} E\right)$ is continuous and let $C_{\Delta_{n}}>0$ be such that $\|P\| \leq C_{\Delta_{n}}\|P\|_{\Delta}$, for all $P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right)$.
$E=$ complex Banach space; E^{\prime} and $E^{\prime \prime}$ its dual and bidual, respectively;
$\mathcal{P}\left({ }^{n} E\right)=$ Banach space of all continuous n-homogeneous polynomials from E to $\mathbb{C}, n \in \mathbb{N}$;
$\mathcal{P}_{f}\left({ }^{n} E\right)=$ subspace of $\mathcal{P}\left({ }^{n} E\right)$ of all finite type n-homogeneous polynomials.

Suppose that $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right),\|\cdot\|_{\Delta}\right)$ is a quasi-normed space of n-homogeneous polynomials defined on E such that the inclusion $\mathcal{P}_{\Delta}\left({ }^{n} E\right) \hookrightarrow \mathcal{P}\left({ }^{n} E\right)$ is continuous and let $C_{\Delta_{n}}>0$ be such that $\|P\| \leq C_{\Delta_{n}}\|P\|_{\Delta}$, for all $P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right)$. Suppose that $\mathcal{P}_{f}\left({ }^{n} E\right) \subset \mathcal{P}_{\Delta}\left({ }^{n} E\right)$ and the normed space
$\left(\mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right),\|\cdot\|_{\Delta^{\prime}}\right) \subset \mathcal{P}\left({ }^{n} E^{\prime}\right)$ is such that the Borel transform
$E=$ complex Banach space; E^{\prime} and $E^{\prime \prime}$ its dual and bidual, respectively;
$\mathcal{P}\left({ }^{n} E\right)=$ Banach space of all continuous n-homogeneous polynomials from E to $\mathbb{C}, n \in \mathbb{N}$;
$\mathcal{P}_{f}\left({ }^{n} E\right)=$ subspace of $\mathcal{P}\left({ }^{n} E\right)$ of all finite type n-homogeneous polynomials.

Suppose that $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right),\|\cdot\|_{\Delta}\right)$ is a quasi-normed space of n-homogeneous polynomials defined on E such that the inclusion $\mathcal{P}_{\Delta}\left({ }^{n} E\right) \hookrightarrow \mathcal{P}\left({ }^{n} E\right)$ is continuous and let $C_{\Delta_{n}}>0$ be such that $\|P\| \leq C_{\Delta_{n}}\|P\|_{\Delta}$, for all $P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right)$. Suppose that $\mathcal{P}_{f}\left({ }^{n} E\right) \subset \mathcal{P}_{\Delta}\left({ }^{n} E\right)$ and the normed space
$\left(\mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right),\|\cdot\|_{\Delta^{\prime}}\right) \subset \mathcal{P}\left({ }^{n} E^{\prime}\right)$ is such that the Borel transform

$$
\mathcal{B}:\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right)^{\prime},\|\cdot\|\right) \rightarrow\left(\mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right),\|\cdot\|_{\Delta^{\prime}}\right)
$$

$E=$ complex Banach space; E^{\prime} and $E^{\prime \prime}$ its dual and bidual, respectively;
$\mathcal{P}\left({ }^{n} E\right)=$ Banach space of all continuous n-homogeneous polynomials from E to $\mathbb{C}, n \in \mathbb{N}$;
$\mathcal{P}_{f}\left({ }^{n} E\right)=$ subspace of $\mathcal{P}\left({ }^{n} E\right)$ of all finite type n-homogeneous polynomials.

Suppose that $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right),\|\cdot\|_{\Delta}\right)$ is a quasi-normed space of n-homogeneous polynomials defined on E such that the inclusion $\mathcal{P}_{\Delta}\left({ }^{n} E\right) \hookrightarrow \mathcal{P}\left({ }^{n} E\right)$ is continuous and let $C_{\Delta_{n}}>0$ be such that $\|P\| \leq C_{\Delta_{n}}\|P\|_{\Delta}$, for all $P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right)$. Suppose that $\mathcal{P}_{f}\left({ }^{n} E\right) \subset \mathcal{P}_{\Delta}\left({ }^{n} E\right)$ and the normed space $\left(\mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right),\|\cdot\|_{\Delta^{\prime}}\right) \subset \mathcal{P}\left({ }^{n} E^{\prime}\right)$ is such that the Borel transform

$$
\mathcal{B}:\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right)^{\prime},\|\cdot\|\right) \rightarrow\left(\mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right),\|\cdot\|_{\Delta^{\prime}}\right)
$$

given by $\mathcal{B}(T)(\varphi)=T\left(\varphi^{n}\right)$, for all $\varphi \in E^{\prime}$ and $T \in \mathcal{P}_{\Delta}\left({ }^{n} E\right)^{\prime}$, is a topological isomorphism.

We will show that the pair

$$
\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right), \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)\right)
$$

is a dual system.

We will show that the pair

$$
\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right), \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)\right)
$$

is a dual system. More precisely, we will prove that there exists a bilinear form $\langle\cdot ; \cdot\rangle$ on

$$
\mathcal{P}_{\Delta}\left({ }^{n} E\right) \times \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)
$$

such that the following conditions hold:

We will show that the pair

$$
\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right), \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)\right)
$$

is a dual system. More precisely, we will prove that there exists a bilinear form $\langle\cdot ; \cdot\rangle$ on

$$
\mathcal{P}_{\Delta}\left({ }^{n} E\right) \times \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)
$$

such that the following conditions hold:
$(S 1)\langle P ; Q\rangle=0$ for all $Q \in \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)$ implies $P=0$.

We will show that the pair

$$
\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right), \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)\right)
$$

is a dual system. More precisely, we will prove that there exists a bilinear form $\langle\cdot ; \cdot\rangle$ on

$$
\mathcal{P}_{\Delta}\left({ }^{n} E\right) \times \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)
$$

such that the following conditions hold:
(S1) $\langle P ; Q\rangle=0$ for all $Q \in \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)$ implies $P=0$.
$(S 2)\langle P ; Q\rangle=0$ for all $P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right)$ implies $Q=0$.

Let

$$
\langle\cdot ; \cdot\rangle: \mathcal{P}_{\Delta}\left({ }^{n} E\right) \times \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) \longrightarrow \mathbb{K}
$$

defined by

$$
\langle P ; Q\rangle=\mathcal{B}^{-1}(Q)(P)
$$

It is clear that $\langle\cdot ; \cdot\rangle$ is bilinear and it is not difficult to see that $(S 1)$ and (S2) hold.

Let

$$
\langle\cdot ; \cdot\rangle: \mathcal{P}_{\Delta}\left({ }^{n} E\right) \times \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) \longrightarrow \mathbb{K}
$$

defined by

$$
\langle P ; Q\rangle=\mathcal{B}^{-1}(Q)(P)
$$

It is clear that $\langle\cdot ; \cdot\rangle$ is bilinear and it is not difficult to see that $(S 1)$ and ($S 2$) hold.
Thus the pair $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right), \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)\right)$ is a dual system.

Let

$$
\langle\cdot ; \cdot\rangle: \mathcal{P}_{\Delta}\left({ }^{n} E\right) \times \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) \longrightarrow \mathbb{K}
$$

defined by

$$
\langle P ; Q\rangle=\mathcal{B}^{-1}(Q)(P)
$$

It is clear that $\langle\cdot ; \cdot\rangle$ is bilinear and it is not difficult to see that $(S 1)$ and ($S 2$) hold.
Thus the pair $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right), \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right)\right)$ is a dual system.

Now, let

$$
U=\left\{P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right) ;\|P\|_{\Delta} \leq 1\right\} .
$$

Using the Bipolar Theorem, we know that the bipolar of U, denoted by U^{00}, coincides with the weak closure of the absolutely convex hull $\Gamma(U)$ of U.

Now, let

$$
U=\left\{P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right) ;\|P\|_{\Delta} \leq 1\right\} .
$$

Using the Bipolar Theorem, we know that the bipolar of U, denoted by U^{00}, coincides with the weak closure of the absolutely convex hull $\Gamma(U)$ of U.
gauge

Now, let

$$
U=\left\{P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right) ;\|P\|_{\Delta} \leq 1\right\} .
$$

Using the Bipolar Theorem, we know that the bipolar of U, denoted by U^{00}, coincides with the weak closure of the absolutely convex hull $\Gamma(U)$ of U. Consider the corresponding gauge

$$
p_{U^{\circ \circ}}(P)=\inf \left\{\delta>0 ; P \in \delta U^{\circ \circ}\right\}
$$

defined for all P in $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$.

Now, let

$$
U=\left\{P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right) ;\|P\|_{\Delta} \leq 1\right\} .
$$

Using the Bipolar Theorem, we know that the bipolar of U, denoted by U^{00}, coincides with the weak closure of the absolutely convex hull $\Gamma(U)$ of U. Consider the corresponding gauge

$$
p_{U^{\circ \circ}}(P)=\inf \left\{\delta>0 ; P \in \delta U^{\circ \circ}\right\},
$$

defined for all P in $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$. Recall that

$$
U^{\circ}=\left\{Q \in \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) ;|<P, Q>| \leq 1 \text { for all } P \in U\right\} .
$$

It is easy to see that

$$
U^{\circ}=\left\{Q \in \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) ;\left\|\mathcal{B}^{-1}(Q)\right\| \leq 1\right\}
$$

Now, let

$$
U=\left\{P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right) ;\|P\|_{\Delta} \leq 1\right\} .
$$

Using the Bipolar Theorem, we know that the bipolar of U, denoted by U^{00}, coincides with the weak closure of the absolutely convex hull $\Gamma(U)$ of U. Consider the corresponding gauge

$$
p_{U^{\circ \circ}}(P)=\inf \left\{\delta>0 ; P \in \delta U^{\circ \circ}\right\},
$$

defined for all P in $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$. Recall that

$$
U^{\circ}=\left\{Q \in \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) ;|<P, Q>| \leq 1 \text { for all } P \in U\right\} .
$$

It is easy to see that

$$
U^{\circ}=\left\{Q \in \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) ;\left\|\mathcal{B}^{-1}(Q)\right\| \leq 1\right\}
$$

Now, let

$$
U=\left\{P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right) ;\|P\|_{\Delta} \leq 1\right\} .
$$

Using the Bipolar Theorem, we know that the bipolar of U, denoted by U^{00}, coincides with the weak closure of the absolutely convex hull $\Gamma(U)$ of U. Consider the corresponding gauge

$$
p_{U^{\circ \circ}}(P)=\inf \left\{\delta>0 ; P \in \delta U^{\circ \circ}\right\},
$$

defined for all P in $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$. Recall that

$$
U^{\circ}=\left\{Q \in \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) ;|<P, Q>| \leq 1 \text { for all } P \in U\right\} .
$$

It is easy to see that

$$
\begin{gathered}
U^{\circ}=\left\{Q \in \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) ;\left\|\mathcal{B}^{-1}(Q)\right\| \leq 1\right\}, \\
U^{\circ \circ}=\left\{P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right) ;\left|\mathcal{B}^{-1}(Q)(P)\right| \leq 1, \text { for all }\left\|\mathcal{B}^{-1}(Q)\right\| \leq 1\right\}
\end{gathered}
$$

Hence
$p_{U \circ \circ}(P)=\inf \left\{\delta>0 ;\left|\mathcal{B}^{-1}(Q)(P)\right| \leq \delta\right.$, for all $\left.\left\|\mathcal{B}^{-1}(Q)\right\| \leq 1\right\}$.

Hence
$p_{U^{\circ \circ}}(P)=\inf \left\{\delta>0 ;\left|\mathcal{B}^{-1}(Q)(P)\right| \leq \delta\right.$, for all $\left.\left\|\mathcal{B}^{-1}(Q)\right\| \leq 1\right\}$.
Using this equality it is easy to see that $p_{U^{\circ} \circ}$ is a norm on $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$.

Hence
$p_{U^{\circ \circ}}(P)=\inf \left\{\delta>0 ;\left|\mathcal{B}^{-1}(Q)(P)\right| \leq \delta\right.$, for all $\left.\left\|\mathcal{B}^{-1}(Q)\right\| \leq 1\right\}$.
Using this equality it is easy to see that $p_{U^{\circ}}$ is a norm on $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$.
We denote the completion of the space $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right), p_{U^{\circ \circ}}\right)$ by

$$
\left(\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right),\|\cdot\|_{\tilde{\Delta}}\right) .
$$

So the restriction of $\|\cdot\|_{\widetilde{\Delta}}$ to $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$ is $p_{U}{ }^{\circ}$.

Hence
$p_{U^{\circ \circ}}(P)=\inf \left\{\delta>0 ;\left|\mathcal{B}^{-1}(Q)(P)\right| \leq \delta\right.$, for all $\left.\left\|\mathcal{B}^{-1}(Q)\right\| \leq 1\right\}$.
Using this equality it is easy to see that $p_{U^{\circ}}$ is a norm on $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$.
We denote the completion of the space $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right), p_{U^{\circ \circ}}\right)$ by

$$
\left(\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right),\|\cdot\|_{\widetilde{\Delta}}\right) .
$$

So the restriction of $\|\cdot\|_{\widetilde{\Delta}}$ to $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$ is $p_{U^{\circ \circ}}$.

Theorem

The linear mapping

$$
\begin{aligned}
\widetilde{\mathcal{B}}:\left[\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)\right]^{\prime} & \longrightarrow \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) \\
\widetilde{\mathcal{B}}(T)(\varphi) & =T\left(\varphi^{n}\right)
\end{aligned}
$$

is a topological isomorphism.

Theorem

The linear mapping

$$
\begin{aligned}
\widetilde{\mathcal{B}}:\left[\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)\right]^{\prime} & \longrightarrow \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) \\
\widetilde{\mathcal{B}}(T)(\varphi) & =T\left(\varphi^{n}\right)
\end{aligned}
$$

is a topological isomorphism.

Remark

When $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$ is a Banach space then we have $\|\cdot\|_{\widetilde{\Delta}}=\|\cdot\|_{\Delta}$ and $\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)=\mathcal{P}_{\Delta}\left({ }^{n} E\right)$.
In fact, in this case, U is the closed unit ball in $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$, hence balanced and convex and $\Gamma(U)=U$. By using the Bipolar

Theorem

The linear mapping

$$
\begin{aligned}
\widetilde{\mathcal{B}}:\left[\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)\right]^{\prime} & \longrightarrow \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) \\
\widetilde{\mathcal{B}}(T)(\varphi) & =T\left(\varphi^{n}\right)
\end{aligned}
$$

is a topological isomorphism.

Remark

When $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$ is a Banach space then we have $\|\cdot\|_{\widetilde{\Delta}}=\|\cdot\|_{\Delta}$ and $\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)=\mathcal{P}_{\Delta}\left({ }^{n} E\right)$.
In fact, in this case, U is the closed unit ball in $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$, hence balanced and convex and $\Gamma(U)=U$.
follows from Banach-Mazur Theorem. Hence

Theorem

The linear mapping

$$
\begin{aligned}
\widetilde{\mathcal{B}}:\left[\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)\right]^{\prime} & \longrightarrow \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) \\
\widetilde{\mathcal{B}}(T)(\varphi) & =T\left(\varphi^{n}\right)
\end{aligned}
$$

is a topological isomorphism.

Remark

When $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$ is a Banach space then we have $\|\cdot\|_{\tilde{\Delta}}=\|\cdot\|_{\Delta}$ and $\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)=\mathcal{P}_{\Delta}\left({ }^{n} E\right)$.
In fact, in this case, U is the closed unit ball in $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$, hence balanced and convex and $\Gamma(U)=U$. By using the Bipolar Theorem we have $U^{\circ \circ}=\overline{\Gamma(U)}{ }^{\omega}=\bar{U}^{w}=U$, and the last equality follows from Banach-Mazur Theorem.

Theorem

The linear mapping

$$
\begin{aligned}
\widetilde{\mathcal{B}}:\left[\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)\right]^{\prime} & \longrightarrow \mathcal{P}_{\Delta^{\prime}}\left({ }^{n} E^{\prime}\right) \\
\widetilde{\mathcal{B}}(T)(\varphi) & =T\left(\varphi^{n}\right)
\end{aligned}
$$

is a topological isomorphism.

Remark

When $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$ is a Banach space then we have $\|\cdot\|_{\tilde{\Delta}}=\|\cdot\|_{\Delta}$ and $\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)=\mathcal{P}_{\Delta}\left({ }^{n} E\right)$.
In fact, in this case, U is the closed unit ball in $\mathcal{P}_{\Delta}\left({ }^{n} E\right)$, hence balanced and convex and $\Gamma(U)=U$. By using the Bipolar Theorem we have $U^{\circ \circ}=\overline{\Gamma(U)}{ }^{\omega}=\bar{U}^{w}=U$, and the last equality follows from Banach-Mazur Theorem. Hence

$$
\begin{array}{r}
p_{U^{\circ \circ}}(P)=\inf \left\{\delta>0 ; P \in \delta U^{\circ \circ}\right\}=\inf \{\delta>0 ; P \in \delta U\} \\
=\inf \left\{\delta>0 ;\|P\|_{\Delta} \leq \delta\right\}=\|P\|_{\Delta}
\end{array}
$$

Definition

A holomorphy type Θ from E to \mathbb{C} is a sequence of Banach spaces $\left(\mathcal{P}_{\Theta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$, the norm on each of them being denoted by $\|\cdot\|_{\Theta}$, such that the following conditions hold true:

Definition

A holomorphy type Θ from E to \mathbb{C} is a sequence of Banach spaces $\left(\mathcal{P}_{\Theta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$, the norm on each of them being denoted by $\|\cdot\|_{\Theta}$, such that the following conditions hold true:
(1) Each $\mathcal{P}_{\Theta}\left({ }^{n} E\right)$ is a linear subspace of $\mathcal{P}\left({ }^{n} E\right)$.

Definition

A holomorphy type Θ from E to \mathbb{C} is a sequence of Banach spaces $\left(\mathcal{P}_{\Theta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$, the norm on each of them being denoted by $\|\cdot\|_{\Theta}$, such that the following conditions hold true:
(1) Each $\mathcal{P}_{\Theta}\left({ }^{n} E\right)$ is a linear subspace of $\mathcal{P}\left({ }^{n} E\right)$.
(2) $\mathcal{P}_{\Theta}\left({ }^{0} E\right)$ coincides with $\mathcal{P}\left({ }^{0} E\right)=\mathbb{C}$ as a normed vector space.

$$
\hat{d}^{k} P(a) \in \mathcal{P}_{\Theta}\left({ }^{k} E\right) \quad \text { and }
$$

Definition

A holomorphy type Θ from E to \mathbb{C} is a sequence of Banach spaces $\left(\mathcal{P}_{\Theta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$, the norm on each of them being denoted by $\|\cdot\|_{\Theta}$, such that the following conditions hold true:
(1) Each $\mathcal{P}_{\Theta}\left({ }^{n} E\right)$ is a linear subspace of $\mathcal{P}\left({ }^{n} E\right)$.
(2) $\mathcal{P}_{\Theta}\left({ }^{0} E\right)$ coincides with $\mathcal{P}\left({ }^{0} E\right)=\mathbb{C}$ as a normed vector space. (3) There is a real number $\sigma \geq 1$ for which the following is true: given any $k \in \mathbb{N}_{0}, n \in \mathbb{N}_{0}, k \leq n, a \in E$ and $P \in \mathcal{P}_{\Theta}\left({ }^{n} E\right)$, we have

$$
\hat{d}^{k} P(a) \in \mathcal{P}_{\Theta}\left({ }^{k} E\right) \quad \text { and }
$$

Definition

A holomorphy type Θ from E to \mathbb{C} is a sequence of Banach spaces $\left(\mathcal{P}_{\Theta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$, the norm on each of them being denoted by $\|\cdot\|_{\Theta}$, such that the following conditions hold true:
(1) Each $\mathcal{P}_{\Theta}\left({ }^{n} E\right)$ is a linear subspace of $\mathcal{P}\left({ }^{n} E\right)$.
(2) $\mathcal{P}_{\Theta}\left({ }^{0} E\right)$ coincides with $\mathcal{P}\left({ }^{0} E\right)=\mathbb{C}$ as a normed vector space. (3) There is a real number $\sigma \geq 1$ for which the following is true: given any $k \in \mathbb{N}_{0}, n \in \mathbb{N}_{0}, k \leq n, a \in E$ and $P \in \mathcal{P}_{\Theta}\left({ }^{n} E\right)$, we have

$$
\begin{gathered}
\hat{d}^{k} P(a) \in \mathcal{P}_{\Theta}\left({ }^{k} E\right) \quad \text { and } \\
\left\|\frac{1}{k!} \hat{d}^{k} P(a)\right\|_{\Theta} \leq \sigma^{n}\|P\|_{\Theta}\|a\|^{n-k} .
\end{gathered}
$$

Definition

Let $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right),\|\cdot\|_{\Delta}\right)$ be quasi-normed spaces for all $n \in \mathbb{N}_{0}$ with $\mathcal{P}_{\Delta}\left({ }^{0} E\right)=\mathbb{C}$.
(1) $\hat{d}^{k} P(x) \in \mathcal{P}_{\Delta}\left({ }^{k} E\right)$ for each $n \in \mathbb{N}_{0}, P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right)$, $k=0,1, \ldots, n$ and $x \in E$.

Definition

Let $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right),\|\cdot\|_{\Delta}\right)$ be quasi-normed spaces for all $n \in \mathbb{N}_{0}$ with $\mathcal{P}_{\Delta}\left({ }^{0} E\right)=\mathbb{C}$. A sequence $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ is stable for derivatives if
(1) $\hat{d}^{k} P(x) \in \mathcal{P}_{\Delta}\left({ }^{k} E\right)$ for each $n \in \mathbb{N}_{0}, P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right)$, $k=0,1, \ldots, n$ and $x \in E$.

Definition

Let $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right),\|\cdot\|_{\Delta}\right)$ be quasi-normed spaces for all $n \in \mathbb{N}_{0}$ with $\mathcal{P}_{\Delta}\left({ }^{0} E\right)=\mathbb{C}$. A sequence $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ is stable for derivatives if
(1) $\hat{d}^{k} P(x) \in \mathcal{P}_{\Delta}\left({ }^{k} E\right)$ for each $n \in \mathbb{N}_{0}, P \in \mathcal{P}_{\Delta}\left({ }^{n} E\right)$, $k=0,1, \ldots, n$ and $x \in E$.
(2) For each $n \in \mathbb{N}_{0}, k=0,1, \ldots, n$, there is a constant $C_{n, k} \geq 0$ such that

$$
\left\|\hat{d}^{k} P(x)\right\|_{\Delta} \leq C_{n, k}\|P\|_{\Delta}\|x\|^{n-k}
$$

Theorem

Let $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ be a sequence stable for derivatives. If $P \in \mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right), k=0,1, \ldots, n$ and $x \in E$, then

$$
\hat{d}^{k} P(x) \in \mathcal{P}_{\widetilde{\Delta}}\left({ }^{k} E\right)
$$

Theorem

Let $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ be a sequence stable for derivatives. If $P \in \mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right), k=0,1, \ldots, n$ and $x \in E$, then

$$
\hat{d}^{k} P(x) \in \mathcal{P}_{\widetilde{\Delta}}\left({ }^{k} E\right)
$$

and

$$
\left\|\hat{d}^{k} P(x)\right\|_{\widetilde{\Delta}} \leq C_{n, k}\|P\|_{\widetilde{\Delta}}\|x\|^{n-k}
$$

where $C_{n, k}$ is the constant of Definition 4.

Theorem

Let $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ be a sequence stable for derivatives. If $P \in \mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right), k=0,1, \ldots, n$ and $x \in E$, then

$$
\hat{d}^{k} P(x) \in \mathcal{P}_{\widetilde{\Delta}}\left({ }^{k} E\right)
$$

and

$$
\left\|\hat{d}^{k} P(x)\right\|_{\widetilde{\Delta}} \leq C_{n, k}\|P\|_{\widetilde{\Delta}}\|x\|^{n-k},
$$

where $C_{n, k}$ is the constant of Definition 4.

Corollary

If $\left(\mathcal{P} \Delta\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ is stable for derivatives for $C_{n, k} \leq \frac{n!}{(n-k)!}$, then $\left(\mathcal{P}_{\tilde{\Lambda}}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ is a holomorphy type.

Theorem

Let $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ be a sequence stable for derivatives. If $P \in \mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right), k=0,1, \ldots, n$ and $x \in E$, then

$$
\hat{d}^{k} P(x) \in \mathcal{P}_{\widetilde{\Delta}}\left({ }^{k} E\right)
$$

and

$$
\left\|\hat{d}^{k} P(x)\right\|_{\widetilde{\Delta}} \leq C_{n, k}\|P\|_{\widetilde{\Delta}}\|x\|^{n-k},
$$

where $C_{n, k}$ is the constant of Definition 4.

Corollary

If $\left(\mathcal{P}_{\Delta}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ is stable for derivatives for $C_{n, k} \leq \frac{n!}{(n-k)!}$, then $\left(\mathcal{P}_{\widetilde{\Delta}}\left({ }^{n} E\right)\right)_{n=0}^{\infty}$ is a holomorphy type.

Definition

Let $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ be a holomorphy type from E to \mathbb{C}. A given $f \in \mathcal{H}(E)$ is said to be of Θ-holomorphy type of bounded type if

Definition

Let $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ be a holomorphy type from E to \mathbb{C}. A given $f \in \mathcal{H}(E)$ is said to be of Θ-holomorphy type of bounded type if (i) $\frac{1}{m!} \hat{d}^{m} f(0) \in \mathcal{P}_{\Theta}\left({ }^{m} E\right)$, for all $m \in \mathbb{N}_{0}$,

Definition

Let $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ be a holomorphy type from E to \mathbb{C}. A given $f \in \mathcal{H}(E)$ is said to be of Θ-holomorphy type of bounded type if (i) $\frac{1}{m!} \hat{d}^{m} f(0) \in \mathcal{P}_{\Theta}\left({ }^{m} E\right)$, for all $m \in \mathbb{N}_{0}$,
(ii) $\lim _{m \rightarrow \infty}\left(\frac{1}{m!}\left\|\hat{d}^{m} f(0)\right\|_{\Theta}\right)^{\frac{1}{m}}=0$.

The vector subspace of $\mathcal{H}(E)$ of all such f is denoted by
$\mathcal{H}_{\Theta b}(E)$ and becomes a Fréchet space with the topology τ_{Θ}
generated by the family of seminorms

Definition

Let $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ be a holomorphy type from E to \mathbb{C}. A given $f \in \mathcal{H}(E)$ is said to be of Θ-holomorphy type of bounded type if (i) $\frac{1}{m!} \hat{d}^{m} f(0) \in \mathcal{P}_{\Theta}\left({ }^{m} E\right)$, for all $m \in \mathbb{N}_{0}$,
(ii) $\lim _{m \rightarrow \infty}\left(\frac{1}{m!}\left\|\hat{d}^{m} f(0)\right\|_{\Theta}\right)^{\frac{1}{m}}=0$.

The vector subspace of $\mathcal{H}(E)$ of all such f is denoted by $\mathcal{H}_{\Theta b}(E)$ and becomes a Fréchet space with the topology τ_{Θ} generated by the family of seminorms

$$
f \in \mathcal{H}_{\Theta b}(E ; F) \mapsto\|f\|_{\Theta, \rho}=\sum_{m=0}^{\infty} \frac{\rho^{m}}{m!}\left\|\hat{d}^{m} f(0)\right\|_{\Theta}
$$

for all $\rho>0$.

Definition

A holomorphy type $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ from E to \mathbb{C} is said to be a π_{1}-holomorphy type if the following conditions hold:
(i)Polynomials of finite type belong to $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ and there exists $K>0$ such that
for all $\phi \in E^{\prime}, b \in \mathbb{C}$ and $m \in \mathbb{N}$;

Definition

A holomorphy type $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ from E to \mathbb{C} is said to be a π_{1}-holomorphy type if the following conditions hold:
(i)Polynomials of finite type belong to $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ and there exists $K>0$ such that

$$
\left\|\phi^{m} \cdot b\right\|_{\Theta} \leq K^{m}\|\phi\|^{m} \cdot|b|
$$

for all $\phi \in E^{\prime}, b \in \mathbb{C}$ and $m \in \mathbb{N}$;

Definition

A holomorphy type $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ from E to \mathbb{C} is said to be a π_{1}-holomorphy type if the following conditions hold:
(i)Polynomials of finite type belong to $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ and there exists $K>0$ such that

$$
\left\|\phi^{m} \cdot b\right\|_{\Theta} \leq K^{m}\|\phi\|^{m} \cdot|b|
$$

for all $\phi \in E^{\prime}, b \in \mathbb{C}$ and $m \in \mathbb{N}$;
(ii)For each $m \in \mathbb{N}_{0}, \mathcal{P}_{f}\left({ }^{m} E\right)$ is dense in $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right),\|\cdot\|_{\Theta}\right)$.

Example

F., Matos and Pellegrino introduced the class
$\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{m} E\right)$ of all Lorentz $((r, q) ;(s, p))$-nuclear n-homogeneous polynomials on E and proved that if E^{\prime} has the
bounded approximation property, then the Borel transform establishes an topological isomorphism between $\left[\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{n} E\right)\right]^{\prime}$ and $\mathcal{P}_{a s\left(\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)$,

Example

F., Matos and Pellegrino introduced the class
$\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{m} E\right)$ of all Lorentz $((r, q) ;(s, p))$-nuclear n-homogeneous polynomials on E and proved that if E^{\prime} has the bounded approximation property, then the Borel transform establishes an topological isomorphism between

$$
\left[\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{n} E\right)\right]^{\prime} \text { and } \mathcal{P}_{a s\left(\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)
$$

Example

F., Matos and Pellegrino introduced the class
$\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{m} E\right)$ of all Lorentz $((r, q) ;(s, p))$-nuclear n-homogeneous polynomials on E and proved that if E^{\prime} has the bounded approximation property, then the Borel transform establishes an topological isomorphism between
$\left[\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{n} E\right)\right]^{\prime}$ and $\mathcal{P}_{a s\left(\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)$, where
$\mathcal{P}_{a s\left(\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)$ denotes the space of all absolutely Lorentz ($\left.\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)$-summing n-homogeneous polynomials on E^{\prime}.
Usin
$\mathcal{P}_{\widetilde{N}},($
$\mathcal{P}_{\left(s^{\prime}\right.}$,
It is
${ }^{\left(\mathcal{P}_{\tilde{N}}\right.}$

Example

F., Matos and Pellegrino introduced the class
$\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{m} E\right)$ of all Lorentz $((r, q) ;(s, p))$-nuclear
n-homogeneous polynomials on E and proved that if E^{\prime} has the bounded approximation property, then the Borel transform establishes an topological isomorphism between
$\left[\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{n} E\right)\right]^{\prime}$ and $\mathcal{P}_{a s\left(\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)$, where
$\mathcal{P}_{a s\left(\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)$ denotes the space of all absolutely Lorentz ($\left.\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)$-summing n-homogeneous polynomials on E^{\prime}.
Using our technique we may consider the space
$\mathcal{P}_{\tilde{N},((r, q) ;(s, p))}\left({ }^{m} E\right)$ and its dual (via Borel transform) is also $\mathcal{P}_{\left(s^{\prime}, m\left(r^{\prime} ; q^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)$.
It is not difficult to prove that the sequence

is a π_{1}-holomorphy type.

Example

F., Matos and Pellegrino introduced the class
$\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{m} E\right)$ of all Lorentz $((r, q) ;(s, p))$-nuclear
n-homogeneous polynomials on E and proved that if E^{\prime} has the bounded approximation property, then the Borel transform establishes an topological isomorphism between
$\left[\mathcal{P}_{N,((r, q) ;(s, p))}\left({ }^{n} E\right)\right]^{\prime}$ and $\mathcal{P}_{a s\left(\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)$, where
$\mathcal{P}_{a s\left(\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)$ denotes the space of all absolutely Lorentz $\left(\left(r^{\prime}, q^{\prime}\right) ;\left(s^{\prime}, p^{\prime}\right)\right)$-summing n-homogeneous polynomials on E^{\prime}.
Using our technique we may consider the space
$\mathcal{P}_{\tilde{N},((r, q) ;(s, p))}\left({ }^{m} E\right)$ and its dual (via Borel transform) is also $\mathcal{P}_{\left(s^{\prime}, m\left(r^{\prime} ; q^{\prime}\right)\right)}\left({ }^{m} E^{\prime}\right)$.
It is not difficult to prove that the sequence
$\left(\mathcal{P}_{\widetilde{N},((r, q) ;(s, p))}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ is a π_{1}-holomorphy type.

Theorem

Let E^{\prime} be separable and $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ be a π_{1}-holomorphy type from E to \mathbb{C}. Then every convolution operator on $\mathcal{H}_{\Theta b}(E)$ which is not a scalar multiple of the identity is hypercyclic.

Corollary

If E^{\prime} is separable, then every convolution operator on $\mathcal{H}_{\widetilde{N} b .((r, q):(s, p))}(E)$ which is not a scalar multiple of the identity is hypercyclic.

Theorem

Let E^{\prime} be separable and $\left(\mathcal{P}_{\Theta}\left({ }^{m} E\right)\right)_{m=0}^{\infty}$ be a π_{1}-holomorphy type from E to \mathbb{C}. Then every convolution operator on $\mathcal{H}_{\Theta b}(E)$ which is not a scalar multiple of the identity is hypercyclic.

Corollary

If E^{\prime} is separable, then every convolution operator on $\mathcal{H}_{\widetilde{N} b,((r, q) ;(s, p))}(E)$ which is not a scalar multiple of the identity is hypercyclic.

國 [1] R. Aron, D. Markose,
On universal functions,
in: Satellite Conference on Infinite Dimensional Function Theory, J. Korean Math. Soc. 41 (2004), 65-76.
[- [2] F. Bertoloto, G. Botelho. V. V. Fávaro, A. M. Jatobá, Hypercyclicity of convolution operators on spaces of entire functions, Ann. Inst. Fourier (Grenoble) 63 (2013), 1263-1283.

- [3] G. D. Birkhoff,

Démonstration d'un théorème élémentaire sur les fonctions entières,
C. R. Acad. Sci. Paris 189 (1929), 473-475.

固 [4] D. Carando, V. Dimant and S. Muro,
Hypercyclic convolution operators on Fréchet spaces of analytic functions,
J. Math. Anal. Appl. 336 (2007), 1324-1340.

围 [5] R. M. Gethner and J. H. Shapiro,
Universal vector for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288.

- [6] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-269.
(7] C. Kitai,
Invariant closed sets for linear operators, Dissertation, University of Toronto, 1982.

睩 [8] G. R. MacLane,
Sequences of derivatives and normal families, J. Anal. Math. 2 (1952), 72-87.

Thank you very much!!!

