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Notation

I X Banach space, F finite dimensional Banach space,
I Emb(F ,X ) denotes the class of linear isometric

embeddings of F into X , equipped with the distance

d(T ,U) = ‖T − U‖

induced by the operator norm.
I Isom(X ) is the group of linear (surjective) isometries on X ,

usually equipped with SOT.
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The main result

Theorem (Ramsey theorem for embeddings between `n
p’s)

Given 0 < p <∞, integers d, m, r , and ε > 0 there exists n
such that whenever c : Emb(`dp , `

n
p)→ r is a coloring of the set

of all isometric embeddings Emb(`dp , `
n
p) of `dp into `np into r -many

colors, there is some isometric embedding γ : `mp → `np and
some color i < r such that

γ ◦ Emb(`dp , `
m
p ) ⊂ (c−1{i})ε.
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The main result

The main result may also be stated as a result of stabilization of
Lipschitz maps:

Theorem
Given 0 < p <∞, integers d ,m, and K , ε > 0 there exists
n ∈ N such that for any K -Lipschitz function
L : Emb(`dp , `

n
p)→ R, there exists γ ∈ Emb(`mp , `

n
p) such that

Osc(L|γ ◦ Emb(`dp , `
m
p )) < ε.
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A few comments

1. The case p = 2 (the Hilbert case) is an indirect
consequence of the extreme amenability of U(H)
(Gromov-Milman 1983).

2. The case d = 1 was proved by Odell- Rosenthal -
Schlumprecht (1993) and Matoušek-Rödl (1995)
independently.

3. By the solution to the distortion problem,
Odell-Schlumprecht (1994), no infinite dimensional
generalization.

4. Embeddings versus copies; the case d = 1.
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independently.

3. By the solution to the distortion problem,
Odell-Schlumprecht (1994), no infinite dimensional
generalization.

4. Embeddings versus copies; the case d = 1.

Valentin Ferenczi, University of São Paulo Approximate Ramsey properties for finte dimensional `p -spaces



A few comments

1. The case p = 2 (the Hilbert case) is an indirect
consequence of the extreme amenability of U(H)
(Gromov-Milman 1983).

2. The case d = 1 was proved by Odell- Rosenthal -
Schlumprecht (1993) and Matoušek-Rödl (1995)
independently.

3. By the solution to the distortion problem,
Odell-Schlumprecht (1994), no infinite dimensional
generalization.

4. Embeddings versus copies; the case d = 1.

Valentin Ferenczi, University of São Paulo Approximate Ramsey properties for finte dimensional `p -spaces



A few comments

1. The case p = 2 (the Hilbert case) is an indirect
consequence of the extreme amenability of U(H)
(Gromov-Milman 1983).

2. The case d = 1 was proved by Odell- Rosenthal -
Schlumprecht (1993) and Matoušek-Rödl (1995)
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Borsuk-Ulam antipodal theorem

We can relate our Ramsey result to an equivalent form of
Borsuk-Ulam called Lyusternik-Schnirel’man theorem (1930):

Theorem (a form of Borsuk-Ulam)
If the unit sphere Sn−1 of `n2 is covered by n open sets, then one
of them contains a pair {−x , x} of antipodal points.

By the fact that every finite open cover of a finite dimensional
sphere is the ε-fattening of some smaller open cover, for some
ε > 0, our result for d = 1,m = 1 may be seen as a version of
Borsuk-Ulam theorem (n = np(1,1, r , ε)).
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Consequence on Lp spaces

Using classical results of Rudin (1976) - see also Lusky (1978):

Proposition
Assume 0 < p < +∞,p 6= 4,6,8, . . .. Then Lp(0,1) is
”approximately ultrahomogeneous”, meaning that for any
finite-dimensional subspace F of Lp(0,1), for any ε > 0, for any
t ∈ Emb(F ,Lp(0,1)), there exists a surjective isometry
T ∈ Isom(Lp(0,1)) such that

‖TF − t‖ ≤ ε.
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Consequence on Lp spaces

As as consequence of a result of B. Randrianantoanina (1998),
we may observe that this proposition is false for p = 4,6,8, ...;
actually:

Proposition
If p = 4,6,8, ... then for every M > 1, there exists a finite
dimensional subspace F of Lp(0,1) and t ∈ Emb(F ,Lp(0,1))
such any extension T of t on Lp(0,1) satisfies ‖T‖ ≥ M.

A positive result holds for all 0 < p < +∞:
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Consequence on Lp spaces

Theorem
For any 0 < p < +∞, Lp[0,1] is of almost `np-disposition: for any
`mp ⊂ Lp([0,1]), any embedding j ∈ Emb(`mp , `

n
p), there exists an

embedding T ∈ Emb(`np,Lp(0,1)) such that

‖Id|`mp − T ◦ j‖ ≤ ε.

Observation
Lp(0,1) is the unique separable Lp-space of almost
`np-disposition.
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Extreme amenability

The almost `np-disposition of Lp(0,1) plus the approximate
Ramsey property of embeddings between `np’s imply an
alternative proof of the following results of Gromov-Milman
(1983) and Giordano-Pestov (2003).

Theorem
The group of linear surjective isometries of Lp(0,1), 0 < p <∞,
with SOT, is extremely amenable.

The point is that Lp(0,1) looks like the Fraı̈ssé limit of class of
`np’s together with isometric embeddings....
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Another consequence: the ”lattice Gurarij’

Theorem (F. Cabello-Sanchez, 1998)
There exists a renorming of C(0,1) as an M-space with almost
transitive norm.

Defining a ”disjoint copy of `n∞” in an M-space as an isometric
copy of `n∞ generated by disjoint vectors, we may improve this
to:

Theorem (the ”lattice Gurarij”)
There exists a renorming of C(0,1) as an M-space G` which is
”approximately disjointly homogeneous”: i.e. for any ε > 0, any
isometry t between two disjoint copies F and F ′ of `n∞, there is
a surjective, disjoint preserving, linear isometry T on G` such
that

‖T|F − t‖ ≤ ε.
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The lattice Gurarij

Since

Observation
The approximate Ramsey property holds for disjoint preserving
isometric embeddings between `n∞’s,

we deduce:

Theorem
The group of disjoint preserving isometries on G`, with SOT, is
extremely amenable.

Observation
Therefore Gowers’ Ramsey theorem about block subspaces of
c0 has a finite dimensional version with subspaces of `n∞’s
generated by disjoint vectors, rather than with subspaces
generated by successive vectors.
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Hints of the proof of the `n
p Ramsey result, p 6= 2

I using the Mazur map, which is a disjoint preserving
uniform homeomorphism between S`p and S`q , we may
assume p = 1,

I we look at matrices (n,d) of isometric embeddings of `d1
into `n1. Since n >> d , and up to a discretization, some
lines of the matrix will repeat themselves. Therefore we
may associate

I elements of Emb(`d
1 , `

n
1) with

I partitions of n into k = k(d , ε) pieces indexed by possible
values of the lines

I with more work, and using a result of Matoušek-Rödl, we
shall do it in a coherent way, e.g. composing surjections
essentially corresponds to composing partitions...
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Hints of the proof of the `n
p Ramsey result, p 6= 2

I so what we need is a Ramsey result for partitions.

I to obtain uniform continuity and because of the
normalizing factors appearing in the `1-norm (as opposed
to the `∞-norm), we need to work with equipartitions.

I it is an open question whether a Dual Ramsey Theorem of
the type Graham - Rothschild holds for equipartitions.

I however in our context we only need a Ramsey Theorem
for ε-equipartitions.

I this is proved by concentration of measure (one of the
colours has measure ≥ 1/r , so ”almost all” elements have
the same colour up to ε, ....)
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