Energy integrals, metric embeddings and absolutely summing operators

Daniel Galicer¹ Joint work with Daniel Carando and Damián Pinasco

¹Universidad de Buenos Aires - CONICET;

University of Warwick - June 2015

・ロト ・日 ・ モト ・モト ・ モー うへで

Metric spaces arising from Euclidean spaces by a change of metric: some history

W. A. WILSON, *On certain types of continuous transformations of metric spaces*, Amer. J. of Math., Vol. 57 (1935), pp. 62-68.

Metric spaces arising from Euclidean spaces by a change of metric: some history

W. A. WILSON, On certain types of continuous transformations of metric spaces, Amer. J. of Math., Vol. 57 (1935), pp. 62-68.

Wilson investigated certain properties of those metric spaces which arise from a metric space by taking as its new metric a suitable (one variable) function of the old one.

Metric spaces arising from Euclidean spaces by a change of metric: some history

W. A. WILSON, On certain types of continuous transformations of metric spaces, Amer. J. of Math., Vol. 57 (1935), pp. 62-68.

Wilson investigated certain properties of those metric spaces which arise from a metric space by taking as its new metric a suitable (one variable) function of the old one.

$$(X,d) \xrightarrow{f} (X,f(d)), \text{ where } f(d)(x,y) := f(d(x,y)).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Metric spaces arising from Euclidean spaces by a change of metric: some history

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space $(\mathbb{R}, |\cdot|)$, Wilson considered the function $f(t) = t^{1/2}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space $(\mathbb{R}, |\cdot|)$, Wilson considered the function $f(t) = t^{1/2}$. Denote $d_{1/2} := f(|\cdot|) \rightsquigarrow d_{1/2}(x, y) = |x - y|^{1/2}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space $(\mathbb{R}, |\cdot|)$, Wilson considered the function $f(t) = t^{1/2}$. Denote $d_{1/2} := f(|\cdot|) \rightsquigarrow d_{1/2}(x, y) = |x - y|^{1/2}$.

• He showed that $(\mathbb{R}, d_{1/2})$ may be *isometrically imbedded in a separable Hilbert space*.

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space $(\mathbb{R}, |\cdot|)$, Wilson considered the function $f(t) = t^{1/2}$. Denote $d_{1/2} := f(|\cdot|) \rightsquigarrow d_{1/2}(x, y) = |x - y|^{1/2}$.

• He showed that $(\mathbb{R}, d_{1/2})$ may be *isometrically imbedded in a separable Hilbert space*.

In other words, he proved that there exist a distance preserving mapping (isometry)

$$j: (\mathbb{R}, d_{1/2}) \rightarrow (\ell_2, \| \cdot \|_{\ell_2})$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space $(\mathbb{R}, |\cdot|)$, Wilson considered the function $f(t) = t^{1/2}$. Denote $d_{1/2} := f(|\cdot|) \rightsquigarrow d_{1/2}(x, y) = |x - y|^{1/2}$.

• He showed that $(\mathbb{R}, d_{1/2})$ may be *isometrically imbedded in a separable Hilbert space*.

In other words, he proved that there exist a distance preserving mapping (isometry)

$$j: (\mathbb{R}, d_{1/2}) \rightarrow (\ell_2, \| \cdot \|_{\ell_2})$$

That is,

$$||j(x) - j(y)||_{\ell_2} = d_{1/2}(x, y) = |x - y|^{1/2}, \ \forall x, y \in \mathbb{R}.$$

Metric spaces arising from Euclidean spaces by a change of metric: some history

I. Schoenberg and J. von Neumann, *Fourier integrals and metric geometry*, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941), pp. 226-251.

Metric spaces arising from Euclidean spaces by a change of metric: some history

I. Schoenberg and J. von Neumann, *Fourier integrals and metric geometry*, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941), pp. 226-251.

They characterized those function f for which the metric space $(\mathbb{R}, f(|\cdot|))$ can be isometrically imbedded in a Hilbert space.

Metric spaces arising from Euclidean spaces by a change of metric: some history

I. Schoenberg and J. von Neumann, *Fourier integrals and metric geometry*, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941), pp. 226-251.

They characterized those function f for which the metric space $(\mathbb{R}, f(|\cdot|))$ can be isometrically imbedded in a Hilbert space.

They proved that, for $0 < \alpha < 1$, $f(t) = t^{\alpha}$ becomes a suitable metric transformation.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Metric spaces arising from Euclidean spaces by a change of metric: some history

What happens for the *n*-dimensional real space \mathbb{R}^n ?

Metric spaces arising from Euclidean spaces by a change of metric: some history

What happens for the *n*-dimensional real space \mathbb{R}^n ? Is the metric space (\mathbb{R}^n, d_α) isometrically imbeddable in ℓ_2 , where $d_\alpha(x, y) = ||x - y||^\alpha$?

Metric spaces arising from Euclidean spaces by a change of metric: some history

What happens for the *n*-dimensional real space \mathbb{R}^n ?

Is the metric space (\mathbb{R}^n, d_α) isometrically imbeddable in ℓ_2 , where $d_\alpha(x, y) = ||x - y||^{\alpha}$?

I. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. 38 (1937), pp. 787-793.

Theorem (Schoenberg)

For $0 < \alpha < 1$, the metric space (\mathbb{R}^n, d_α) is imbeddable in ℓ_2 .

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number *r* and a distance preserving mapping

$$j: (K, d_{\alpha}) \rightarrow (rS_{\ell_2}, \| \cdot \|_{\ell_2})$$

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number *r* and a distance preserving mapping

$$j: (K, d_{\alpha}) \rightarrow (rS_{\ell_2}, \| \cdot \|_{\ell_2})$$

Note that $||j(x)||_{\ell_2} = r, \forall x \in K$.

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number *r* and a distance preserving mapping

$$j: (K, d_{\alpha}) \rightarrow (rS_{\ell_2}, \| \cdot \|_{\ell_2})$$

Note that $||j(x)||_{\ell_2} = r, \forall x \in K.$

It is natural to define,

 $\rho_{\alpha}(K) := \inf r$

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number *r* and a distance preserving mapping

$$j: (K, d_{\alpha}) \rightarrow (rS_{\ell_2}, \| \cdot \|_{\ell_2})$$

Note that $||j(x)||_{\ell_2} = r, \forall x \in K.$

It is natural to define,

 $\rho_{\alpha}(K) := \inf r \rightsquigarrow$ least possible radius (α -Schoenberg's radii of K)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A connection with another area

All these results can be framed within a vast area called "metric geometry".

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

A connection with another area

All these results can be framed within a vast area called "metric geometry".

Link

Metric Geometry \leftrightarrow Potential Theory

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ be a signed Borel measure supported on *K* of total mass one (i.e., $\mu(K) = 1$.)

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ be a signed Borel measure supported on *K* of total mass one (i.e., $\mu(K) = 1$.)

For a real number p (for us, 0), we define

$$I_p(\mu; K) := \int_K \int_K \|x - y\|^p d\mu(x) d\mu(y)$$

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ be a signed Borel measure supported on *K* of total mass one (i.e., $\mu(K) = 1$.)

For a real number p (for us, 0), we define

$$I_p(\mu; K) := \int_K \int_K \|x - y\|^p d\mu(x) d\mu(y) \rightsquigarrow \text{ p-energy integral given by } \mu.$$

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ be a signed Borel measure supported on *K* of total mass one (i.e., $\mu(K) = 1$.)

For a real number p (for us, 0), we define

$$I_p(\mu; K) := \int_K \int_K \|x - y\|^p d\mu(x) d\mu(y) \rightsquigarrow \text{ p-energy integral given by } \mu.$$

And define,

$$M_p(K) := \sup_{\mu} I_p(\mu; K)$$

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ be a signed Borel measure supported on *K* of total mass one (i.e., $\mu(K) = 1$.)

For a real number p (for us, 0), we define

$$I_p(\mu; K) := \int_K \int_K \|x - y\|^p d\mu(x) d\mu(y) \rightsquigarrow \text{ p-energy integral given by } \mu.$$

And define,

$$M_p(K) := \sup_{\mu} I_p(\mu; K) \rightsquigarrow \text{ p-maximal energy of } K.$$

The connection!

R. Alexander and K.B. Stolarsky, *Extremal problems of distance geometry related to energy integrals*. Trans. Am. Math. Soc. 193 (1974), pp. 1-31.

The connection!

R. Alexander and K.B. Stolarsky, *Extremal problems of distance geometry related to energy integrals*. Trans. Am. Math. Soc. 193 (1974), pp. 1-31.

Theorem (Alexander-Stolarsky)

Let $K \subset \mathbb{R}^n$ be a compact set. Then,

$$\rho_{\alpha}(K) = \sqrt{\frac{M_{2\alpha}(K)}{2}}$$

The connection!

R. Alexander and K.B. Stolarsky, *Extremal problems of distance geometry related to energy integrals*. Trans. Am. Math. Soc. 193 (1974), pp. 1-31.

Theorem (Alexander-Stolarsky)

Let $K \subset \mathbb{R}^n$ be a compact set. Then,

$$\rho_{\alpha}(K) = \sqrt{\frac{M_{2\alpha}(K)}{2}}$$

We will be focused on computing the value of $M_{2\alpha}(K)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Some results...

Denote by B_n the unit ball in \mathbb{R}^n .

• $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. '74)

Some results...

Denote by B_n the unit ball in \mathbb{R}^n .

- $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. '74)
- $M_1(B_3) = 2$ (Alexander, Proc. AMS. '77)

Some results...

Denote by B_n the unit ball in \mathbb{R}^n .

- $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. '74)
- $M_1(B_3) = 2$ (Alexander, Proc. AMS. '77)
- $M_1(B_n) = ???$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Some results...

Denote by B_n the unit ball in \mathbb{R}^n .

- $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. '74)
- $M_1(B_3) = 2$ (Alexander, Proc. AMS. '77)
- $M_1(B_n) = ??? \rightsquigarrow$ remained unknown for a very long time.

A. Hinrichs, P. Nickolas, R. Wolf, *A note on the metric geometry of the unit ball*, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$M_1(B_n) = \frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}.$$
A. Hinrichs, P. Nickolas, R. Wolf, *A note on the metric geometry of the unit ball*, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$M_1(B_n) = \frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}.$$

Question

• What is the value of $M_p(B_n)$, for 0 ?

A. Hinrichs, P. Nickolas, R. Wolf, *A note on the metric geometry of the unit ball*, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$M_1(B_n) = \frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}.$$

- What is the value of $M_p(B_n)$, for 0 ?
- What is the value of M_p(K) for other type of convex bodies K t's (e.g., an ellipsoid or the unit ball of lⁿ_q?)

A. Hinrichs, P. Nickolas, R. Wolf, *A note on the metric geometry of the unit ball*, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$M_1(B_n) = \frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}.$$

- What is the value of $M_p(B_n)$, for 0 ?
- What is the value of M_p(K) for other type of convex bodies K t's (e.g., an ellipsoid or the unit ball of lⁿ_q?)

• Does the number
$$\frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}$$
 look familiar to you?

A. Hinrichs, P. Nickolas, R. Wolf, *A note on the metric geometry of the unit ball*, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$M_1(B_n) = \frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}.$$

- What is the value of $M_p(B_n)$, for 0 ?
- What is the value of M_p(K) for other type of convex bodies K t's (e.g., an ellipsoid or the unit ball of lⁿ_q?)

• Does the number
$$\frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}$$
 look familiar to you?

A. Hinrichs, P. Nickolas, R. Wolf, *A note on the metric geometry of the unit ball*, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$M_1(B_n) = \frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}.$$

- What is the value of $M_p(B_n)$, for 0 ?
- What is the value of M_p(K) for other type of convex bodies K t's (e.g., an ellipsoid or the unit ball of lⁿ_q?)

• Does the number
$$\frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}$$
 look familiar to you?

The number
$$\frac{\pi^{1/2}\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}$$
 is exactly $\pi_1(id:\ell_2^n\to\ell_2^n)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Theorem (Carando, G., Pinasco: Int Math Res Notices)

$$M_p(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} M_p([-1,1])$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Theorem (Carando, G., Pinasco: Int Math Res Notices)

$$M_p(B_n) = \frac{\pi^{1/2} \Gamma(\frac{n+p}{2})}{\Gamma(\frac{p+1}{2})\Gamma(\frac{n}{2})} M_p([-1,1])$$

= $\pi_p(id: \ell_2^n \to \ell_2^n)^p M_p([-1,1])$

Theorem (Carando, G., Pinasco: Int Math Res Notices)

$$M_p(B_n) = \frac{\pi^{1/2} \Gamma(\frac{n+p}{2})}{\Gamma(\frac{p+1}{2}) \Gamma(\frac{n}{2})} M_p([-1,1])$$

= $\pi_p(id: \ell_2^n \to \ell_2^n)^p M_p([-1,1])$

Using $\lim_{m\to\infty} \frac{\Gamma(m+c)}{\Gamma(m)m^c} = 1$, and the previous result we get:

Corollary

$$\rho_{\alpha}(B_n) \asymp n^{\frac{\alpha}{2}}.$$

Theorem (Carando, G., Pinasco: Int Math Res Notices)

$$M_p(B_n) = \frac{\pi^{1/2} \Gamma(\frac{n+p}{2})}{\Gamma(\frac{p+1}{2})\Gamma(\frac{n}{2})} M_p([-1,1])$$

= $\pi_p(id: \ell_2^n \to \ell_2^n)^p M_p([-1,1])$

Using $\lim_{m\to\infty} \frac{\Gamma(m+c)}{\Gamma(m)m^c} = 1$, and the previous result we get:

Corollary

$$\rho_{\alpha}(B_n) \asymp n^{\frac{\alpha}{2}}.$$

In the case where the convex set is an ellipsoid \mathcal{E} ?

$$M_p(\mathcal{E}) = M_p(T(B_n)) = \pi_p(T: \ell_2^n \to \ell_2^n)^p M_p([-1, 1])$$

How is the *p*-summing norm related with this problem?

How is the *p*-summing norm related with this problem?

Lemma

For every $x \in \mathbb{R}^n$ *, we have*

$$\|Tx\|^p = \pi_p(T:\ell_2^n o \ell_2^n)^p \int_{S^{n-1}} |\langle x,t
angle|^p d
u(t),$$

where ν is a probability measure on the unit sphere S^{n-1} .

How is the *p*-summing norm related with this problem?

Lemma

For every $x \in \mathbb{R}^n$ *, we have*

$$\|Tx\|^p = \pi_p(T:\ell_2^n \to \ell_2^n)^p \int_{S^{n-1}} |\langle x,t\rangle|^p d\nu(t),$$

where ν is a probability measure on the unit sphere S^{n-1} .

If T is the identity...

$$\|x\|^p = \pi_p(id:\ell_2^n \to \ell_2^n)^p \int_{S^{n-1}} |\langle x,t\rangle|^p d\lambda(t),$$

where λ is just the normalized Lebesgue surface measure on the sphere S^{n-1} .

Upper bound: sketch

$$I_p(\mu; B_n) := \int_{B_n} \int_{B_n} ||x - y||^p d\mu(x) d\mu(y)$$

Upper bound: sketch

$$I_p(\mu; B_n) := \int_{B_n} \int_{B_n} ||x - y||^p d\mu(x) d\mu(y)$$

=
$$\int_{B_n} \int_{B_n} \pi_p (id_{\ell_2^n})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y)$$

Upper bound: sketch

$$\begin{split} I_{p}(\mu; B_{n}) &:= \int_{B_{n}} \int_{B_{n}} \|x - y\|^{p} d\mu(x) d\mu(y) \\ &= \int_{B_{n}} \int_{B_{n}} \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} |\langle x - y, t \rangle|^{p} d\lambda(t) d\mu(x) d\mu(y) \\ &= \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} \left[\int_{B_{n}} \int_{B_{n}} |\langle x - y, t \rangle|^{p} d\mu(x) d\mu(y) \right] d\lambda(t) \end{split}$$

Upper bound: sketch

$$\begin{split} I_p(\mu; B_n) &:= \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y) \\ &= \int_{B_n} \int_{B_n} \pi_p (id_{\ell_2^n})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y) \\ &= \pi_p (id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p d\mu(x) d\mu(y) \right] d\lambda(t) \end{split}$$

Upper bound: sketch

$$\begin{split} I_p(\mu; B_n) &:= \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y) \\ &= \int_{B_n} \int_{B_n} \pi_p (id_{\ell_2^n})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y) \\ &= \pi_p (id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p d\mu(x) d\mu(y) \right] d\lambda(t) \end{split}$$

Upper bound: sketch

$$\begin{split} I_{p}(\mu;B_{n}) &:= \int_{B_{n}} \int_{B_{n}} \|x-y\|^{p} d\mu(x) d\mu(y) \\ &= \int_{B_{n}} \int_{B_{n}} \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} |\langle x-y,t\rangle|^{p} d\lambda(t) d\mu(x) d\mu(y) \\ &= \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} \left[\int_{B_{n}} \int_{B_{n}} |\langle x-y,t\rangle|^{p} d\mu(x) d\mu(y) \right] d\lambda(t) \\ &= \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} \left[\int_{-1}^{1} \int_{-1}^{1} |u-v|^{p} d\mu_{t}(u) d\mu_{t}(v) \right] d\lambda(t) \end{split}$$

Upper bound: sketch

$$\begin{split} I_{p}(\mu;B_{n}) &:= \int_{B_{n}} \int_{B_{n}} \|x-y\|^{p} d\mu(x) d\mu(y) \\ &= \int_{B_{n}} \int_{B_{n}} \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} |\langle x-y,t\rangle|^{p} d\lambda(t) d\mu(x) d\mu(y) \\ &= \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} \left[\int_{B_{n}} \int_{B_{n}} |\langle x-y,t\rangle|^{p} d\mu(x) d\mu(y) \right] d\lambda(t) \\ &= \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} \left[\int_{-1}^{1} \int_{-1}^{1} |u-v|^{p} d\mu_{t}(u) d\mu_{t}(v) \right] d\lambda(t) \\ &\leq \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} M_{p} ([-1,1]) d\lambda(t) \end{split}$$

Upper bound: sketch

$$\begin{split} I_{p}(\mu; B_{n}) &:= \int_{B_{n}} \int_{B_{n}} ||x - y||^{p} d\mu(x) d\mu(y) \\ &= \int_{B_{n}} \int_{B_{n}} \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} |\langle x - y, t \rangle|^{p} d\lambda(t) d\mu(x) d\mu(y) \\ &= \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} \left[\int_{B_{n}} \int_{B_{n}} |\langle x - y, t \rangle|^{p} d\mu(x) d\mu(y) \right] d\lambda(t) \\ &= \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} \left[\int_{-1}^{1} \int_{-1}^{1} |u - v|^{p} d\mu_{t}(u) d\mu_{t}(v) \right] d\lambda(t) \\ &\leq \pi_{p} (id_{\ell_{2}^{n}})^{p} \int_{S^{n-1}} M_{p} ([-1, 1]) d\lambda(t) \\ &= \pi_{p} (id_{\ell_{2}^{n}})^{p} M_{p} ([-1, 1]) \end{split}$$

How to get equality?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

$M_p(B_n) = \pi_p(id_{\ell_2^n})^p M_p([-1,1])$

How to get equality? Recall that for any μ ,

$$I_p(\mu; B_n) = \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{-1}^1 \int_{-1}^1 |u - v|^p d\mu_t(u) d\mu_t(v) \right] d\lambda(t)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

$M_p(B_n) = \pi_p(id_{\ell_2^n})^p M_p([-1,1])$

How to get equality? Recall that for any μ ,

$$I_p(\mu; B_n) = \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{-1}^1 \int_{-1}^1 |u - v|^p d\mu_t(u) d\mu_t(v) \right] d\lambda(t)$$

We found a sequence $(\mu^k)_{k \in \mathbb{N}}$ of signed measures of total mass one B_n such that

$$\int_{-1}^{1} \int_{-1}^{1} |u - v|^{p} d\mu_{t}^{k}(u) d\mu_{t}^{k}(v) \rightrightarrows M_{p}([-1, 1]).$$

$M_p(B_n) = \pi_p(id_{\ell_2^n})^p M_p([-1,1])$

How to get equality? Recall that for any μ ,

$$I_p(\mu; B_n) = \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{-1}^1 \int_{-1}^1 |u - v|^p d\mu_t(u) d\mu_t(v) \right] d\lambda(t)$$

We found a sequence $(\mu^k)_{k \in \mathbb{N}}$ of signed measures of total mass one B_n such that

$$\int_{-1}^{1} \int_{-1}^{1} |u - v|^{p} d\mu_{t}^{k}(u) d\mu_{t}^{k}(v) \Longrightarrow M_{p}([-1, 1]).$$

Therefore, $M_p(B_n) \ge I_p(\mu_k; B_n) \to \pi_p(id_{\ell_2^n})^p M_p([-1, 1]).$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Bounds for other convex bodies

Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then *K* is just the unit ball of an *n*-dimensional Banach space $(E, \|\cdot\|_E)$

Bounds for other convex bodies

Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then *K* is just the unit ball of an *n*-dimensional Banach space $(E, \|\cdot\|_E) \rightsquigarrow \text{i.e.}, K = B_E$.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Bounds for other convex bodies

Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then K is just the unit ball of an *n*-dimensional Banach space $(E, \|\cdot\|_E) \rightsquigarrow \text{i.e.}, K = B_E$.

Question

How can we estimate the value of $\rho_{\alpha}(B_E)$, $0 < \alpha < 1$?

Bounds for other convex bodies

Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then *K* is just the unit ball of an *n*-dimensional Banach space $(E, \|\cdot\|_E) \rightsquigarrow \text{i.e.}, K = B_E$.

Question

How can we estimate the value of $\rho_{\alpha}(B_E)$, $0 < \alpha < 1$? Or, equivalently, how can we compute $M_p(B_E)$, 0 ?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Theorem

(General upper bound)

$$M_p(B_E) \leq M_p([-1,1]) rac{\pi^{1/2} \Gamma(rac{n+p}{2})}{\Gamma(rac{p+1}{2}) \Gamma(rac{n}{2})} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Theorem

(General upper bound)

$$M_p(B_E) \leq M_p([-1,1]) rac{\pi^{1/2} \ \Gamma(rac{n+p}{2})}{\Gamma(rac{p+1}{2}) \Gamma(rac{n}{2})} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t).$$

This bound is expressed in terms of the mean width of B_E , and is good enough in many cases!

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Theorem

(General upper bound)

$$M_p(B_E) \leq M_p([-1,1]) rac{\pi^{1/2} \ \Gamma(rac{n+p}{2})}{\Gamma(rac{p+1}{2}) \Gamma(rac{n}{2})} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t).$$

This bound is expressed in terms of the mean width of B_E , and is good enough in many cases!

Theorem (Carando, G., Pinasco) Let $1 < q \le 2$ then $M_p(B_{\ell_q^n}) \asymp n^{\frac{p}{q'}}$. In particular, $\rho_{\alpha}(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}$.

Theorem

(General upper bound)

$$M_p(B_E) \leq M_p([-1,1]) rac{\pi^{1/2} \ \Gamma(rac{n+p}{2})}{\Gamma(rac{p+1}{2}) \Gamma(rac{n}{2})} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t).$$

This bound is expressed in terms of the mean width of B_E , and is good enough in many cases!

Theorem (Carando, G., Pinasco) Let $1 < q \le 2$ then $M_p(B_{\ell_q^n}) \asymp n^{\frac{p}{q'}}$. In particular, $\rho_{\alpha}(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}$.

Remark:

• Upper bounds were given using the previous result.

Theorem

(General upper bound)

$$M_p(B_E) \leq M_p([-1,1]) rac{\pi^{1/2} \ \Gamma(rac{n+p}{2})}{\Gamma(rac{p+1}{2}) \Gamma(rac{n}{2})} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t).$$

This bound is expressed in terms of the mean width of B_E , and is good enough in many cases!

Theorem (Carando, G., Pinasco) Let $1 < q \le 2$ then $M_p(B_{\ell_q^n}) \asymp n^{\frac{p}{q'}}$. In particular, $\rho_{\alpha}(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}$.

Remark:

- Upper bounds were given using the previous result.
- For the lower bound we use $n^{(q-2)/2q} B_{\ell_2^n} \subset B_{\ell_q^n}$ and the fact that $M_p(\cdot)$ is monotone function (under inclusion).

Theorem

(General upper bound)

$$M_p(B_E) \leq M_p([-1,1]) rac{\pi^{1/2} \ \Gamma(rac{n+p}{2})}{\Gamma(rac{p+1}{2}) \Gamma(rac{n}{2})} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t).$$

This bound is expressed in terms of the mean width of B_E , and is good enough in many cases!

Theorem (Carando, G., Pinasco) Let $1 < q \le 2$ then $M_p(B_{\ell_q^n}) \asymp n^{\frac{p}{q'}}$. In particular, $\rho_{\alpha}(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}$.

Remark:

- Upper bounds were given using the previous result.
- For the lower bound we use $n^{(q-2)/2q} B_{\ell_2^n} \subset B_{\ell_q^n}$ and the fact that $M_p(\cdot)$ is monotone function (under inclusion).

Several open questions

• What is the asymptotic behavior of $\rho_{\alpha}(B_{\ell_q^n})$, for $2 \le q \le \infty$ or q = 1?

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Several open questions

- What is the asymptotic behavior of $\rho_{\alpha}(B_{\ell_q^n})$, for $2 \le q \le \infty$ or q = 1?
- Is there a closed formula for $M_p([-1, 1])$?
- R. Alexander, K.B. Stolarsky, *Extremal problems of distance geometry related to energy integrals*. Trans. Am. Math. Soc. 193 (1974), pp. 1-31.
- D. Carando, D. Galicer, D. Pinasco, *Energy Integrals and Metric Embedding Theory*, Int Math Res Notices, to appear.
- A. Hinrichs, P. Nickolas, R. Wolf, *A note on the metric geometry of the unit ball*, Math. Z. 268 (2011), pp. 887-896.
- I. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. 38 (1937), pp. 787-793.
- J. von Neumann and I. Schoenberg, *Fourier integrals and metric geometry*, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941), pp. 226-251.
- W. A. Wilson, On certain types of continuous transformations of metric spaces, Amer. J. of Math., Vol. 57 (1935), pp. 62-68.