Energy integrals, metric embeddings and absolutely summing operators

Daniel Galicer ${ }^{1}$
Joint work with Daniel Carando and Damián Pinasco
${ }^{1}$ Universidad de Buenos Aires - CONICET;
University of Warwick - June 2015

Metric spaces arising from Euclidean spaces by a change of metric: some history

W. A. WILSON, On certain types of continuous transformations of metric spaces, Amer. J. of Math., Vol. 57 (1935), pp. 62-68.
Metric spaces arising from Euclidean spaces by a change of metric: some history

\square W. A. WILSON, On certain types of continuous transformations of metric spaces, Amer. J. of Math., Vol. 57 (1935), pp. 62-68.

Wilson investigated certain properties of those metric spaces which arise from a metric space by taking as its new metric a suitable (one variable) function of the old one.

Metric spaces arising from Euclidean spaces by a change of metric: some history

\square W. A. WILSON, On certain types of continuous transformations of metric spaces, Amer. J. of Math., Vol. 57 (1935), pp. 62-68.

Wilson investigated certain properties of those metric spaces which arise from a metric space by taking as its new metric a suitable (one variable) function of the old one.

$$
(X, d) \stackrel{f}{\rightsquigarrow}(X, f(d)), \text { where } f(d)(x, y):=f(d(x, y)) .
$$

Metric spaces arising from Euclidean spaces by a change of metric: some history

Metric spaces arising from Euclidean spaces by a change of

 metric: some historyFor the metric space $(\mathbb{R},|\cdot|)$, Wilson considered the function $f(t)=t^{1 / 2}$.

Metric spaces arising from Euclidean spaces by a change of

 metric: some historyFor the metric space $(\mathbb{R},|\cdot|)$, Wilson considered the function $f(t)=t^{1 / 2}$.
Denote $d_{1 / 2}:=f(|\cdot|) \rightsquigarrow d_{1 / 2}(x, y)=|x-y|^{1 / 2}$.

Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space $(\mathbb{R},|\cdot|)$, Wilson considered the function $f(t)=t^{1 / 2}$.
Denote $d_{1 / 2}:=f(|\cdot|) \rightsquigarrow d_{1 / 2}(x, y)=|x-y|^{1 / 2}$.

- He showed that $\left(\mathbb{R}, d_{1 / 2}\right)$ may be isometrically imbedded in a separable Hilbert space.

Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space $(\mathbb{R},|\cdot|)$, Wilson considered the function $f(t)=t^{1 / 2}$.
Denote $d_{1 / 2}:=f(|\cdot|) \rightsquigarrow d_{1 / 2}(x, y)=|x-y|^{1 / 2}$.

- He showed that $\left(\mathbb{R}, d_{1 / 2}\right)$ may be isometrically imbedded in a separable Hilbert space.

In other words, he proved that there exist a distance preserving mapping (isometry)

$$
j:\left(\mathbb{R}, d_{1 / 2}\right) \rightarrow\left(\ell_{2},\|\cdot\|_{\ell_{2}}\right)
$$

Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space $(\mathbb{R},|\cdot|)$, Wilson considered the function $f(t)=t^{1 / 2}$.
Denote $d_{1 / 2}:=f(|\cdot|) \rightsquigarrow d_{1 / 2}(x, y)=|x-y|^{1 / 2}$.

- He showed that $\left(\mathbb{R}, d_{1 / 2}\right)$ may be isometrically imbedded in a separable Hilbert space.

In other words, he proved that there exist a distance preserving mapping (isometry)

$$
j:\left(\mathbb{R}, d_{1 / 2}\right) \rightarrow\left(\ell_{2},\|\cdot\|_{\ell_{2}}\right)
$$

That is,

$$
\|j(x)-j(y)\|_{\ell_{2}}=d_{1 / 2}(x, y)=|x-y|^{1 / 2}, \forall x, y \in \mathbb{R}
$$

Metric spaces arising from Euclidean spaces by a change of metric: some history

I. Schoenberg and J. von Neumann, Fourier integrals and metric geometry, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941), pp. 226-251.
Metric spaces arising from Euclidean spaces by a change of metric: some history

宣
I. Schoenberg and J. von Neumann, Fourier integrals and metric geometry, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941), pp. 226-251.

They characterized those function f for which the metric space $(\mathbb{R}, f(|\cdot|))$ can be isometrically imbedded in a Hilbert space.

Metric spaces arising from Euclidean spaces by a change of metric: some history

I. Schoenberg and J. von Neumann, Fourier integrals and metric geometry, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941), pp. 226-251.They characterized those function f for which the metric space $(\mathbb{R}, f(|\cdot|))$ can be isometrically imbedded in a Hilbert space.

They proved that, for $0<\alpha<1, f(t)=t^{\alpha}$ becomes a suitable metric transformation.

Metric spaces arising from Euclidean spaces by a change of metric: some history

What happens for the n-dimensional real space \mathbb{R}^{n} ?

Metric spaces arising from Euclidean spaces by a change of metric: some history

What happens for the n-dimensional real space \mathbb{R}^{n} ?
Is the metric space $\left(\mathbb{R}^{n}, d_{\alpha}\right)$ isometrically imbeddable in ℓ_{2}, where $d_{\alpha}(x, y)=\|x-y\|^{\alpha}$?

Metric spaces arising from Euclidean spaces by a change of metric: some history

What happens for the n-dimensional real space \mathbb{R}^{n} ?
Is the metric space $\left(\mathbb{R}^{n}, d_{\alpha}\right)$ isometrically imbeddable in ℓ_{2}, where $d_{\alpha}(x, y)=\|x-y\|^{\alpha}$?
I. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. 38 (1937), pp. 787-793.

Theorem (Schoenberg)

For $0<\alpha<1$, the metric space $\left(\mathbb{R}^{n}, d_{\alpha}\right)$ is imbeddable in ℓ_{2}.

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^{n}$ the metric space $\left(K, d_{\alpha}\right)$ may be imbeddable in the surface of a Hilbert sphere.

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^{n}$ the metric space $\left(K, d_{\alpha}\right)$ may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^{n}$, there exist a positive number r and a distance preserving mapping

$$
j:\left(K, d_{\alpha}\right) \rightarrow\left(r S_{\ell_{2}},\|\cdot\|_{\ell_{2}}\right)
$$

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^{n}$ the metric space $\left(K, d_{\alpha}\right)$ may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^{n}$, there exist a positive number r and a distance preserving mapping

$$
j:\left(K, d_{\alpha}\right) \rightarrow\left(r S_{\ell_{2}},\|\cdot\|_{\ell_{2}}\right)
$$

Note that $\|j(x)\|_{\ell_{2}}=r, \forall x \in K$.

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^{n}$ the metric space $\left(K, d_{\alpha}\right)$ may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^{n}$, there exist a positive number r and a distance preserving mapping

$$
j:\left(K, d_{\alpha}\right) \rightarrow\left(r S_{\ell_{2}},\|\cdot\|_{\ell_{2}}\right)
$$

Note that $\|j(x)\|_{\ell_{2}}=r, \forall x \in K$.

It is natural to define,

$$
\rho_{\alpha}(K):=\inf r
$$

Metric spaces arising from Euclidean spaces by a change of metric: some history

Moreover, by combining Schoenberg's proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^{n}$ the metric space $\left(K, d_{\alpha}\right)$ may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^{n}$, there exist a positive number r and a distance preserving mapping

$$
j:\left(K, d_{\alpha}\right) \rightarrow\left(r S_{\ell_{2}},\|\cdot\|_{\ell_{2}}\right)
$$

Note that $\|j(x)\|_{\ell_{2}}=r, \forall x \in K$.

It is natural to define,

$$
\rho_{\alpha}(K):=\inf r \rightsquigarrow \text { least possible radius (} \alpha \text {-Schoenberg's radii of } K \text {) }
$$

A connection with another area

All these results can be framed within a vast area called "metric geometry".

A connection with another area

All these results can be framed within a vast area called "metric geometry".

Link
Metric Geometry \leftrightarrow Potential Theory

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^{n}$ be a compact set and μ be a signed Borel measure supported on K of total mass one (i.e., $\mu(K)=1$.)

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^{n}$ be a compact set and μ be a signed Borel measure supported on K of total mass one (i.e., $\mu(K)=1$.)

For a real number p (for us, $0<p<2$), we define

$$
I_{p}(\mu ; K):=\int_{K} \int_{K}\|x-y\|^{p} d \mu(x) d \mu(y)
$$

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^{n}$ be a compact set and μ be a signed Borel measure supported on K of total mass one (i.e., $\mu(K)=1$.)

For a real number p (for us, $0<p<2$), we define
$I_{p}(\mu ; K):=\int_{K} \int_{K}\|x-y\|^{p} d \mu(x) d \mu(y) \rightsquigarrow$ p-energy integral given by μ.

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^{n}$ be a compact set and μ be a signed Borel measure supported on K of total mass one (i.e., $\mu(K)=1$.)

For a real number p (for us, $0<p<2$), we define
$I_{p}(\mu ; K):=\int_{K} \int_{K}\|x-y\|^{p} d \mu(x) d \mu(y) \rightsquigarrow$ p-energy integral given by μ.

And define,

$$
M_{p}(K):=\sup _{\mu} I_{p}(\mu ; K)
$$

Energy Integrals: some definitions

Let $K \subset \mathbb{R}^{n}$ be a compact set and μ be a signed Borel measure supported on K of total mass one (i.e., $\mu(K)=1$.)

For a real number p (for us, $0<p<2$), we define
$I_{p}(\mu ; K):=\int_{K} \int_{K}\|x-y\|^{p} d \mu(x) d \mu(y) \rightsquigarrow$ p-energy integral given by μ.

And define,

$$
M_{p}(K):=\sup I_{p}(\mu ; K) \rightsquigarrow \mathrm{p} \text {-maximal energy of } K .
$$

The connection!

娄
R. Alexander and K.B. Stolarsky, Extremal problems of distance geometry related to energy integrals. Trans. Am. Math. Soc. 193 (1974), pp. 1-31.

The connection!

显
R. Alexander and K.B. Stolarsky, Extremal problems of distance geometry related to energy integrals. Trans. Am. Math. Soc. 193 (1974), pp. 1-31.

Theorem (Alexander-Stolarsky)
Let $K \subset \mathbb{R}^{n}$ be a compact set. Then,

$$
\rho_{\alpha}(K)=\sqrt{\frac{M_{2 \alpha}(K)}{2}}
$$

The connection!

R
R. Alexander and K.B. Stolarsky, Extremal problems of distance geometry related to energy integrals. Trans. Am. Math. Soc. 193 (1974), pp. 1-31.

Theorem (Alexander-Stolarsky)
Let $K \subset \mathbb{R}^{n}$ be a compact set. Then,

$$
\rho_{\alpha}(K)=\sqrt{\frac{M_{2 \alpha}(K)}{2}}
$$

We will be focused on computing the value of $M_{2 \alpha}(K)$.

Some results...

Denote by B_{n} the unit ball in \mathbb{R}^{n}.

- $M_{1}\left(B_{1}\right)=M_{1}([-1,1])=1$ (Alexander-Stolarsky, Trans. AMS. '74)

Some results...

Denote by B_{n} the unit ball in \mathbb{R}^{n}.

- $M_{1}\left(B_{1}\right)=M_{1}([-1,1])=1$ (Alexander-Stolarsky, Trans. AMS. '74)
- $M_{1}\left(B_{3}\right)=2$ (Alexander, Proc. AMS. '77)

Some results...

Denote by B_{n} the unit ball in \mathbb{R}^{n}.

- $M_{1}\left(B_{1}\right)=M_{1}([-1,1])=1$ (Alexander-Stolarsky, Trans. AMS. '74)
- $M_{1}\left(B_{3}\right)=2$ (Alexander, Proc. AMS. '77)
- $M_{1}\left(B_{n}\right)=? ? ?$

Some results...

Denote by B_{n} the unit ball in \mathbb{R}^{n}.

- $M_{1}\left(B_{1}\right)=M_{1}([-1,1])=1$ (Alexander-Stolarsky, Trans. AMS. '74)
- $M_{1}\left(B_{3}\right)=2$ (Alexander, Proc. AMS. '77)
- $M_{1}\left(B_{n}\right)=$??? \rightsquigarrow remained unknown for a very long time.
(1. A. Hinrichs, P. Nickolas, R. Wolf, A note on the metric geometry of the unit ball, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$
M_{1}\left(B_{n}\right)=\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}
$$

A. Hinrichs, P. Nickolas, R. Wolf, A note on the metric geometry of the unit ball, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$
M_{1}\left(B_{n}\right)=\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}
$$

Question

- What is the value of $M_{p}\left(B_{n}\right)$, for $0<p<2$?
A. Hinrichs, P. Nickolas, R. Wolf, A note on the metric geometry of the unit ball, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$
M_{1}\left(B_{n}\right)=\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}
$$

Question

- What is the value of $M_{p}\left(B_{n}\right)$, for $0<p<2$?
- What is the value of $M_{p}(K)$ for other type of convex bodies $K t$'s (e.g., an ellipsoid or the unit ball of ℓ_{q}^{n} ?)
A. Hinrichs, P. Nickolas, R. Wolf, A note on the metric geometry of the unit ball, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$
M_{1}\left(B_{n}\right)=\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}
$$

Question

- What is the value of $M_{p}\left(B_{n}\right)$, for $0<p<2$?
- What is the value of $M_{p}(K)$ for other type of convex bodies $K t$'s (e.g., an ellipsoid or the unit ball of ℓ_{q}^{n} ?)
- Does the number $\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$ look familiar to you?
A. Hinrichs, P. Nickolas, R. Wolf, A note on the metric geometry of the unit ball, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$
M_{1}\left(B_{n}\right)=\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}
$$

Question

- What is the value of $M_{p}\left(B_{n}\right)$, for $0<p<2$?
- What is the value of $M_{p}(K)$ for other type of convex bodies $K t$'s (e.g., an ellipsoid or the unit ball of ℓ_{q}^{n} ?)
- Does the number $\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$ look familiar to you?
A. Hinrichs, P. Nickolas, R. Wolf, A note on the metric geometry of the unit ball, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

$$
M_{1}\left(B_{n}\right)=\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}
$$

Question

- What is the value of $M_{p}\left(B_{n}\right)$, for $0<p<2$?
- What is the value of $M_{p}(K)$ for other type of convex bodies $K t$'s (e.g., an ellipsoid or the unit ball of ℓ_{q}^{n} ?)
- Does the number $\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$ look familiar to you?

The number $\frac{\pi^{1 / 2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$ is exactly $\pi_{1}\left(i d: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)$.

Theorem (Carando, G., Pinasco: Int Math Res Notices)

$$
M_{p}\left(B_{n}\right)=\frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} M_{p}([-1,1])
$$

Theorem (Carando, G., Pinasco: Int Math Res Notices)

$$
\begin{aligned}
M_{p}\left(B_{n}\right) & =\frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} M_{p}([-1,1]) \\
& =\pi_{p}\left(i d: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)^{p} M_{p}([-1,1])
\end{aligned}
$$

Theorem (Carando, G., Pinasco: Int Math Res Notices)

$$
\begin{aligned}
M_{p}\left(B_{n}\right) & =\frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} M_{p}([-1,1]) \\
& =\pi_{p}\left(i d: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)^{p} M_{p}([-1,1])
\end{aligned}
$$

Using $\lim _{m \rightarrow \infty} \frac{\Gamma(m+c)}{\Gamma(m) m^{c}}=1$, and the previous result we get:
Corollary

$$
\rho_{\alpha}\left(B_{n}\right) \asymp n^{\frac{\alpha}{2}} .
$$

Theorem (Carando, G., Pinasco: Int Math Res Notices)

$$
\begin{aligned}
M_{p}\left(B_{n}\right) & =\frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} M_{p}([-1,1]) \\
& =\pi_{p}\left(i d: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)^{p} M_{p}([-1,1])
\end{aligned}
$$

Using $\lim _{m \rightarrow \infty} \frac{\Gamma(m+c)}{\Gamma(m) m^{c}}=1$, and the previous result we get:

Corollary

$$
\rho_{\alpha}\left(B_{n}\right) \asymp n^{\frac{\alpha}{2}} .
$$

In the case where the convex set is an ellipsoid \mathcal{E} ?

$$
M_{p}(\mathcal{E})=M_{p}\left(T\left(B_{n}\right)\right)=\pi_{p}\left(T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)^{p} M_{p}([-1,1])
$$

How is the p-summing norm related with this problem?

How is the p-summing norm related with this problem?

Lemma

For every $x \in \mathbb{R}^{n}$, we have

$$
\|T x\|^{p}=\pi_{p}\left(T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)^{p} \int_{S^{n-1}}|\langle x, t\rangle|^{p} d \nu(t)
$$

where ν is a probability measure on the unit sphere S^{n-1}.

How is the p-summing norm related with this problem?

Lemma

For every $x \in \mathbb{R}^{n}$, we have

$$
\|T x\|^{p}=\pi_{p}\left(T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)^{p} \int_{S^{n-1}}|\langle x, t\rangle|^{p} d \nu(t)
$$

where ν is a probability measure on the unit sphere S^{n-1}.
If T is the identity...

$$
\|x\|^{p}=\pi_{p}\left(i d: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)^{p} \int_{S^{n-1}}|\langle x, t\rangle|^{p} d \lambda(t)
$$

where λ is just the normalized Lebesgue surface measure on the sphere S^{n-1}.

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{d_{2}}\right)^{p} M_{p}([-1,1])$

Upper bound: sketch
Let μ be a signed borel measure on B_{n} of total mass one.

$$
I_{p}\left(\mu ; B_{n}\right):=\int_{B_{n}} \int_{B_{n}}\|x-y\|^{p} d \mu(x) d \mu(y)
$$

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{d_{2}^{2}}\right)^{p} M_{p}([-1,1])$

Upper bound: sketch
Let μ be a signed borel measure on B_{n} of total mass one.

$$
\begin{aligned}
I_{p}\left(\mu ; B_{n}\right) & :=\int_{B_{n}} \int_{B_{n}}\|x-y\|^{p} d \mu(x) d \mu(y) \\
& =\int_{B_{n}} \int_{B_{n}} \pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}|\langle x-y, t\rangle|^{p} d \lambda(t) d \mu(x) d \mu(y)
\end{aligned}
$$

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{d_{2}^{2}}\right)^{p} M_{p}([-1,1])$

Upper bound: sketch
Let μ be a signed borel measure on B_{n} of total mass one.

$$
\begin{aligned}
I_{p}\left(\mu ; B_{n}\right) & :=\int_{B_{n}} \int_{B_{n}}\|x-y\|^{p} d \mu(x) d \mu(y) \\
& =\int_{B_{n}} \int_{B_{n}} \pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}|\langle x-y, t\rangle|^{p} d \lambda(t) d \mu(x) d \mu(y) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{B_{n}} \int_{B_{n}}|\langle x-y, t\rangle|^{p} d \mu(x) d \mu(y)\right] d \lambda(t)
\end{aligned}
$$

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{d_{2}^{2}}\right)^{p} M_{p}([-1,1])$

Upper bound: sketch
Let μ be a signed borel measure on B_{n} of total mass one.

$$
\begin{aligned}
I_{p}\left(\mu ; B_{n}\right) & :=\int_{B_{n}} \int_{B_{n}}\|x-y\|^{p} d \mu(x) d \mu(y) \\
& =\int_{B_{n}} \int_{B_{n}} \pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}|\langle x-y, t\rangle|^{p} d \lambda(t) d \mu(x) d \mu(y) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{B_{n}} \int_{B_{n}}|\langle x-y, t\rangle|^{p} d \mu(x) d \mu(y)\right] d \lambda(t)
\end{aligned}
$$

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{d_{2}^{2}}\right)^{p} M_{p}([-1,1])$

Upper bound: sketch
Let μ be a signed borel measure on B_{n} of total mass one.

$$
\begin{aligned}
I_{p}\left(\mu ; B_{n}\right) & :=\int_{B_{n}} \int_{B_{n}}\|x-y\|^{p} d \mu(x) d \mu(y) \\
& =\int_{B_{n}} \int_{B_{n}} \pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}|\langle x-y, t\rangle|^{p} d \lambda(t) d \mu(x) d \mu(y) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{B_{n}} \int_{B_{n}}|\langle x-y, t\rangle|^{p} d \mu(x) d \mu(y)\right] d \lambda(t)
\end{aligned}
$$

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{0_{2}^{\prime}}\right)^{p} M_{p}([-1,1])$

Upper bound: sketch
Let μ be a signed borel measure on B_{n} of total mass one.

$$
\begin{aligned}
I_{p}\left(\mu ; B_{n}\right) & :=\int_{B_{n}} \int_{B_{n}}\|x-y\|^{p} d \mu(x) d \mu(y) \\
& =\int_{B_{n}} \int_{B_{n}} \pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}|\langle x-y, t\rangle|^{p} d \lambda(t) d \mu(x) d \mu(y) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{B_{n}} \int_{B_{n}}|\langle x-y, t\rangle|^{p} d \mu(x) d \mu(y)\right] d \lambda(t) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{-1}^{1} \int_{-1}^{1}|u-v|^{p} d \mu_{t}(u) d \mu_{t}(v)\right] d \lambda(t)
\end{aligned}
$$

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} M_{p}([-1,1])$

Upper bound: sketch
Let μ be a signed borel measure on B_{n} of total mass one.

$$
\begin{aligned}
I_{p}\left(\mu ; B_{n}\right) & :=\int_{B_{n}} \int_{B_{n}}\|x-y\|^{p} d \mu(x) d \mu(y) \\
& =\int_{B_{n}} \int_{B_{n}} \pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}|\langle x-y, t\rangle|^{p} d \lambda(t) d \mu(x) d \mu(y) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{B_{n}} \int_{B_{n}}|\langle x-y, t\rangle|^{p} d \mu(x) d \mu(y)\right] d \lambda(t) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{-1}^{1} \int_{-1}^{1}|u-v|^{p} d \mu_{t}(u) d \mu_{t}(v)\right] d \lambda(t) \\
& \leq \pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}} M_{p}([-1,1]) d \lambda(t)
\end{aligned}
$$

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} M_{p}([-1,1])$

Upper bound: sketch
Let μ be a signed borel measure on B_{n} of total mass one.

$$
\begin{aligned}
I_{p}\left(\mu ; B_{n}\right) & :=\int_{B_{n}} \int_{B_{n}}\|x-y\|^{p} d \mu(x) d \mu(y) \\
& =\int_{B_{n}} \int_{B_{n}} \pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}|\langle x-y, t\rangle|^{p} d \lambda(t) d \mu(x) d \mu(y) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{B_{n}} \int_{B_{n}}|\langle x-y, t\rangle|^{p} d \mu(x) d \mu(y)\right] d \lambda(t) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{-1}^{1} \int_{-1}^{1}|u-v|^{p} d \mu_{t}(u) d \mu_{t}(v)\right] d \lambda(t) \\
& \leq \pi_{p}\left(i d \ell_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}} M_{p}([-1,1]) d \lambda(t) \\
& =\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} M_{p}([-1,1])
\end{aligned}
$$

$$
M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{d_{2}}\right)^{p} M_{p}([-1,1])
$$

How to get equality?

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{d_{2}^{2}}\right)^{p} M_{p}([-1,1])$

How to get equality? Recall that for any μ,

$$
I_{p}\left(\mu ; B_{n}\right)=\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{-1}^{1} \int_{-1}^{1}|u-v|^{p} d \mu_{t}(u) d \mu_{t}(v)\right] d \lambda(t)
$$

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{d_{2}^{2}}\right)^{p} M_{p}([-1,1])$

How to get equality? Recall that for any μ,

$$
I_{p}\left(\mu ; B_{n}\right)=\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{-1}^{1} \int_{-1}^{1}|u-v|^{p} d \mu_{t}(u) d \mu_{t}(v)\right] d \lambda(t)
$$

We found a sequence $\left(\mu^{k}\right)_{k \in \mathbb{N}}$ of signed measures of total mass one B_{n} such that

$$
\int_{-1}^{1} \int_{-1}^{1}|u-v|^{p} d \mu_{t}^{k}(u) d \mu_{t}^{k}(v) \rightrightarrows M_{p}([-1,1])
$$

$M_{p}\left(B_{n}\right)=\pi_{p}\left(i d_{d_{2}^{2}}\right)^{p} M_{p}([-1,1])$

How to get equality? Recall that for any μ,

$$
I_{p}\left(\mu ; B_{n}\right)=\pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} \int_{S^{n-1}}\left[\int_{-1}^{1} \int_{-1}^{1}|u-v|^{p} d \mu_{t}(u) d \mu_{t}(v)\right] d \lambda(t)
$$

We found a sequence $\left(\mu^{k}\right)_{k \in \mathbb{N}}$ of signed measures of total mass one B_{n} such that

$$
\int_{-1}^{1} \int_{-1}^{1}|u-v|^{p} d \mu_{t}^{k}(u) d \mu_{t}^{k}(v) \rightrightarrows M_{p}([-1,1])
$$

Therefore, $M_{p}\left(B_{n}\right) \geq I_{p}\left(\mu_{k} ; B_{n}\right) \rightarrow \pi_{p}\left(i d_{\ell_{2}^{n}}\right)^{p} M_{p}([-1,1])$.

Bounds for other convex bodies

Let $K \subset \mathbb{R}^{n}$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $\left(E,\|\cdot\|_{E}\right)$

Bounds for other convex bodies

Let $K \subset \mathbb{R}^{n}$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $\left(E,\|\cdot\|_{E}\right) \rightsquigarrow$ i.e., $K=B_{E}$.

Bounds for other convex bodies

Let $K \subset \mathbb{R}^{n}$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $\left(E,\|\cdot\|_{E}\right) \rightsquigarrow$ i.e., $K=B_{E}$.

Question

How can we estimate the value of $\rho_{\alpha}\left(B_{E}\right), 0<\alpha<1$?

Bounds for other convex bodies

Let $K \subset \mathbb{R}^{n}$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $\left(E,\|\cdot\|_{E}\right) \rightsquigarrow$ i.e., $K=B_{E}$.

Question

How can we estimate the value of $\rho_{\alpha}\left(B_{E}\right), 0<\alpha<1$? Or, equivalently, how can we compute $M_{p}\left(B_{E}\right), 0<p<2$?

Theorem
(General upper bound)

$$
M_{p}\left(B_{E}\right) \leq M_{p}([-1,1]) \frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}}\|t\|_{E^{\prime}}^{p} d \lambda(t)
$$

Theorem

(General upper bound)

$$
M_{p}\left(B_{E}\right) \leq M_{p}([-1,1]) \frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}}\|t\|_{E^{\prime}}^{p} d \lambda(t)
$$

This bound is expressed in terms of the mean width of B_{E}, and is good enough in many cases!

Theorem

(General upper bound)

$$
M_{p}\left(B_{E}\right) \leq M_{p}([-1,1]) \frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}}\|t\|_{E^{\prime}}^{p} d \lambda(t)
$$

This bound is expressed in terms of the mean width of B_{E}, and is good enough in many cases!

Theorem (Carando, G., Pinasco)
Let $1<q \leq 2$ then

$$
M_{p}\left(B_{\ell_{q}^{n}}\right) \asymp n^{\frac{p}{q^{\prime}}} .
$$

In particular, $\rho_{\alpha}\left(B_{\ell_{q}^{n}}\right) \asymp n^{\frac{\alpha}{q^{\prime}}}$.

Theorem

(General upper bound)

$$
M_{p}\left(B_{E}\right) \leq M_{p}([-1,1]) \frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}}\|t\|_{E^{\prime}}^{p} d \lambda(t)
$$

This bound is expressed in terms of the mean width of B_{E}, and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let $1<q \leq 2$ then

$$
M_{p}\left(B_{\ell_{q}^{n}}\right) \asymp n^{\frac{p}{q^{\prime}}} .
$$

In particular, $\rho_{\alpha}\left(B_{\ell_{q}^{n}}\right) \asymp n^{\frac{\alpha}{q^{\prime}}}$.
Remark:

- Upper bounds were given using the previous result.

Theorem

(General upper bound)

$$
M_{p}\left(B_{E}\right) \leq M_{p}([-1,1]) \frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}}\|t\|_{E^{\prime}}^{p} d \lambda(t)
$$

This bound is expressed in terms of the mean width of B_{E}, and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let $1<q \leq 2$ then

$$
M_{p}\left(B_{\ell_{q}^{n}}\right) \asymp n^{\frac{p}{q^{\prime}}} .
$$

In particular, $\rho_{\alpha}\left(B_{q}^{n}\right) \asymp n^{\frac{\alpha}{q^{\prime}}}$.
Remark:

- Upper bounds were given using the previous result.
- For the lower bound we use $n^{(q-2) / 2 q} B_{\ell_{2}^{n}} \subset B_{\ell_{q}^{n}}$ and the fact that $M_{p}(\cdot)$ is monotone function (under inclusion).

Theorem

(General upper bound)

$$
M_{p}\left(B_{E}\right) \leq M_{p}([-1,1]) \frac{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}}\|t\|_{E^{\prime}}^{p} d \lambda(t)
$$

This bound is expressed in terms of the mean width of B_{E}, and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let $1<q \leq 2$ then

$$
M_{p}\left(B_{\ell_{q}^{n}}\right) \asymp n^{\frac{p}{q^{\prime}}} .
$$

In particular, $\rho_{\alpha}\left(B_{q}^{n}\right) \asymp n^{\frac{\alpha}{q^{\prime}}}$.
Remark:

- Upper bounds were given using the previous result.
- For the lower bound we use $n^{(q-2) / 2 q} B_{\ell_{2}^{n}} \subset B_{\ell_{q}^{n}}$ and the fact that $M_{p}(\cdot)$ is monotone function (under inclusion).

Several open questions

- What is the asymptotic behavior of $\rho_{\alpha}\left(B_{\ell_{q}^{n}}\right)$, for $2 \leq q \leq \infty$ or $q=1$?

Several open questions

- What is the asymptotic behavior of $\rho_{\alpha}\left(B_{\ell_{q}^{n}}\right)$, for $2 \leq q \leq \infty$ or $q=1$?
- Is there a closed formula for $M_{p}([-1,1])$?

圊 R. Alexander, K.B. Stolarsky, Extremal problems of distance geometry related to energy integrals. Trans. Am. Math. Soc. 193 (1974), pp. 1-31.
(i-i D. Carando, D. Galicer, D. Pinasco, Energy Integrals and Metric Embedding Theory, Int Math Res Notices, to appear.
(1. A. Hinrichs, P. Nickolas, R. Wolf, A note on the metric geometry of the unit ball, Math. Z. 268 (2011), pp. 887-896.
I. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. 38 (1937), pp. 787-793.

冨 J. von Neumann and I. Schoenberg, Fourier integrals and metric geometry, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941), pp. 226-251.
(W. A. Wilson, On certain types of continuous transformations of metric spaces, Amer. J. of Math., Vol. 57 (1935), pp. 62-68.

