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Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

W. A. WILSON, On certain types of continuous transformations
of metric spaces, Amer. J. of Math., Vol. 57 (1935), pp. 62-68.

Wilson investigated certain properties of those metric spaces which
arise from a metric space by taking as its new metric a suitable (one
variable) function of the old one.
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Metric spaces arising from Euclidean spaces by a change of
metric: some history

For the metric space (R, | · |), Wilson considered the function
f (t) = t1/2.

Denote d1/2 := f (| · |) d1/2(x, y) = |x− y|1/2.

• He showed that (R, d1/2) may be isometrically imbedded in a
separable Hilbert space.

In other words, he proved that there exist a distance preserving
mapping (isometry)

j :
(
R, d1/2

)
→
(
`2, ‖ · ‖`2

)
That is,

‖j(x)− j(y)‖`2 = d1/2(x, y) = |x− y|1/2, ∀x, y ∈ R.
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can be isometrically imbedded in a Hilbert space.

They proved that, for 0 < α < 1, f (t) = tα becomes a suitable metric
transformation.



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

I. Schoenberg and J. von Neumann, Fourier integrals and metric
geometry, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941),
pp. 226-251.

They characterized those function f for which the metric space(
R, f (| · |)

)
can be isometrically imbedded in a Hilbert space.

They proved that, for 0 < α < 1, f (t) = tα becomes a suitable metric
transformation.



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

I. Schoenberg and J. von Neumann, Fourier integrals and metric
geometry, Trans. of the Amer. Math. Soc., Vol. 50, No. 2 (1941),
pp. 226-251.

They characterized those function f for which the metric space(
R, f (| · |)

)
can be isometrically imbedded in a Hilbert space.

They proved that, for 0 < α < 1, f (t) = tα becomes a suitable metric
transformation.



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

What happens for the n-dimensional real space Rn?

Is the metric space
(
Rn, dα) isometrically imbeddable in `2, where

dα(x, y) = ‖x− y‖α ?

I. Schoenberg, On certain metric spaces arising from Euclidean
spaces by a change of metric and their imbedding in Hilbert
space, Ann. of Math. 38 (1937), pp. 787-793.

Theorem (Schoenberg)

For 0 < α < 1, the metric space
(
Rn, dα

)
is imbeddable in `2.



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

What happens for the n-dimensional real space Rn?

Is the metric space
(
Rn, dα) isometrically imbeddable in `2, where

dα(x, y) = ‖x− y‖α ?

I. Schoenberg, On certain metric spaces arising from Euclidean
spaces by a change of metric and their imbedding in Hilbert
space, Ann. of Math. 38 (1937), pp. 787-793.

Theorem (Schoenberg)

For 0 < α < 1, the metric space
(
Rn, dα

)
is imbeddable in `2.



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

What happens for the n-dimensional real space Rn?

Is the metric space
(
Rn, dα) isometrically imbeddable in `2, where

dα(x, y) = ‖x− y‖α ?

I. Schoenberg, On certain metric spaces arising from Euclidean
spaces by a change of metric and their imbedding in Hilbert
space, Ann. of Math. 38 (1937), pp. 787-793.

Theorem (Schoenberg)

For 0 < α < 1, the metric space
(
Rn, dα

)
is imbeddable in `2.



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

Moreover, by combining Schoenberg’s proof and a classic result of
Menger, we have that for every compact set K ⊂ Rn the metric space(
K, dα

)
may be imbeddable in the surface of a Hilbert sphere.

Classic result
For every compact set K ⊂ Rn, there exist a positive number r and a
distance preserving mapping

j :
(
K, dα

)
→
(
rS`2 , ‖ · ‖`2

)
Note that ‖j(x)‖`2 = r, ∀x ∈ K.

It is natural to define,

ρα(K) := inf r  least possible radius (α-Schoenberg’s radii of K)



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

Moreover, by combining Schoenberg’s proof and a classic result of
Menger, we have that for every compact set K ⊂ Rn the metric space(
K, dα

)
may be imbeddable in the surface of a Hilbert sphere.

Classic result
For every compact set K ⊂ Rn, there exist a positive number r and a
distance preserving mapping

j :
(
K, dα

)
→
(
rS`2 , ‖ · ‖`2

)

Note that ‖j(x)‖`2 = r, ∀x ∈ K.

It is natural to define,

ρα(K) := inf r  least possible radius (α-Schoenberg’s radii of K)



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

Moreover, by combining Schoenberg’s proof and a classic result of
Menger, we have that for every compact set K ⊂ Rn the metric space(
K, dα

)
may be imbeddable in the surface of a Hilbert sphere.

Classic result
For every compact set K ⊂ Rn, there exist a positive number r and a
distance preserving mapping

j :
(
K, dα

)
→
(
rS`2 , ‖ · ‖`2

)
Note that ‖j(x)‖`2 = r, ∀x ∈ K.

It is natural to define,

ρα(K) := inf r  least possible radius (α-Schoenberg’s radii of K)



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

Moreover, by combining Schoenberg’s proof and a classic result of
Menger, we have that for every compact set K ⊂ Rn the metric space(
K, dα

)
may be imbeddable in the surface of a Hilbert sphere.

Classic result
For every compact set K ⊂ Rn, there exist a positive number r and a
distance preserving mapping

j :
(
K, dα

)
→
(
rS`2 , ‖ · ‖`2

)
Note that ‖j(x)‖`2 = r, ∀x ∈ K.

It is natural to define,

ρα(K) := inf r

 least possible radius (α-Schoenberg’s radii of K)



Classic results New results

Metric spaces arising from Euclidean spaces by a change of
metric: some history

Moreover, by combining Schoenberg’s proof and a classic result of
Menger, we have that for every compact set K ⊂ Rn the metric space(
K, dα

)
may be imbeddable in the surface of a Hilbert sphere.

Classic result
For every compact set K ⊂ Rn, there exist a positive number r and a
distance preserving mapping

j :
(
K, dα

)
→
(
rS`2 , ‖ · ‖`2

)
Note that ‖j(x)‖`2 = r, ∀x ∈ K.

It is natural to define,

ρα(K) := inf r  least possible radius (α-Schoenberg’s radii of K)



Classic results New results

A connection with another area

All these results can be framed within a vast area called "metric
geometry".

Link
Metric Geometry↔ Potential Theory



Classic results New results

A connection with another area

All these results can be framed within a vast area called "metric
geometry".

Link
Metric Geometry↔ Potential Theory



Classic results New results

Energy Integrals: some definitions

Let K ⊂ Rn be a compact set and µ be a signed Borel measure
supported on K of total mass one (i.e., µ(K) = 1.)

For a real number p (for us, 0 < p < 2), we define

Ip(µ; K) :=
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K
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‖x−y‖pdµ(x)dµ(y) p-energy integral given by µ.

And define,

Mp(K) := sup
µ

Ip(µ; K) p-maximal energy of K.
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Let K ⊂ Rn be a compact set. Then,

ρα(K) =
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M2α(K)
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We will be focused on computing the value of M2α(K).
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Denote by Bn the unit ball in Rn.

M1(B1) = M1([−1, 1]) = 1 (Alexander-Stolarsky, Trans. AMS.
’74)

M1(B3) = 2 (Alexander, Proc. AMS. ’77)

M1(Bn) =??? remained unknown for a very long time.
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A. Hinrichs, P. Nickolas, R. Wolf, A note on the metric geometry
of the unit ball, Math. Z. 268 (2011), pp. 887-896.

Theorem (Hinrichs, Nickolas and Wolf)

M1(Bn) =
π1/2Γ(n+1

2 )

Γ(n
2)

.

Question

What is the value of Mp(Bn), for 0 < p < 2?

What is the value of Mp(K) for other type of convex bodies K t’s
(e.g., an ellipsoid or the unit ball of `n

q?)

Does the number π1/2Γ( n+1
2 )

Γ( n
2 ) look familiar to you?

The number π
1/2Γ( n+1

2 )

Γ( n
2 ) is exactly π1(id : `n

2 → `n
2).
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Theorem (Carando, G., Pinasco: Int Math Res Notices)

Mp(Bn) =
π1/2 Γ

( n+p
2

)
Γ
(p+1

2

)
Γ
(n

2

) Mp([−1, 1])

= πp(id : `n
2 → `n

2)p Mp([−1, 1])

Using limm→∞
Γ(m+c)
Γ(m)mc = 1, and the previous result we get:

Corollary

ρα(Bn) � n
α
2 .

In the case where the convex set is an ellipsoid E?

Mp(E) = Mp(T(Bn)) = πp(T : `n
2 → `n

2)pMp([−1, 1])
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How is the p-summing norm related with this problem?

Lemma
For every x ∈ Rn, we have

‖Tx‖p = πp(T : `n
2 → `n

2)p
∫

Sn−1
|〈x, t〉|pdν(t),

where ν is a probability measure on the unit sphere Sn−1.

If T is the identity...

‖x‖p = πp(id : `n
2 → `n

2)p
∫

Sn−1
|〈x, t〉|pdλ(t),

where λ is just the normalized Lebesgue surface measure on the
sphere Sn−1.
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t (u)dµk
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How can we estimate the value of ρα(BE), 0 < α < 1? Or,
equivalently, how can we compute Mp(BE), 0 < p < 2?
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Theorem
(General upper bound)

Mp(BE) ≤ Mp([−1, 1])
π1/2 Γ

(n+p
2

)
Γ
( p+1

2

)
Γ
( n

2

) ∫
Sn−1
‖t‖p

E′dλ(t).

This bound is expressed in terms of the mean width of BE, and is good
enough in many cases!

Theorem (Carando, G., Pinasco)
Let 1 < q ≤ 2 then

Mp(B`n
q
) � n

p
q′ .

In particular, ρα(B`n
q
) � n

α
q′ .

Remark:
Upper bounds were given using the previous result.
For the lower bound we use n(q−2)/2q B`n

2
⊂ B`n

q
and the fact that

Mp(·) is monotone function (under inclusion).
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