Some unrelated results in non separable Banach space theory

Bill Johnson

U. Warwick, UK, June, 2015

Relations Between Banach Space Theory and Geometric Measure Theory

Subspaces of L_p that embed into $L_p(\mu)$ with μ finite

Bill Johnson & Gideon Schechtman

[ER 73] Enflo, Per; Rosenthal, Haskell P., Some results concerning $L_p(\mu)$ -spaces. JFA 14 (1973), 325–348.

If $1 , <math>\mu$ is finite, and $L_p(\mu)$ is non separable, can $L_p(\mu)$ have an unconditional basis?

If the density character of $L_p(\mu)$ is at least \aleph_ω the answer is no; in fact, $L_p(\mu)$ does not embed isomorphically into any Banach space that has an unconditional basis [ER 73].

So it is consistent that $L_p\{-1,1\}^{2^{\aleph_0}}$ does not embed into a space with unconditional basis.

Is it consistent that $L_p\{-1,1\}^{2^{\aleph_0}}$ has an unconditional basis? Does $L_p\{-1,1\}^{\aleph_1}$ have an unconditional basis?

[ER 73] Enflo, Per; Rosenthal, Haskell P., Some results concerning $L_p(\mu)$ -spaces. JFA 14 (1973), 325–348.

If $1 , <math>\mu$ is finite, and $L_p(\mu)$ is non separable, can $L_p(\mu)$ have an unconditional basis?

If the density character of $L_p(\mu)$ is at least \aleph_ω the answer is no; in fact, $L_p(\mu)$ does not embed isomorphically into any Banach space that has an unconditional basis [ER 73].

So it is consistent that $L_p\{-1,1\}^{2^{\aleph_0}}$ does not embed into a space with unconditional basis.

Is it consistent that $L_p\{-1,1\}^{2^{\aleph_0}}$ has an unconditional basis? Does $L_p\{-1,1\}^{\aleph_1}$ have an unconditional basis?

Another topic considered in [ER 73] was (isomorphic) embeddings of $\ell_p(\aleph_1)$ into $L_p(\mu)$ with μ finite. When $2 there is no embedding because the formal identity <math>I_{p,2}$ from $L_p(\mu)$ into $L_2(\mu)$ is a one to one bounded linear operator and every bounded linear operator from $\ell_p(\aleph)$ into a Hilbert space is a compact linear operator and hence cannot be one to one if \aleph is uncountable.

[ER 73] For $1 there is no isomorphic embedding of <math>\ell_p(\aleph_1)$ into $L_p(\mu)$ with μ finite. For p=1 essentially everything is known and due to Rosenthal [Ros 70]. So if X is any subspace of $L_p(\mu)$ with μ finite and, as usual, $1 , <math>\ell_p(\aleph_1)$ does not embed into X.

What can you say about a subspace X of some completely general L_p space which has the property that $\ell_p(\aleph_1)$ does not embed into X?

Another topic considered in [ER 73] was (isomorphic) embeddings of $\ell_p(\aleph_1)$ into $L_p(\mu)$ with μ finite. When $2 there is no embedding because the formal identity <math>I_{p,2}$ from $L_p(\mu)$ into $L_2(\mu)$ is a one to one bounded linear operator and every bounded linear operator from $\ell_p(\aleph)$ into a Hilbert space is a compact linear operator and hence cannot be one to one if \aleph is uncountable.

[ER 73] For $1 there is no isomorphic embedding of <math>\ell_p(\aleph_1)$ into $L_p(\mu)$ with μ finite. For p=1 essentially everything is known and due to Rosenthal [Ros 70]. So if X is any subspace of $L_p(\mu)$ with μ finite and, as usual, $1 , <math>\ell_p(\aleph_1)$ does not embed into X.

What can you say about a subspace X of some completely general L_p space which has the property that $\ell_p(\aleph_1)$ does not embed into X?

Conjecture: X must embed into $L_p(\mu)$ with μ finite.

[JS 13] The answer is yes for 1 .

Conjecture: X must embed into $L_p(\mu)$ with μ finite.

[JS 13] The answer is yes for 1 .

Conjecture: X must embed into $L_p(\mu)$ with μ finite.

[JS 13] The answer is yes for 1 .

Conjecture: X must embed into $L_p(\mu)$ with μ finite.

[JS 13] The answer is yes for 1 .

Proposition

Let X be a subspace of some L_p space, 2 . The following are equivalent:

- (1) $\ell_p(\aleph_1)$ isometrically embeds into X.
- (2) There is a subspace of X that is isomorphic to $\ell_p(\aleph_1)$ and is complemented in L_p .
- (3) $\ell_p(\aleph_1)$ isomorphically embeds into X.
- (4) There is no one to one (bounded, linear) operator from X into a Hilbert space.

 $_{(1)\Rightarrow(2)}$ EVERY isometric copy of an L_p space in an L_p space is norm one complemented.

 $(2)\Rightarrow (3)$ is obvious; $(3)\Rightarrow (4)$ was already mentioned. This leaves only $(4)\Rightarrow (1)$, but even $(3)\Rightarrow (1)$ or $(2)\Rightarrow (1)$ requires some thought.

Proposition

Let X be a subspace of some L_p space, 2 . The following are equivalent:

- (1) $\ell_p(\aleph_1)$ isometrically embeds into X.
- (2) There is a subspace of X that is isomorphic to $\ell_p(\aleph_1)$ and is complemented in L_p .
- (3) $\ell_p(\aleph_1)$ isomorphically embeds into X.
- (4) There is no one to one (bounded, linear) operator from X into a Hilbert space.
- $_{(1)\Rightarrow(2)}$ EVERY isometric copy of an L_p space in an L_p space is norm one complemented.
- $(2)\Rightarrow (3)$ is obvious; $(3)\Rightarrow (4)$ was already mentioned. This leaves only $(4)\Rightarrow (1)$, but even $(3)\Rightarrow (1)$ or $(2)\Rightarrow (1)$ requires some thought.

Proposition

Let *X* be a subspace of some L_p space, 2 . The following are equivalent:

- (1) $\ell_p(\aleph_1)$ isometrically embeds into X.
- (4) There is no one to one (bounded, linear) operator from X into a Hilbert space.

_[Maharam 42] gives that X is a subspace of $L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_\gamma})_p$ for some set Γ of ordinal numbers, where $\{-1, 1\}$ is endowed with the uniform probability measure. (4) \Rightarrow (1): For countable $\Gamma' \subset \Gamma$, the projection $P_{\Gamma'} : L_p \to (\sum_{\gamma \in \Gamma'} L_p \{-1, 1\}^{\aleph_\gamma})_p$ is not one to one on X, because $(\sum_{\gamma \in \Gamma'} L_p \{-1, 1\}^{\aleph_\gamma})_p$ maps one to one into the Hilbert space $(\sum_{\gamma \in \Gamma'} L_2 \{-1, 1\}^{\aleph_\gamma})_2$ in an obvious way when Γ' is countable.

X is a subspace of $L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$, 2 .

- (1) $\ell_p(\aleph_1)$ isometrically embeds into X.
- (4) There is no one to one (bounded, linear) operator from *X* into a Hilbert space.

 $(4)\Rightarrow (1)$: For countable $\Gamma'\subset \Gamma$, the projection $P_{\Gamma'}:L_p\to (\sum_{\gamma\in\Gamma'}L_p\{-1,1\}^{\aleph_\gamma})_p$ is not one to one on X, because $(\sum_{\gamma\in\Gamma'}L_p\{-1,1\}^{\aleph_\gamma})_p$ maps one to one into the Hilbert space $(\sum_{\gamma\in\Gamma'}L_2\{-1,1\}^{\aleph_\gamma})_2$ in an obvious way when Γ' is countable.

On the other hand, given any x in X, there is a countable subset $x(\Gamma)$ of Γ so that $P_{\gamma}x=0$ for all γ not in $x(\Gamma)$. Thus if one takes a collection of unit vectors x in X maximal with respect to the property that $x(\Gamma) \cap y(\Gamma) = \emptyset$ when $x \neq y$, then the collection must have cardinality at least \aleph_1 and hence $\ell_p(\aleph_1)$ embeds isometrically into X.

X is a subspace of $L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$, 2 .

- (1) $\ell_p(\aleph_1)$ isometrically embeds into X.
- (4) There is no one to one (bounded, linear) operator from *X* into a Hilbert space.
- $(4)\Rightarrow (1)$: For countable $\Gamma'\subset \Gamma$, the projection $P_{\Gamma'}: L_p\to (\sum_{\gamma\in\Gamma'}L_p\{-1,1\}^{\aleph_\gamma})_p$ is not one to one on X, because $(\sum_{\gamma\in\Gamma'}L_p\{-1,1\}^{\aleph_\gamma})_p$ maps one to one into the Hilbert space $(\sum_{\gamma\in\Gamma'}L_2\{-1,1\}^{\aleph_\gamma})_2$ in an obvious way when Γ' is countable.

On the other hand, given any x in X, there is a countable subset $x(\Gamma)$ of Γ so that $P_{\gamma}x=0$ for all γ not in $x(\Gamma)$. Thus if one takes a collection of unit vectors x in X maximal with respect to the property that $x(\Gamma) \cap y(\Gamma) = \emptyset$ when $x \neq y$, then the collection must have cardinality at least \aleph_1 and hence $\ell_p(\aleph_1)$ embeds isometrically into X.

Let X be a subspace of some L_p space, 1 . Then <math>X embeds into $L_p(\mu)$ for some finite measure μ if and only if $\ell_p(\aleph_1)$ does not embed (isomorphically) into X.

Assume $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ but $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure.

Since disjoint unit vectors $(x_\alpha)_{\alpha\in A}$ act just like the unit vector basis of $\ell_p(A)$, one would like to find such with $|A|=\aleph_1$. Examples show that this cannot be done. However, if we just wanted to find a copy of ℓ_p in X, it would be enough to get unit vectors $(x_n)_{n=1}^\infty$ which are "almost disjoint"—a perturbation argument would then get an isomorphic copy of ℓ_p in X. For p=1, the unit vector basis for $\ell_1(A)$ is very stable under perturbations; this is what Rosenthal used in proving the theorem for p=1. When p>1, something more is needed.

Let X be a subspace of some L_p space, 1 . Then <math>X embeds into $L_p(\mu)$ for some finite measure μ if and only if $\ell_p(\aleph_1)$ does not embed (isomorphically) into X.

Assume $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ but $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure.

Since disjoint unit vectors $(x_{\alpha})_{\alpha \in A}$ act just like the unit vector basis of $\ell_p(A)$, one would like to find such with $|A| = \aleph_1$.

Examples show that this cannot be done. However, if we just wanted to find a copy of ℓ_p in X, it would be enough to get unit vectors $(x_n)_{n=1}^{\infty}$ which are "almost disjoint"—a perturbation argument would then get an isomorphic copy of ℓ_p in X. For p=1, the unit vector basis for $\ell_1(A)$ is very stable under perturbations; this is what Rosenthal used in proving the theorem for p=1. When p>1, something more is needed.

Let X be a subspace of some L_p space, 1 . Then <math>X embeds into $L_p(\mu)$ for some finite measure μ if and only if $\ell_p(\aleph_1)$ does not embed (isomorphically) into X.

Assume $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ but $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure.

Since disjoint unit vectors $(x_{\alpha})_{\alpha \in A}$ act just like the unit vector basis of $\ell_p(A)$, one would like to find such with $|A| = \aleph_1$.

Examples show that this cannot be done. However, if we just wanted to find a copy of ℓ_p in X, it would be enough to get unit vectors $(x_n)_{n=1}^{\infty}$ which are "almost disjoint"—a perturbation argument would then get an isomorphic copy of ℓ_p in X. For p=1, the unit vector basis for $\ell_1(A)$ is very stable under perturbations; this is what Rosenthal used in proving the theorem for p=1. When p>1, something more is needed.

Let X be a subspace of some L_p space, 1 . Then <math>X embeds into $L_p(\mu)$ for some finite measure μ if and only if $\ell_p(\aleph_1)$ does not embed (isomorphically) into X.

Assume $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ but $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure.

Since disjoint unit vectors $(x_{\alpha})_{\alpha \in A}$ act just like the unit vector basis of $\ell_p(A)$, one would like to find such with $|A| = \aleph_1$. Examples show that this cannot be done. However, if we just wanted to find a copy of ℓ_p in X, it would be enough to get unit vectors $(x_n)_{n=1}^{\infty}$ which are "almost disjoint"—a perturbation argument would then get an isomorphic copy of ℓ_p in X. For p=1, the unit vector basis for $\ell_1(A)$ is very stable under perturbations; this is what Rosenthal used in proving the theorem for p=1. When p>1, something more is needed.

Let X be a subspace of some L_p space, 1 . Then <math>X embeds into $L_p(\mu)$ for some finite measure μ if and only if $\ell_p(\aleph_1)$ does not embed (isomorphically) into X.

Assume $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ but $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure.

Since disjoint unit vectors $(x_\alpha)_{\alpha\in A}$ act just like the unit vector basis of $\ell_p(A)$, one would like to find such with $|A|=\aleph_1$. Examples show that this cannot be done. However, if we just wanted to find a copy of ℓ_p in X, it would be enough to get unit vectors $(x_n)_{n=1}^\infty$ which are "almost disjoint"—a perturbation argument would then get an isomorphic copy of ℓ_p in X. For p=1, the unit vector basis for $\ell_1(A)$ is very stable under perturbations; this is what Rosenthal used in proving the theorem for p=1. When p>1, something more is needed.

Let X be a subspace of some L_p space, 1 . Then <math>X embeds into $L_p(\mu)$ for some finite measure μ if and only if $\ell_p(\aleph_1)$ does not embed (isomorphically) into X.

Assume $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ but $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure.

Idea: Build a long unconditionally basic sequence $(x_{\alpha})_{\alpha < \aleph_1}$ of unit vectors in X that have "big disjoint pieces". The type p property of L_p and unconditionality give $\|\sum_{\alpha} t_{\alpha} x_a\| \leq C(\sum_{\alpha} |t_{\alpha}|^p)^{1/p}$ and the "diagonal principle" gives the corresponding lower estimate.

Let X be a subspace of some L_p space, 1 . Then <math>X embeds into $L_p(\mu)$ for some finite measure μ if and only if $\ell_p(\aleph_1)$ does not embed (isomorphically) into X.

Assume $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ but $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure.

Idea: Build a long unconditionally basic sequence $(x_{\alpha})_{\alpha<\aleph_1}$ of unit vectors in X that have "big disjoint pieces". The type p property of L_p and unconditionality give $\|\sum_{\alpha}t_{\alpha}x_{a}\|\leq C(\sum_{\alpha}|t_{\alpha}|^{p})^{1/p}$ and the "diagonal principle" gives the corresponding lower estimate.

 $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p, 1$ $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure. Call a set S of vectors in $L_p = (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ a generalized martingale difference set (GMD set, in short) provided that for every finite subset F of S and every γ in Γ , the sequence $(P_{\gamma}x)_{x\in F}$ can be ordered to be a martingale difference sequence. We allow 0 to appear in a martingale difference sequence, but the definition requires that $P_{\gamma}x \neq P_{\gamma}y$ if $P_{\gamma}x \neq 0$. Since a martingale difference sequence is

 $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p, 1$ $X \not\hookrightarrow L_{D}(\mu)$ with μ a finite measure. Call a set S of vectors in $L_p = (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ a generalized martingale difference set (GMD set, in short) provided that for every finite subset F of S and every γ in Γ , the sequence $(P_{\gamma}x)_{x\in F}$ can be ordered to be a martingale difference sequence. We allow 0 to appear in a martingale difference sequence, but the definition requires that $P_{\gamma}x \neq P_{\gamma}y$ if $P_{\gamma}x \neq 0$. Since a martingale difference sequence is unconditional in $L_p(\mu)$ for any probability μ , any 1 , andwith the unconditional constant depending only on p [Burkholder 73], a GMD set in L_p is unconditionally basic for our range of p.

 $X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p, 1$ $X \not\hookrightarrow L_{D}(\mu)$ with μ a finite measure. Call a set S of vectors in $L_p = (\sum_{\gamma \in \Gamma} L_p \{-1, 1\}^{\aleph_{\gamma}})_p$ a generalized martingale difference set (GMD set, in short) provided that for every finite subset F of S and every γ in Γ , the sequence $(P_{\gamma}x)_{x\in F}$ can be ordered to be a martingale difference sequence. We allow 0 to appear in a martingale difference sequence, but the definition requires that $P_{\gamma}x \neq P_{\gamma}y$ if $P_{\gamma}x \neq 0$. Since a martingale difference sequence is unconditional in $L_p(\mu)$ for any probability μ , any 1 , andwith the unconditional constant depending only on p [Burkholder 73], a GMD set in L_p is unconditionally basic for our range of p.

So we want to build in X an uncountable GMD set that have big disjoint pieces. Since here "big" only means "bounded away from zero in norm", having disjoint pieces is enough.

$$X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1,1\}^{\aleph_\gamma})_p, \, 1$$

 $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure.

GMD set: For every finite subset F of S and every γ in Γ , the sequence $(P_{\gamma}x)_{x\in F}$ can be ordered to be a martingale difference sequence.

Take a set V of pairs $(x, \gamma(x))_{x \in M}$ in $X \times \Gamma$ maximal with respect to the properties that ||x|| = 1, $P_{\gamma(x)}x \neq 0$, the $\gamma(x)$ are all distinct, and M is a GMD set.

One page of argument is sufficient to show that *M* is uncountable

So we want to build in X an uncountable GMD set that have big disjoint pieces. Since here "big" only means "bounded away from zero in norm", having disjoint pieces is enough.

$$X \subset L_p := (\sum_{\gamma \in \Gamma} L_p \{-1,1\}^{\aleph_\gamma})_p, \, 1$$

 $X \not\hookrightarrow L_p(\mu)$ with μ a finite measure.

GMD set: For every finite subset F of S and every γ in Γ , the sequence $(P_{\gamma}x)_{x\in F}$ can be ordered to be a martingale difference sequence.

Take a set V of pairs $(x, \gamma(x))_{x \in M}$ in $X \times \Gamma$ maximal with respect to the properties that ||x|| = 1, $P_{\gamma(x)}x \neq 0$, the $\gamma(x)$ are all distinct, and M is a GMD set.

One page of argument is sufficient to show that M is uncountable.

Higher cardinals

A Banach space X is an $L_p(\aleph)$ space, where \aleph is an infinite cardinal, provided X is isometric to $(\sum_{\alpha \in \Gamma} L_p(\mu_\alpha))_p$ with $|\Gamma| \leq \aleph$ and each μ_α a finite measure.

Proposition

Let *X* be a subspace of some L_p space, $2 , and let <math>\mathbb{N}$ be an uncountable cardinal. The following are equivalent:

- (1) $\ell_p(\aleph)$ isometrically embeds into X.
- (2) There is a subspace of X that is isomorphic to $\ell_p(\aleph)$ and is complemented in L_p .
- (3) $\ell_p(\aleph)$ isomorphically embeds into X
- (4) There is no one to one (bounded, linear) operator from X into an $L_p(\Gamma)$ space with $\Gamma < \aleph$.

Higher cardinals

A Banach space X is an $L_p(\aleph)$ space, where \aleph is an infinite cardinal, provided X is isometric to $(\sum_{\alpha \in \Gamma} L_p(\mu_\alpha))_p$ with $|\Gamma| \leq \aleph$ and each μ_α a finite measure.

Proposition

Let X be a subspace of some L_p space, $2 , and let <math>\aleph$ be an uncountable cardinal. The following are equivalent:

- (1) $\ell_p(\aleph)$ isometrically embeds into X.
- (2) There is a subspace of X that is isomorphic to $\ell_p(\aleph)$ and is complemented in L_p .
- (3) $\ell_p(\aleph)$ isomorphically embeds into X.
- (4) There is no one to one (bounded, linear) operator from X into an $L_p(\Gamma)$ space with $\Gamma < \aleph$.

X is an $L_p(\aleph)$ space if X is isometric to $(\sum_{\alpha \in \Gamma} L_p(\mu_\alpha))_p$ with $|\Gamma| \leq \aleph$ and μ_a finite.

Theorem.

Let *X* be a subspace of some L_p space, $1 , and let <math>\aleph$ be an uncountable cardinal. The following are equivalent.

- (1) For all $\epsilon > 0$, $\ell_p(\aleph)$ is $1 + \epsilon$ -isomorphic to a subspace of X.
- (2) There is a subspace of X that is isomorphic to $\ell_p(\aleph)$ and is complemented in L_p .
- (3) $\ell_p(\aleph)$ isomorphically embeds into X.
- (4) X does not isomorphically embed into an $L_p(\aleph')$ space with $\aleph' < \aleph$.

Lemma.

Let $1 and let <math>\aleph$ be an uncountable cardinal. If $\aleph' < \aleph$, then $\ell_p(\aleph)$ is not isomorphic to a subspace of any $L_p(\aleph')$ space.

X is an $L_p(\aleph)$ space if X is isometric to $(\sum_{\alpha \in \Gamma} L_p(\mu_\alpha))_p$ with $|\Gamma| \leq \aleph$ and μ_a finite.

Theorem.

Let *X* be a subspace of some L_p space, $1 , and let <math>\aleph$ be an uncountable cardinal. The following are equivalent.

- (1) For all $\epsilon > 0$, $\ell_p(\aleph)$ is $1 + \epsilon$ -isomorphic to a subspace of X.
- (2) There is a subspace of X that is isomorphic to $\ell_p(\aleph)$ and is complemented in L_p .
- (3) $\ell_p(\aleph)$ isomorphically embeds into X.
- (4) X does not isomorphically embed into an $L_p(\aleph')$ space with $\aleph' < \aleph$.

Lemma

Let $1 and let <math>\aleph$ be an uncountable cardinal. If $\aleph' < \aleph$, then $\ell_p(\aleph)$ is not isomorphic to a subspace of any $L_p(\aleph')$ space.

X is an $L_p(\aleph)$ space if X is isometric to $(\sum_{\alpha \in \Gamma} L_p(\mu_\alpha))_p$ with $|\Gamma| \leq \aleph$ and μ_a finite.

Theorem.

Let *X* be a subspace of some L_p space, $1 , and let <math>\aleph$ be an uncountable cardinal. The following are equivalent.

- (1) For all $\epsilon > 0$, $\ell_p(\aleph)$ is $1 + \epsilon$ -isomorphic to a subspace of X.
- (2) There is a subspace of X that is isomorphic to $\ell_p(\aleph)$ and is complemented in L_p .
- (3) $\ell_p(\aleph)$ isomorphically embeds into X.
- (4) X does not isomorphically embed into an $L_p(\aleph')$ space with $\aleph' < \aleph$.

Lemma.

Let $1 and let <math>\aleph$ be an uncountable cardinal. If $\aleph' < \aleph$, then $\ell_p(\aleph)$ is not isomorphic to a subspace of any $L_p(\aleph')$ space.

- 1. Does $L_p\{-1,1\}^{\aleph_1}$, 1 , have an unconditional basis or at least embed into a space that has an unconditional basis?
- 2. If X is a subspace of some L_p space, $2 , and <math>\ell_p(\aleph_1)$ does not embed into X, must X embed into $L_p(\mu)$ for some finite measure μ ?
- 3. Can $L_p\{-1,1\}^{\aleph_1}$, 2 , be written as an unconditional sum of subspaces each of which is isomorphic to a Hilbert space?
- If $L_p\{-1,1\}^{\aleph_1}$ has an unconditional basis, then (3) has an affirmative answer by an old result of Kadec and Pełczyński. But we do not know how to prove even that $L_p\{-1,1\}^{\aleph_1}$ cannot be written as an unconditional sum of subspaces that are *uniformly* isomorphic to Hilbert spaces.

- 1. Does $L_p\{-1,1\}^{\aleph_1}$, 1 , have an unconditional basis or at least embed into a space that has an unconditional basis?
- 2. If X is a subspace of some L_p space, $2 , and <math>\ell_p(\aleph_1)$ does not embed into X, must X embed into $L_p(\mu)$ for some finite measure μ ?
- 3. Can $L_p\{-1,1\}^{\aleph_1}$, 2 , be written as an unconditional sum of subspaces each of which is isomorphic to a Hilbert space?
- If $L_p\{-1,1\}^{\aleph_1}$ has an unconditional basis, then (3) has an affirmative answer by an old result of Kadec and Pełczyński. But we do not know how to prove even that $L_p\{-1,1\}^{\aleph_1}$ cannot be written as an unconditional sum of subspaces that are *uniformly* isomorphic to Hilbert spaces.

- 1. Does $L_p\{-1,1\}^{\aleph_1}$, 1 , have an unconditional basis or at least embed into a space that has an unconditional basis?
- 2. If X is a subspace of some L_p space, $2 , and <math>\ell_p(\aleph_1)$ does not embed into X, must X embed into $L_p(\mu)$ for some finite measure μ ?
- 3. Can $L_p\{-1,1\}^{\aleph_1}$, 2 , be written as an unconditional sum of subspaces each of which is isomorphic to a Hilbert space?
- If $L_p\{-1,1\}^{\aleph_1}$ has an unconditional basis, then (3) has an affirmative answer by an old result of Kadec and Pełczyński. But we do not know how to prove even that $L_p\{-1,1\}^{\aleph_1}$ cannot be written as an unconditional sum of subspaces that are *uniformly* isomorphic to Hilbert spaces.

- 1. Does $L_p\{-1,1\}^{\aleph_1}$, 1 , have an unconditional basis or at least embed into a space that has an unconditional basis?
- 2. If X is a subspace of some L_p space, $2 , and <math>\ell_p(\aleph_1)$ does not embed into X, must X embed into $L_p(\mu)$ for some finite measure μ ?
- 3. Can $L_p\{-1,1\}^{\aleph_1}$, 2 , be written as an unconditional sum of subspaces each of which is isomorphic to a Hilbert space?

If $L_p\{-1,1\}^{\aleph_1}$ has an unconditional basis, then (3) has an affirmative answer by an old result of Kadec and Pełczyński. But we do not know how to prove even that $L_p\{-1,1\}^{\aleph_1}$ cannot be written as an unconditional sum of subspaces that are *uniformly* isomorphic to Hilbert spaces.

Operators with dense range on ℓ_{∞}

WBJ, A. B. Nasseri, G. Schechtman, T. Tkocz

lr

http://mathoverflow.net/questions/101253

Nasseri asked

"Can anyone give me an example of an *(sic)* bounded and linear operator $T:\ell_\infty\to\ell_\infty$ (the space of bounded sequences with the usual sup-norm), such that T has dense range, but is not surjective?"

Operators with dense range on ℓ_{∞}

WBJ, A. B. Nasseri, G. Schechtman, T. Tkocz

In

http://mathoverflow.net/questions/101253

Nasseri asked

"Can anyone give me an example of an *(sic)* bounded and linear operator $T:\ell_\infty\to\ell_\infty$ (the space of bounded sequences with the usual sup-norm), such that T has dense range, but is not surjective?"

"Is there a dense range non surjective operator on ℓ_∞ ?

Looks easy, yes?

On separable infinite dimensional spaces, there are always dense range compact operators, but compact operators have separable ranges. On a non separable space, even on a dual to a separable space it can happen that every dense range operator is surjective:

"Is there a dense range non surjective operator on ℓ_∞ ?

Looks easy, yes?

On separable infinite dimensional spaces, there are always dense range compact operators, but compact operators have separable ranges. On a non separable space, even on a dual to a separable space it can happen that every dense range operator is surjective:

"Is there a dense range non surjective operator on ℓ_{∞} ?

Looks easy, yes?

On separable infinite dimensional spaces, there are always dense range compact operators, but compact operators have separable ranges. On a non separable space, even on a dual to a separable space it can happen that every dense range operator is surjective:

"Is there a dense range non surjective operator on ℓ_∞ ?

Looks easy, yes?

On separable infinite dimensional spaces, there are always dense range compact operators, but compact operators have separable ranges. On a non separable space, even on a dual to a separable space it can happen that every dense range operator is surjective:

"Is there a dense range non surjective operator on ℓ_∞ ?

Looks easy, yes?

On separable infinite dimensional spaces, there are always dense range compact operators, but compact operators have separable ranges. On a non separable space, even on a dual to a separable space it can happen that every dense range operator is surjective:

It turns out that Nasseri's problem is related to Tauberian operators on $L_1 = L_1(0, 1)$.

An operator $T: X \to Y$ is called Tauberian if $T^{**-1}(Y) = X$ [Kalton, Wilansky '76]. The recent book [Gonzáles, Martínez-Abejón '10] on Tauberian operators contains:

- 0. T is Tauberian.
- 1. For all normalized disjoint sequences $\{x_i\}$, $\lim \inf_{i \to \infty} ||Tx_i|| > 0$.
- 2. If $\{x_i\}$ is equivalent to the unit vector basis of ℓ_1 then there is an N such that $T_{|[x_i]_{i=1}^{\infty}}$ is an isomorphism.
- 3. There are $\varepsilon, \delta > 0$ such that $||Tf|| \ge \varepsilon ||f||$ for all f with $|\operatorname{supp}(f)| < \delta$.

It turns out that Nasseri's problem is related to Tauberian operators on $L_1 = L_1(0,1)$.

An operator $T: X \to Y$ is called Tauberian if $T^{**-1}(Y) = X$ [Kalton, Wilansky '76]. The recent book [Gonzáles, Martínez-Abejón '10] on Tauberian operators contains:

- 0. T is Tauberian.
- 1. For all normalized disjoint sequences $\{x_i\}$, $\lim \inf_{i\to\infty} ||Tx_i|| > 0$.
- 2. If $\{x_i\}$ is equivalent to the unit vector basis of ℓ_1 then there is an N such that $T_{|[x_i]_{i=1}^{\infty}}$ is an isomorphism.
- 3. There are $\varepsilon, \delta > 0$ such that $||Tf|| \ge \varepsilon ||f||$ for all f with $|\operatorname{supp}(f)| < \delta$.

It turns out that Nasseri's problem is related to Tauberian operators on $L_1 = L_1(0, 1)$.

An operator $T: X \to Y$ is called Tauberian if $T^{**-1}(Y) = X$ [Kalton, Wilansky '76]. The recent book [Gonzáles, Martínez-Abejón '10] on Tauberian operators contains:

- 0. T is Tauberian.
- 1. For all normalized disjoint sequences $\{x_i\}$, $\lim \inf_{i\to\infty} ||Tx_i|| > 0$.
- 2. If $\{x_i\}$ is equivalent to the unit vector basis of ℓ_1 then there is an N such that $T_{|[x_i]_{\sim N}^{\infty}}$ is an isomorphism.
- 3. There are $\varepsilon, \delta > 0$ such that $||Tf|| \ge \varepsilon ||f||$ for all f with $|\operatorname{supp}(f)| < \delta$.

It turns out that Nasseri's problem is related to Tauberian operators on $L_1 = L_1(0, 1)$.

An operator $T: X \to Y$ is called Tauberian if $T^{**-1}(Y) = X$ [Kalton, Wilansky '76]. The recent book [Gonzáles, Martínez-Abejón '10] on Tauberian operators contains:

- 0. T is Tauberian.
- 1. For all normalized disjoint sequences $\{x_i\}$, $\lim \inf_{i\to\infty} ||Tx_i|| > 0$.
- 2. If $\{x_i\}$ is equivalent to the unit vector basis of ℓ_1 then there is an N such that $T_{|[x_i]_{\sim N}^{\infty}}$ is an isomorphism.
- 3. There are $\varepsilon, \delta > 0$ such that $||Tf|| \ge \varepsilon ||f||$ for all f with $|\operatorname{supp}(f)| < \delta$.

$$T: X \to Y$$
 is Tauberian: $T^{**-1}(Y) = X$.

If T is 1-1 Tauberian, T^{**} is 1-1.

Thus, if T is a Tauberian operator on L_1 that is 1-1 but does not have closed range, then T^* is a dense range operator on L_{∞} that is not surjective.

Since L_{∞} is isomorphic to ℓ_{∞} [Pelcziński, '58], this would answer Nasseri's question.

In fact, we checked that whether there is such an operator on L_1 is a priori equivalent to Nasseri's question.

$$T: X \to Y$$
 is Tauberian: $T^{**-1}(Y) = X$.

If *T* is 1-1 Tauberian, *T*** is 1-1.

Thus, if T is a Tauberian operator on L_1 that is 1-1 but does not have closed range, then T^* is a dense range operator on L_{∞} that is not surjective.

Since L_{∞} is isomorphic to ℓ_{∞} [Pelcziński, '58], this would answer Nasseri's question.

In fact, we checked that whether there is such an operator on I_A is a priori equivalent to Nasseri's question

$$T: X \to Y$$
 is Tauberian: $T^{**-1}(Y) = X$.

If T is 1-1 Tauberian, T^{**} is 1-1.

Thus, if T is a Tauberian operator on L_1 that is 1-1 but does not have closed range, then T^* is a dense range operator on L_{∞} that is not surjective.

Since L_{∞} is isomorphic to ℓ_{∞} [Pelcziński, '58], this would answer Nasseri's question.

In fact, we checked that whether there is such an operator on L_{i} is a priori equivalent to Nasseri's question

$$T: X \to Y$$
 is Tauberian: $T^{**-1}(Y) = X$.

If T is 1-1 Tauberian, T^{**} is 1-1.

Thus, if T is a Tauberian operator on L_1 that is 1-1 but does not have closed range, then T^* is a dense range operator on L_{∞} that is not surjective.

Since L_{∞} is isomorphic to ℓ_{∞} [Pelcziński, '58], this would answer Nasseri's question.

In fact, we checked that whether there is such an operator on I_A is a priori equivalent to Nasseri's question

$$T: X \to Y$$
 is Tauberian: $T^{**-1}(Y) = X$.

If T is 1-1 Tauberian, T^{**} is 1-1.

Thus, if T is a Tauberian operator on L_1 that is 1-1 but does not have closed range, then T^* is a dense range operator on L_{∞} that is not surjective.

Since L_{∞} is isomorphic to ℓ_{∞} [Pelcziński, '58], this would answer Nasseri's question.

In fact, we checked that whether there is such an operator on L_1 is a priori equivalent to Nasseri's question.

$$T: X \to Y$$
 is Tauberian: $T^{**-1}(Y) = X$.

Is there a Tauberian operator T on L_1 whose kernel is infinite dimensional?

If T satisfies this condition, then you can play around and get a perturbation S of T that is Tauberian, 1-1, and has dense, non closed range (so is not surjective). Taking the adjoint of S and replacing L_{∞} by its isomorphic ℓ_{∞} , you would have a 1-1, dense range, non surjective operator on ℓ_{∞} . To get S from T, take a 1-1

nuclear operator from the kernel on T that has dense range in L_1 , extend it to a nuclear operator on L_1 , and add it to

T. This does not guite work, but some fiddling produces the desired S.

$$T: X \to Y$$
 is Tauberian: $T^{**-1}(Y) = X$.

Is there a Tauberian operator T on L_1 whose kernel is infinite dimensional?

If T satisfies this condition, then you can play around and get a perturbation S of T that is Tauberian, 1-1, and has dense, non closed range (so is not surjective). Taking the adjoint of S and replacing L_{∞} by its isomorphic ℓ_{∞} , you would have a 1-1, dense range, non surjective operator on ℓ_{∞} . To get S from T, take a 1-1

nuclear operator from the kernel on T that has dense range in L_1 , extend it to a nuclear operator on L_1 , and add it to

T. This does not guite work, but some fiddling produces the desired S.

$$T: X \to Y$$
 is Tauberian: $T^{**-1}(Y) = X$.

Is there a Tauberian operator T on L_1 whose kernel is infinite dimensional?

If T satisfies this condition, then you can play around and get a perturbation S of T that is Tauberian, 1-1, and has dense, non closed range (so is not surjective). Taking the adjoint of S and replacing L_{∞} by its isomorphic ℓ_{∞} , you would have a 1-1, dense range, non surjective operator on ℓ_{∞} . To get S from T, take a 1-1

nuclear operator from the kernel on T that has dense range in L_1 , extend it to a nuclear operator on L_1 , and add it to

T. This does not guite work, but some fiddling produces the desired S.

$$T: X \to Y$$
 is Tauberian: $T^{**-1}(Y) = X$.

Is there a Tauberian operator T on L_1 whose kernel is infinite dimensional?

If T satisfies this condition, then you can play around and get a perturbation S of T that is Tauberian, 1-1, and has dense, non closed range (so is not surjective). Taking the adjoint of S and replacing L_{∞} by its isomorphic ℓ_{∞} , you would have a 1-1, dense range, non surjective operator on ℓ_{∞} . To get S from T, take a 1-1

nuclear operator from the kernel on T that has dense range in L_1 , extend it to a nuclear operator on L_1 , and add it to

T. This does not quite work, but some fiddling produces the desired S.

Bottom line: The question whether there is a dense range non surjective operator on the non separable space ℓ_∞ is really a question about the existence of a Tauberian operator with infinite dimensional kernel on the separable space L_1 .

Theorem: [G, M-A, '10] Let $T: L_1(0,1) \rightarrow Y$. TFAE

- 0. T is Tauberian.
- 3. There are $\varepsilon, \delta > 0$ such that $||Tf|| \ge \varepsilon ||f||$ for all f with $|\operatorname{supp}(f)| < \delta$.

T satisfying condition (3) and having an infinite dimensional kernel has a known finite dimensional analogue:

CS Theorem [Berinde, Gilbert, Indvk, Karloff, Strauss, '08]

For each n sufficiently large putting m = [3n/4], there is an operator $T : \ell_1^n \to \ell_1^m$ such that

$$\frac{1}{4}||x||_1 \le ||Tx||_1 \le ||x||_1$$

for all x with $\sharp \operatorname{supp}(x) \leq n/400$.

Bottom line: The question whether there is a dense range non surjective operator on the non separable space ℓ_∞ is really a question about the existence of a Tauberian operator with infinite dimensional kernel on the separable space L_1 .

Theorem: [G, M-A, '10] Let $T: L_1(0,1) \rightarrow Y$. TFAE

- 0. T is Tauberian.
- 3. There are $\varepsilon, \delta > 0$ such that $||Tf|| \ge \varepsilon ||f||$ for all f with $|\operatorname{supp}(f)| < \delta$.

T satisfying condition (3) and having an infinite dimensional kernel has a known finite dimensional analogue:

CS Theorem [Berinde, Gilbert, Indvk, Karloff, Strauss, '08]

For each n sufficiently large putting m = [3n/4], there is an operator $T : \ell_1^n \to \ell_1^m$ such that

$$\frac{1}{4}||x||_1 \le ||Tx||_1 \le ||x||_1$$

for all x with $\sharp \operatorname{supp}(x) \leq n/400$

Bottom line: The question whether there is a dense range non surjective operator on the non separable space ℓ_∞ is really a question about the existence of a Tauberian operator with infinite dimensional kernel on the separable space L_1 .

Theorem: [G, M-A, '10] Let $T: L_1(0,1) \rightarrow Y$. TFAE

- 0. T is Tauberian.
- 3. There are $\varepsilon, \delta > 0$ such that $||Tf|| \ge \varepsilon ||f||$ for all f with $|\operatorname{supp}(f)| < \delta$.

T satisfying condition (3) and having an infinite dimensional kernel has a known finite dimensional analogue:

CS Theorem [Berinde, Gilbert, Indyk, Karloff, Strauss, '08]:

For each n sufficiently large putting m = [3n/4], there is an operator $T : \ell_1^n \to \ell_1^m$ such that

$$\frac{1}{4}||x||_1 \le ||Tx||_1 \le ||x||_1$$

for all x with $\sharp \operatorname{supp}(x) \leq n/400$.

For each n sufficiently large putting m = [3n/4], there is an operator $T_n : \ell_1^n \to \ell_1^m$ such that

$$\frac{1}{4}\|x\|_1 \le \|T_n x\|_1 \le \|x\|_1$$

for all x with $\sharp \operatorname{supp}(x) \leq n/400$.

The kernel of T_n has dimension at least n/4, so if you take the ultraproduct \tilde{T} of the T_n you get an operator with infinite dimensional kernel on some gigantic L_1 space. Let T be the restriction of \tilde{T} to some separable \tilde{T} -invariant L_1 subspace that intersects the kernel of \tilde{T} in an infinite dimensional subspace. As long as \tilde{T} is Tauberian, the operator T will be a Tauberian operator with infinite dimensional kernel on L_1 , and we will be done.

So we need a condition implying Tauberianism that is possessed by all T_n and is preserved under ultraproducts.

For each n sufficiently large putting m = [3n/4], there is an operator $T_n : \ell_1^n \to \ell_1^m$ such that

$$\frac{1}{4}||x||_1 \le ||T_n x||_1 \le ||x||_1$$

for all x with $\sharp \operatorname{supp}(x) \leq n/400$.

The kernel of T_n has dimension at least n/4, so if you take the ultraproduct \tilde{T} of the T_n you get an operator with infinite dimensional kernel on some gigantic L_1 space. Let T be the restriction of \tilde{T} to some separable \tilde{T} -invariant L_1 subspace that intersects the kernel of \tilde{T} in an infinite dimensional subspace. As long as \tilde{T} is Tauberian, the operator T will be a Tauberian operator with infinite dimensional kernel on L_1 , and we will be done.

So we need a condition implying Tauberianism that is possessed by all T_n and is preserved under ultraproducts

For each n sufficiently large putting m = [3n/4], there is an operator $T_n : \ell_1^n \to \ell_1^m$ such that

$$\frac{1}{4}||x||_1 \le ||T_n x||_1 \le ||x||_1$$

for all x with $\sharp \operatorname{supp}(x) \leq n/400$.

The kernel of T_n has dimension at least n/4, so if you take the ultraproduct \tilde{T} of the T_n you get an operator with infinite dimensional kernel on some gigantic L_1 space. Let T be the restriction of \tilde{T} to some separable \tilde{T} -invariant L_1 subspace that intersects the kernel of \tilde{T} in an infinite dimensional subspace. As long as \tilde{T} is Tauberian, the operator T will be a Tauberian operator with infinite dimensional kernel on L_1 , and we will be done.

So we need a condition implying Tauberianism that is possessed by all T_n and is preserved under ultraproducts.

Say an operator $T: X \to Y$ (X an L_1 space) is (r, N)-Tauberian provided whenever $(x_n)_{n=1}^N$ are disjoint unit vectors in X, then $\max_{1 \le n \le N} \|Tx_n\| \ge r$.

Lemma $T: X \to Y$ is Tauberian iff $\exists r > 0$ and N s.t. T is (r, N)-Tauberian.

Proof: T being (r, N)-Tauberian implies that if (x_n) is a disjoint $1 \le k(n) \le n$ s.t. the support of $x_{k(n)}^n$ in $L_1(\mu)$ has measure at

Say an operator $T: X \to Y$ (X an L_1 space) is (r, N)-Tauberian provided whenever $(x_n)_{n=1}^N$ are disjoint unit vectors in X, then $\max_{1 \le n \le N} \|Tx_n\| \ge r$.

Lemma $T: X \to Y$ is Tauberian iff $\exists r > 0$ and N s.t. T is (r, N)-Tauberian.

Proof: T being (r, N)-Tauberian implies that if (x_n) is a disjoint sequence of unit vectors in X, then $\liminf_n ||Tx_n|| > 0$, so T is Tauberian [G,M-A (1)]. Conversely, suppose there are disjoint collections $(x_k^n)_{k=1}^n$, $n=1,2,\ldots$ with $\max_{1\leq k\leq n}\|Tx_k^n\|\to 0$ as $n \to \infty$. Then The closed sublattice generated by $\bigcup_{n=1}^{\infty} (x_k^n)_{k=1}^n$ is a separable L_1 space, hence is order isometric to $L_1(\mu)$ for some probability measure μ by Kakutani's theorem. Choose $1 \le k(n) \le n$ s.t. the support of $x_{k(n)}^n$ in $L_1(\mu)$ has measure at most 1/n. Since T is Tauberian, necessarily $\liminf_n ||Tx_{k(n)}^n|| > 0$ [G, A-M], a contradiction.

 $T: X \to Y$ (X an L_1 space) is (r, N)-Tauberian provided whenever $(x_n)_{n=1}^N$ are disjoint unit vectors in X, then $\max_{1 \le n \le N} \|Tx_n\| \ge r$.

Lemma $T: X \to Y$ is Tauberian iff $\exists r > 0$ and N s.t. T is (r, N)-Tauberian.

It is not difficult to prove that the property of being (r,N)-Tauberian is stable under ultraproducts of uniformly bounded operators, so it is just a matter of observing that the operators T_n of [Berinde, Gilbert, Indyk, Karloff, Strauss, '08] are all (r,N)-Tauberian with (r,N) independent of n.

 $T: X \to Y$ (X an L_1 space) is (r, N)-Tauberian provided whenever $(x_n)_{n=1}^N$ are disjoint unit vectors in X, then $\max_{1 \le n \le N} \|Tx_n\| \ge r$.

Lemma $T: X \to Y$ is Tauberian iff $\exists r > 0$ and N s.t. T is (r, N)-Tauberian.

It is not difficult to prove that the property of being (r,N)-Tauberian is stable under ultraproducts of uniformly bounded operators, so it is just a matter of observing that the operators T_n of [Berinde, Gilbert, Indyk, Karloff, Strauss, '08] are all (r,N)-Tauberian with (r,N) independent of n.

For each n sufficiently large putting m=[3n/4], there is an operator $T_n:\ell_1^n\to\ell_1^m$ such that

$$\frac{1}{4}||x||_1 \le ||T_n x||_1 \le ||x||_1$$

for all x with $\sharp \operatorname{supp}(x) \leq n/400$.

 $T: X \to Y$ (X an L_1 space) is (r, N)-Tauberian provided whenever $(x_k)_{k=1}^N$ are disjoint unit vectors in X, then $\max_{1 \le k \le N} \|Tx_k\| \ge r$.

Obviously the T_n are (1/4, 400)-Tauberian. ■

For each n sufficiently large putting m = [3n/4], there is an operator $T_n : \ell_1^n \to \ell_1^m$ such that

$$\frac{1}{4}||x||_1 \le ||T_n x||_1 \le ||x||_1$$

for all x with $\sharp \operatorname{supp}(x) \leq n/400$.

 $T: X \to Y$ (X an L_1 space) is (r, N)-Tauberian provided whenever $(x_k)_{k=1}^N$ are disjoint unit vectors in X, then $\max_{1 \le k \le N} \|Tx_k\| \ge r$.

Obviously the T_n are (1/4, 400)-Tauberian.

Summary

There is a non surjective Tauberian operator on L_1 that has dense range. The operator can be chosen either to be 1-1 or to have infinite dimensional kernel.

Consequently, there is a dense range, non surjective, 1-1 operator on ℓ_{∞} .

Conclusion from the proof: Computer science is connected to non separable Banach space theory!

Summary

There is a non surjective Tauberian operator on L_1 that has dense range. The operator can be chosen either to be 1-1 or to have infinite dimensional kernel.

Consequently, there is a dense range, non surjective, 1-1 operator on ℓ_{∞} .

Conclusion from the proof: Computer science is connected to non separable Banach space theory!

Summary

There is a non surjective Tauberian operator on L_1 that has dense range. The operator can be chosen either to be 1-1 or to have infinite dimensional kernel.

Consequently, there is a dense range, non surjective, 1-1 operator on ℓ_{∞} .

Conclusion from the proof: Computer science is connected to non separable Banach space theory!

Complemented subspaces of $\ell_{\infty}^{c}(\lambda)$

T. Kania, WBJ & G. Schechtman

 $\ell_{\infty}^{c}(\lambda)$ is the set of bounded functions on λ that have countable support.

For metrizable K, this has been done only for $c_0 \approx C(\mathbb{N} \cup \{\infty\})$ and $C(\omega^{\omega})$.

For non separable C(K), this has been done for only a few spaces: $\ell_{\infty} = C(\beta \mathbb{N})$; $c_0(\lambda)$ for any uncountable set λ ; direct sums of some of the above examples.

For metrizable K, this has been done only for $c_0 \approx C(\mathbb{N} \cup \{\infty\})$ and $C(\omega^{\omega})$.

For non separable C(K), this has been done for only a few spaces: $\ell_{\infty} = C(\beta \mathbb{N})$; $c_0(\lambda)$ for any uncountable set λ ; direct sums of some of the above examples.

For metrizable K, this has been done only for $c_0 \approx C(\mathbb{N} \cup \{\infty\})$ and $C(\omega^{\omega})$.

For non separable C(K), this has been done for only a few spaces: $\ell_{\infty} = C(\beta \mathbb{N})$; $c_0(\lambda)$ for any uncountable set λ ; direct sums of some of the above examples.

For metrizable K, this has been done only for $c_0 \approx C(\mathbb{N} \cup \{\infty\})$ and $C(\omega^{\omega})$.

For non separable C(K), this has been done for only a few spaces: $\ell_{\infty} = C(\beta \mathbb{N})$; $c_0(\lambda)$ for any uncountable set λ ; direct sums of some of the above examples.

For metrizable K, this has been done only for $c_0 \approx C(\mathbb{N} \cup \{\infty\})$ and $C(\omega^{\omega})$.

For non separable C(K), this has been done for only a few spaces: $\ell_{\infty} = C(\beta \mathbb{N})$; $c_0(\lambda)$ for any uncountable set λ ; direct sums of some of the above examples.

For metrizable K, this has been done only for $c_0 \approx C(\mathbb{N} \cup \{\infty\})$ and $C(\omega^{\omega})$.

For non separable C(K), this has been done for only a few spaces: $\ell_{\infty} = C(\beta \mathbb{N})$; $c_0(\lambda)$ for any uncountable set λ ; direct sums of some of the above examples.

Classifying complemented subspaces of $\ell_{\infty}(\lambda)$ for all λ is the same as classifying the injective Banach space. This is a great problem and nothing has been done on it for more than 40 years. We have no new information on this problem.

Spaces of the form $\ell_{\infty}^{c}(\lambda)$ are not injective when λ is uncountable, but they are separably injective (x is separably injective provided every operator from a subspace of a separable space into X extends to the whole space); in fact, they form the simplest class of separably injective spaces that have no separable, infinite dimensional complemented separable subspaces.

Classifying complemented subspaces of $\ell_\infty(\lambda)$ for all λ is the same as classifying the injective Banach space. This is a great problem and nothing has been done on it for more than 40 years. We have no new information on this problem.

Spaces of the form $\ell_{\infty}^{c}(\lambda)$ are not injective when λ is uncountable, but they are separably injective (x is separably injective provided every operator from a subspace of a separable space into X extends to the whole space); in fact, they form the simplest class of separably injective spaces that have no separable, infinite dimensional complemented separable subspaces.

Classifying complemented subspaces of $\ell_\infty(\lambda)$ for all λ is the same as classifying the injective Banach space. This is a great problem and nothing has been done on it for more than 40 years. We have no new information on this problem.

Spaces of the form $\ell_{\infty}^{\mathcal{C}}(\lambda)$ are not injective when λ is uncountable, but they are separably injective (x is separably injective provided every operator from a subspace of a separable space into x extends to the whole space); in fact, they form the simplest class of separably injective spaces that have no separable, infinite dimensional complemented separable subspaces.

Classifying complemented subspaces of $\ell_\infty(\lambda)$ for all λ is the same as classifying the injective Banach space. This is a great problem and nothing has been done on it for more than 40 years. We have no new information on this problem.

Spaces of the form $\ell_{\infty}^{c}(\lambda)$ are not injective when λ is uncountable, but they are separably injective (x is separably injective provided every operator from a subspace of a separable space into x extends to the whole space); in fact, they form the simplest class of separably injective spaces that have no separable, infinite dimensional complemented separable subspaces.

Theorem.

Let λ be an infinite cardinal number. Then every infinite dimensional, complemented subspace of $\ell_{\infty}^{c}(\lambda)$ is isomorphic either to ℓ_{∞} or to $\ell_{\infty}^{c}(\kappa)$ for some cardinal $\kappa \leqslant \lambda$. In particular, $\ell_{\infty}^{c}(\lambda)$ is a primary Banach space.

There are three main steps in the proof of the classification theorem, the first being:

Proposition.

Let λ be a cardinal number and let $T: \ell_{\infty}^{c}(\lambda) \to \ell_{\infty}^{c}(\lambda)$ be an operator that is not an isomorphism on any sublattice isometric to $c_{0}(\lambda)$. Then for every $\varepsilon > 0$ there is subset Λ of λ so that $|\Lambda| < \lambda$ and

$$||TR_{\lambda\setminus\Lambda}|| \leqslant \varepsilon.$$

Consequently, if also T is a projection onto a subspace X, then X is isomorphic to a complemented subspace of $\ell_{\infty}^{c}(\kappa)$ for some $\kappa < \lambda$.

Theorem.

Let λ be an infinite cardinal number. Then every infinite dimensional, complemented subspace of $\ell_{\infty}^{c}(\lambda)$ is isomorphic either to ℓ_{∞} or to $\ell_{\infty}^{c}(\kappa)$ for some cardinal $\kappa \leqslant \lambda$. In particular, $\ell_{\infty}^{c}(\lambda)$ is a primary Banach space.

There are three main steps in the proof of the classification theorem, the first being:

Proposition.

Let λ be a cardinal number and let $T: \ell_{\infty}^{c}(\lambda) \to \ell_{\infty}^{c}(\lambda)$ be an operator that is not an isomorphism on any sublattice isometric to $c_{0}(\lambda)$. Then for every $\varepsilon > 0$ there is subset Λ of λ so that $|\Lambda| < \lambda$ and

$$||TR_{\lambda \setminus \Lambda}|| \leq \varepsilon.$$

Consequently, if also T is a projection onto a subspace X, then X is isomorphic to a complemented subspace of $\ell_{\infty}^{c}(\kappa)$ for some $\kappa < \lambda$.

Proposition.

 $T: \ell_{\infty}^{c}(\lambda) \to \ell_{\infty}^{c}(\lambda)$ not an isomorphism on any sublattice isometric to $c_{0}(\lambda)$. Then $\forall \varepsilon > 0 \ \exists \Lambda \subset \lambda \ s.t. \ |\Lambda| < \lambda \ and \ \|TR_{\lambda \setminus \Lambda}\| \leqslant \varepsilon$. Consequently, if T is a projection onto a subspace X, then X is isomorphic to a complemented subspace of $\ell_{\infty}^{c}(\kappa)$ for some cardinal number $\kappa < \lambda$.

For the "consequently" statement, suppose that T is a projection onto a subspace X. Then

$$I_X = (TR_{\lambda \setminus \Lambda} + TR_{\Lambda})|_X,$$

SO

$$||(I_X - TR_{\Lambda})|_X|| \leq \varepsilon$$

hence if ε < 1, there is an operator U on X so that

$$J_X = (UTR_{\Lambda})|_X.$$

Thus I_X factors through $\ell_{\infty}^c(|\Lambda|)$.

Proposition.

 $T: \ell_{\infty}^{c}(\lambda) \to \ell_{\infty}^{c}(\lambda)$ not an isomorphism on any sublattice isometric to $c_{0}(\lambda)$. Then $\forall \varepsilon > 0 \ \exists \Lambda \subset \lambda \ s.t. \ |\Lambda| < \lambda \ and \ \|TR_{\lambda \setminus \Lambda}\| \leqslant \varepsilon$. Consequently, if T is a projection onto a subspace X, then X is isomorphic to a complemented subspace of $\ell_{\infty}^{c}(\kappa)$ for some cardinal number $\kappa < \lambda$.

For the "consequently" statement, suppose that T is a projection onto a subspace X. Then

$$I_X = (TR_{\lambda \setminus \Lambda} + TR_{\Lambda})|_X,$$

so

$$\|(I_X-TR_{\Lambda})|_X\|\leqslant \varepsilon$$

hence if ε < 1, there is an operator U on X so that

$$I_X = (UTR_{\Lambda})|_X.$$

Thus I_X factors through $\ell_{\infty}^{c}(|\Lambda|)$.

The preceding proposition and the next two propositions for the case $\Lambda=\lambda,$ prove, via transfinite induction, the classification theorem.

Proposition.

If X is complemented in $\ell_{\infty}^{c}(\lambda)$ and $c_{0}(\Lambda)$ embeds into X, then $\ell_{\infty}^{c}(\Lambda)$ embeds into X.

Proposition.

If X is a subspace of $\ell_{\infty}^{c}(\lambda)$ that is isomorphic to $\ell_{\infty}^{c}(\Lambda)$, then there is a subspace Y of X s.t. Y is isomorphic to $\ell_{\infty}^{c}(\Lambda)$ and Y is complemented in $\ell_{\infty}^{c}(\lambda)$.

The preceding proposition and the next two propositions for the case $\Lambda = \lambda$, prove, via transfinite induction, the classification theorem.

Proposition.

If X is complemented in $\ell_{\infty}^{c}(\lambda)$ and $c_{0}(\Lambda)$ embeds into X, then $\ell_{\infty}^{c}(\Lambda)$ embeds into X.

Proposition.

If X is a subspace of $\ell_{\infty}^{c}(\lambda)$ that is isomorphic to $\ell_{\infty}^{c}(\Lambda)$, then there is a subspace Y of X s.t. Y is isomorphic to $\ell_{\infty}^{c}(\Lambda)$ and Y is complemented in $\ell_{\infty}^{c}(\lambda)$.

Summary

Proposition.

 $T:\ell_{\infty}^{c}(\lambda) \to \ell_{\infty}^{c}(\lambda)$ not an isomorphism on any sublattice isometric to $c_{0}(\lambda)$. Then $\forall \varepsilon > 0 \ \exists \Lambda \subset \lambda \ s.t. \ |\Lambda| < \lambda \ and \ \|TR_{\lambda \setminus \Lambda}\| \leqslant \varepsilon$. Consequently, if T is a projection onto a subspace X, then X is isomorphic to a complemented subspace of $\ell_{\infty}^{c}(\kappa)$ for some cardinal number $\kappa < \lambda$.

Proposition.

If X is complemented in $\ell_{\infty}^{c}(\lambda)$ and $c_{0}(\Lambda)$ embeds into X, then $\ell_{\infty}^{c}(\Lambda)$ embeds into X complementably.

Theorem

Let λ be an infinite cardinal number. Then every infinite dimensional, complemented subspace of $\ell_{\infty}^{c}(\lambda)$ is isomorphic either to ℓ_{∞} or to $\ell_{\infty}^{c}(\kappa)$ for some cardinal $\kappa \leqslant \lambda$.

Summary

Proposition.

 $T: \ell_{\infty}^{c}(\lambda) \to \ell_{\infty}^{c}(\lambda)$ not an isomorphism on any sublattice isometric to $c_{0}(\lambda)$. Then $\forall \varepsilon > 0 \ \exists \Lambda \subset \lambda \ s.t. \ |\Lambda| < \lambda \ and \ \|TR_{\lambda \setminus \Lambda}\| \leqslant \varepsilon$. Consequently, if T is a projection onto a subspace X, then X is isomorphic to a complemented subspace of $\ell_{\infty}^{c}(\kappa)$ for some cardinal number $\kappa < \lambda$.

Proposition.

If X is complemented in $\ell_{\infty}^{c}(\lambda)$ and $c_{0}(\Lambda)$ embeds into X, then $\ell_{\infty}^{c}(\Lambda)$ embeds into X complementably.

Theorem

Let λ be an infinite cardinal number. Then every infinite dimensional, complemented subspace of $\ell_{\infty}^{c}(\lambda)$ is isomorphic either to ℓ_{∞} or to $\ell_{\infty}^{c}(\kappa)$ for some cardinal $\kappa \leqslant \lambda$.

Summary

Proposition.

 $T: \ell_{\infty}^{c}(\lambda) \to \ell_{\infty}^{c}(\lambda)$ not an isomorphism on any sublattice isometric to $c_{0}(\lambda)$. Then $\forall \varepsilon > 0 \ \exists \Lambda \subset \lambda \ s.t. \ |\Lambda| < \lambda \ and \ \|TR_{\lambda \setminus \Lambda}\| \leqslant \varepsilon$. Consequently, if T is a projection onto a subspace X, then X is isomorphic to a complemented subspace of $\ell_{\infty}^{c}(\kappa)$ for some cardinal number $\kappa < \lambda$.

Proposition.

If X is complemented in $\ell_{\infty}^{c}(\lambda)$ and $c_{0}(\Lambda)$ embeds into X, then $\ell_{\infty}^{c}(\Lambda)$ embeds into X complementably.

Theorem.

Let λ be an infinite cardinal number. Then every infinite dimensional, complemented subspace of $\ell_{\infty}^{c}(\lambda)$ is isomorphic either to ℓ_{∞} or to $\ell_{\infty}^{c}(\kappa)$ for some cardinal $\kappa \leqslant \lambda$.

Thanks for your attention!