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Mokobodzki theorem

Theorem (Mokobodzki; in [Rogalski 1968])
Let X be a compact convex set

(i.e., a compact convex subset of a Hausdorff locally convex space)

and f : X → R be an affine function of the first Baire class
(i.e., f is the pointwise limit of a sequence of continuous functions).

Then there is a sequence (un) of affine continuous functions
such that un → f pointwise on X .

Remark
One can achieve ‖un‖∞ ≤ ‖f‖∞ for each n.

[Odell-Rosenthal 1975]

Ondřej F.K. Kalenda Vector-valued version of the Mokobodzki theorem



Mokobodzki theorem

Theorem (Mokobodzki; in [Rogalski 1968])
Let X be a compact convex set

(i.e., a compact convex subset of a Hausdorff locally convex space)

and f : X → R be an affine function of the first Baire class
(i.e., f is the pointwise limit of a sequence of continuous functions).

Then there is a sequence (un) of affine continuous functions
such that un → f pointwise on X .

Remark
One can achieve ‖un‖∞ ≤ ‖f‖∞ for each n.

[Odell-Rosenthal 1975]
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Vector-valued version

Question
What about vector-valued functions?

I.e., let X be a compact convex set, E a Banach space and
f : X → E an affine mapping of the first Baire class.
Is there a sequence of affine continuous mappings un : X → E
such that un → f pointwise?

Trivial part of the answer
YES, if dim E = d <∞.
Moreover, one can achieve ‖un‖∞ ≤ d · ‖f‖∞.
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Negative results

Example [Mercourakis-Stamati 2002]
Let E be a separable reflexive Banach space, X = (BE ,w) and
f : X → E be the identity mapping. Then:

I f is of the first Baire class.

I f is the pointwise limit of a sequence of affine continuous
mappings iff E enjoys the compact approximation property.

Remarks
I [Enflo 1973] There are separable reflexive spaces failing

the c.a.p.
I [KS] If E fails the c.a.p., then f does not belong to any

affine Baire class. I.e., f cannot be reached by iterated
pointwise limits of sequences starting from affine
continuous mappings.
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Positive results I

Theorem [Mercourakis-Stamati 2002]
Let X be a compact convex set and E a Banach space with the
bounded approximation property. Let f : X → E be an affine
mapping of the first Baire class.
Then there is a sequence of affine continuous mappings
un : X → E such that un → f pointwise.

Remarks
I The assumptions are slightly weaker

(X = (BF∗ ,w∗) and E is separable).
I The proof contains a gap.
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Ondřej F.K. Kalenda Vector-valued version of the Mokobodzki theorem



Positive results I

Theorem [Mercourakis-Stamati 2002]
Let X be a compact convex set and E a Banach space with the
bounded approximation property. Let f : X → E be an affine
mapping of the first Baire class.
Then there is a sequence of affine continuous mappings
un : X → E such that un → f pointwise.

Remarks
I The assumptions are slightly weaker

(X = (BF∗ ,w∗) and E is separable).
I The proof contains a gap.
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Positive results II

Theorem [KS]
Let X be a compact convex set and E a Banach space with the
b.a.p. Let f : X → E be an affine mapping of the first Baire
class.
Then there is a sequence of affine continuous mappings
un : X → E such that un → f pointwise.

Moreover, if E has the λ-b.a.p., then one can achieve
‖un‖∞ ≤ λ · ‖f‖∞.

Question
Is the estimate optimal?
Can one replace b.a.p by a.p? Or by c.a.p?
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The tools used in the proof I

E ... a Banach space with λ-b.a.p.
X ... a compact convex set
f : X → E ... an affine function of the first Baire class.

I f (X ) is separable.
I There are finite rank operators Tn : E → E , ‖Tn‖ ≤ λ,

Tn → I pointwise on f (X ).
I There are continuous affine fn,m : X → Tn(E) with

fn,m
m−→ Tn ◦ f pointwise on X (Mokobodzki theorem).

I Hence, f = limn limm fn,m, in particular f is of the second
affine Baire class.

I The problem is to show f is even of the first affine Baire
class.
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The tools used in the proof II

Lemma [Mercourakis-Stamati 2002]
Let K be a compact space, E a Banach space, fn,m : K → E a
double sequence of mappings.

Suppose that
I All the mappings fn,m are continuous.
I The family (fn,m) is uniformly bounded.
I The double pointwise limit f = limn limm fn,m exists and is of

the first Baire class.
Then there are gk , convex combinations of fn,m, such that
gk → f pointwise.

Back to the proof

I We have f = limn limm fn,m, fn,m affine continuous,
f of the first Baire class.

I So, it is enough to prove ‖fn,m‖∞ ≤ λ‖f‖∞.
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Mokobodzki theorem in finite dimension

Lemma (Mokobodzki)
Let X be a compact convex set, E a finite-dimensional Banach
space. Let f : X → E be an affine mapping of the first Baire
class.
Then there is a sequence of affine continuous mappings
un : X → E such that un → f pointwise.

Moreover, one can achieve

‖un‖∞ ≤ (dim E) · ‖f‖∞.��
��
PP

PP
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Ondřej F.K. Kalenda Vector-valued version of the Mokobodzki theorem



Mokobodzki theorem in finite dimension

Lemma [KS]
Let X be a compact convex set, E a finite-dimensional Banach
space. Let f : X → E be an affine mapping of the first Baire
class.
Then there is a sequence of affine continuous mappings
un : X → E such that un → f pointwise.
Moreover, one can achieve

‖un‖∞ ≤ (dim E) · ‖f‖∞.��
��
PP

PP
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Sketch of the proof

X ... a compact convex set
E ... a Banach space of dimension d <∞
f : X → E ... an affine mapping of the first Baire class

I WLOG X = (BF∗ ,w∗), f = T |BF∗ for some T ∈ L(F ∗,E).
I L(F ∗,E) ≈ (F ∗∗)d ≈ L(E∗,F ∗∗) algebraically.
I Lw∗(F ∗,E) ≈ F d ≈ L(E∗,F ) algebraically.

Under this identification
I L(F ∗,E) ≈ L(E∗,F ∗∗) isometrically
I [Dean 1973] L(E∗,F )∗∗ ≈ L(E∗,F ∗∗) isometrically
I T ∈ L(E∗,F )∗∗, ‖T‖ = ‖f‖∞
I T is of the first Baire class in the weak∗ topology

I There are Tn ∈ L(E∗,F ) ≈ Lw∗(F ∗,E), ‖Tn‖ ≤ T , Tn
w∗
−→ T

(by [Odell-Rosenthal 1975])
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Ondřej F.K. Kalenda Vector-valued version of the Mokobodzki theorem



Sketch of the proof

X ... a compact convex set
E ... a Banach space of dimension d <∞
f : X → E ... an affine mapping of the first Baire class

I WLOG X = (BF∗ ,w∗), f = T |BF∗ for some T ∈ L(F ∗,E).
I L(F ∗,E) ≈ (F ∗∗)d ≈ L(E∗,F ∗∗) algebraically.
I Lw∗(F ∗,E) ≈ F d ≈ L(E∗,F ) algebraically.

Under this identification
I L(F ∗,E) ≈ L(E∗,F ∗∗) isometrically
I [Dean 1973] L(E∗,F )∗∗ ≈ L(E∗,F ∗∗) isometrically

I T ∈ L(E∗,F )∗∗, ‖T‖ = ‖f‖∞
I T is of the first Baire class in the weak∗ topology

I There are Tn ∈ L(E∗,F ) ≈ Lw∗(F ∗,E), ‖Tn‖ ≤ T , Tn
w∗
−→ T

(by [Odell-Rosenthal 1975])
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Further variants

Theorem [KS]
Let X be a compact convex set and E a Banach space. Let
f : X → E be an affine mapping of the first Baire class.
Then there is a sequence of affine continuous mappings
un : X → E such that un → f pointwise if one of the following
assertions is satisfied:

I X is a Choquet simplex.
I X = (BF∗ ,w∗), F ∗ is isometric to some L1-space (real or

complex).
I A(X ) is isomorphic to a complemented subspace of an

L1-predual.

Question
Is it enough to suppose that A(X ) has the a.p. (b.a.p., c.a.p.)?
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