Vector-valued version of the Mokobodzki theorem

Ondřej F.K. Kalenda

Department of Mathematical Analysis Faculty of Mathematics and Physics Charles University in Prague

Relations Between Banach Space Theory and Geometric Measure Theory University of Warwick, 8 - 12 June 2015 This talk is based on Section 4 of the paper [KS] O.Kalenda and J.Spurný: Baire classes of affine vector-valued functions, http://arxiv.org/abs/1411.1874

- Let X be a compact convex set
 - (i.e., a compact convex subset of a Hausdorff locally convex space)

Let X be a compact convex set

(i.e., a compact convex subset of a Hausdorff locally convex space) and $f: X \to \mathbb{R}$ be an affine function of the first Baire class

(i.e., *f* is the pointwise limit of a sequence of continuous functions).

Let X be a compact convex set

(i.e., a compact convex subset of a Hausdorff locally convex space) and $f: X \to \mathbb{R}$ be an affine function of the first Baire class

(i.e., *f* is the pointwise limit of a sequence of continuous functions). Then there is a sequence (u_n) of affine continuous functions such that $u_n \rightarrow f$ pointwise on *X*.

Let X be a compact convex set

(i.e., a compact convex subset of a Hausdorff locally convex space) and $f: X \to \mathbb{R}$ be an affine function of the first Baire class

(i.e., *f* is the pointwise limit of a sequence of continuous functions). Then there is a sequence (u_n) of affine continuous functions such that $u_n \rightarrow f$ pointwise on *X*.

Remark

One can achieve $||u_n||_{\infty} \leq ||f||_{\infty}$ for each *n*.

[Odell-Rosenthal 1975]

< 回 > < 回 > < 回 >

Question What about vector-valued functions?

A.

(4) (3) (4) (4) (4)

Question

What about vector-valued functions?

I.e., let *X* be a compact convex set, *E* a Banach space and $f: X \rightarrow E$ an affine mapping of the first Baire class.

Is there a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise?

Question

What about vector-valued functions?

I.e., let *X* be a compact convex set, *E* a Banach space and $f: X \rightarrow E$ an affine mapping of the first Baire class.

Is there a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise?

Trivial part of the answer YES, if dim $E = d < \infty$.

Question

What about vector-valued functions?

I.e., let *X* be a compact convex set, *E* a Banach space and $f: X \rightarrow E$ an affine mapping of the first Baire class.

Is there a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise?

Trivial part of the answer

YES, if dim $E = d < \infty$.

Moreover, one can achieve $||u_n||_{\infty} \leq d \cdot ||f||_{\infty}$.

Let *E* be a separable reflexive Banach space, $X = (B_E, w)$ and $f : X \to E$ be the identity mapping. Then:

f is of the first Baire class.

Let *E* be a separable reflexive Banach space, $X = (B_E, w)$ and $f : X \to E$ be the identity mapping. Then:

- f is of the first Baire class.
- f is the pointwise limit of a sequence of affine continuous mappings iff E enjoys the compact approximation property.

Let *E* be a separable reflexive Banach space, $X = (B_E, w)$ and $f : X \to E$ be the identity mapping. Then:

- f is of the first Baire class.
- f is the pointwise limit of a sequence of affine continuous mappings iff E enjoys the compact approximation property.

Remarks

 [Enflo 1973] There are separable reflexive spaces failing the c.a.p.

Let *E* be a separable reflexive Banach space, $X = (B_E, w)$ and $f : X \to E$ be the identity mapping. Then:

- f is of the first Baire class.
- f is the pointwise limit of a sequence of affine continuous mappings iff E enjoys the compact approximation property.

Remarks

- [Enflo 1973] There are separable reflexive spaces failing the c.a.p.
- [KS] If E fails the c.a.p., then f does not belong to any affine Baire class. I.e., f cannot be reached by iterated pointwise limits of sequences starting from affine continuous mappings.

Theorem [Mercourakis-Stamati 2002]

Let *X* be a compact convex set and *E* a Banach space with the bounded approximation property. Let $f : X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise.

< 同 > < 回 > < 回 >

Theorem [Mercourakis-Stamati 2002]

Let *X* be a compact convex set and *E* a Banach space with the bounded approximation property. Let $f : X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise.

Remarks

The assumptions are slightly weaker

 $(X = (B_{F^*}, w^*)$ and *E* is separable).

Theorem [Mercourakis-Stamati 2002]

Let *X* be a compact convex set and *E* a Banach space with the bounded approximation property. Let $f : X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise.

Remarks

The assumptions are slightly weaker

 $(X = (B_{F^*}, w^*)$ and *E* is separable).

・ 戸 ト ・ ヨ ト ・ ヨ ト

• The proof contains a gap.

Theorem [KS]

Let *X* be a compact convex set and *E* a Banach space with the b.a.p. Let $f : X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise.

Theorem [KS]

Let *X* be a compact convex set and *E* a Banach space with the b.a.p. Let $f : X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n: X \to E$ such that $u_n \to f$ pointwise.

Moreover, if *E* has the λ -b.a.p., then one can achieve

 $\|\boldsymbol{u}_n\|_{\infty} \leq \boldsymbol{\lambda} \cdot \|\boldsymbol{f}\|_{\infty}.$

Theorem [KS]

Let *X* be a compact convex set and *E* a Banach space with the b.a.p. Let $f : X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n: X \to E$ such that $u_n \to f$ pointwise.

Moreover, if *E* has the λ -b.a.p., then one can achieve

 $\|u_n\|_{\infty} \leq \lambda \cdot \|f\|_{\infty}.$

Question

Is the estimate optimal? Can one replace b.a.p by a.p? Or by c.a.p?

The tools used in the proof I

- *E* ... a Banach space with λ -b.a.p.
- X ... a compact convex set
- $f: X \rightarrow E$... an affine function of the first Baire class.

The tools used in the proof I

- *E* ... a Banach space with λ -b.a.p.
- X ... a compact convex set
- $f: X \rightarrow E$... an affine function of the first Baire class.
 - f(X) is separable.

The tools used in the proof I

- *E* ... a Banach space with λ -b.a.p.
- X ... a compact convex set
- $f: X \rightarrow E$... an affine function of the first Baire class.
 - f(X) is separable.
 - There are finite rank operators $T_n : E \to E$, $||T_n|| \le \lambda$, $T_n \to I$ pointwise on f(X).

- *E* ... a Banach space with λ -b.a.p.
- X ... a compact convex set
- $f: X \rightarrow E$... an affine function of the first Baire class.
 - f(X) is separable.
 - There are finite rank operators $T_n : E \to E$, $||T_n|| \le \lambda$, $T_n \to I$ pointwise on f(X).
 - ► There are continuous affine $f_{n,m}: X \to T_n(E)$ with $f_{n,m} \xrightarrow{m} T_n \circ f$ pointwise on X (Mokobodzki theorem).

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- *E* ... a Banach space with λ -b.a.p.
- X ... a compact convex set
- $f: X \rightarrow E$... an affine function of the first Baire class.
 - f(X) is separable.
 - There are finite rank operators $T_n : E \to E$, $||T_n|| \le \lambda$, $T_n \to I$ pointwise on f(X).
 - ► There are continuous affine $f_{n,m} : X \to T_n(E)$ with $f_{n,m} \xrightarrow{m} T_n \circ f$ pointwise on *X* (Mokobodzki theorem).
 - Hence, $f = \lim_{n \to \infty} \lim_{m \to \infty} f_{n,m}$, in particular *f* is of the second affine Baire class.

< 回 > < 回 > < 回 >

- *E* ... a Banach space with λ -b.a.p.
- X ... a compact convex set
- $f: X \rightarrow E$... an affine function of the first Baire class.
 - f(X) is separable.
 - ► There are finite rank operators $T_n : E \to E$, $||T_n|| \le \lambda$, $T_n \to I$ pointwise on f(X).
 - ► There are continuous affine $f_{n,m} : X \to T_n(E)$ with $f_{n,m} \xrightarrow{m} T_n \circ f$ pointwise on *X* (Mokobodzki theorem).
 - ► Hence, $f = \lim_{n \to \infty} \lim_{m \to \infty} f_{n,m}$, in particular *f* is of the second affine Baire class.
 - ► The problem is to show *f* is even of the first affine Baire class.

Let *K* be a compact space, *E* a Banach space, $f_{n,m} : K \to E$ a double sequence of mappings.

Let *K* be a compact space, *E* a Banach space, $f_{n,m} : K \to E$ a double sequence of mappings. Suppose that

• All the mappings $f_{n,m}$ are continuous.

Let *K* be a compact space, *E* a Banach space, $f_{n,m} : K \to E$ a double sequence of mappings. Suppose that

- All the mappings $f_{n,m}$ are continuous.
- The family $(f_{n,m})$ is uniformly bounded.

Let *K* be a compact space, *E* a Banach space, $f_{n,m} : K \to E$ a double sequence of mappings. Suppose that

- All the mappings $f_{n,m}$ are continuous.
- The family $(f_{n,m})$ is uniformly bounded.
- The double pointwise limit $f = \lim_{n \to \infty} \lim_{m \to \infty} f_{n,m}$ exists and is of the first Baire class.

Let *K* be a compact space, *E* a Banach space, $f_{n,m} : K \to E$ a double sequence of mappings. Suppose that

- All the mappings $f_{n,m}$ are continuous.
- The family $(f_{n,m})$ is uniformly bounded.
- ► The double pointwise limit $f = \lim_{n \to \infty} \lim_{m \to \infty} f_{n,m}$ exists and is of the first Baire class.

Then there are g_k , convex combinations of $f_{n,m}$, such that $g_k \rightarrow f$ pointwise.

< 回 > < 回 > < 回 >

Let *K* be a compact space, *E* a Banach space, $f_{n,m} : K \to E$ a double sequence of mappings. Suppose that

- All the mappings $f_{n,m}$ are continuous.
- The family $(f_{n,m})$ is uniformly bounded.
- ► The double pointwise limit $f = \lim_{n \to \infty} \lim_{m \to \infty} f_{n,m}$ exists and is of the first Baire class.

Then there are g_k , convex combinations of $f_{n,m}$, such that $g_k \rightarrow f$ pointwise.

Back to the proof

• We have $f = \lim_{n \to \infty} \lim_{m \to \infty} f_{n,m}$, $f_{n,m}$ affine continuous, f of the first Baire class.

• (10) • (10)

Let *K* be a compact space, *E* a Banach space, $f_{n,m} : K \to E$ a double sequence of mappings. Suppose that

- All the mappings $f_{n,m}$ are continuous.
- The family $(f_{n,m})$ is uniformly bounded.
- ► The double pointwise limit $f = \lim_{n \to \infty} \lim_{m \to \infty} f_{n,m}$ exists and is of the first Baire class.

Then there are g_k , convex combinations of $f_{n,m}$, such that $g_k \rightarrow f$ pointwise.

Back to the proof

- We have $f = \lim_{n \to \infty} \lim_{m \to \infty} f_{n,m}$, $f_{n,m}$ affine continuous, f of the first Baire class.
- So, it is enough to prove $\|f_{n,m}\|_{\infty} \leq \lambda \|f\|_{\infty}$.

Lemma (Mokobodzki)

Let *X* be a compact convex set, *E* a finite-dimensional Banach space. Let $f : X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise.

同下 イヨト イヨト

Lemma (Mokobodzki)

Let *X* be a compact convex set, *E* a finite-dimensional Banach space. Let $f : X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise. Moreover, one can achieve

 $\|u_n\|_{\infty} \leq (\dim E) \cdot \|f\|_{\infty}.$

伺下 イヨト イヨト

Lemma [KS]

Let *X* be a compact convex set, *E* a finite-dimensional Banach space. Let $f : X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise. Moreover, one can achieve

noreover, one can achieve

 $\|u_n\|_{\infty} \leq \operatorname{dim}(f) \|f\|_{\infty}.$

< 同 > < 回 > < 回 >

X ... a compact convex set

E ... a Banach space of dimension $d < \infty$

 $f: X \rightarrow E$... an affine mapping of the first Baire class

- X ... a compact convex set
- *E* ... a Banach space of dimension $d < \infty$
- $f: X \rightarrow E$... an affine mapping of the first Baire class
 - ▶ WLOG $X = (B_{F^*}, w^*), f = T|_{B_{F^*}}$ for some $T \in L(F^*, E)$.

(日本)(日本)(日本)(日本)

- X ... a compact convex set
- *E* ... a Banach space of dimension $d < \infty$
- $f: X \to E$... an affine mapping of the first Baire class
 - ▶ WLOG $X = (B_{F^*}, w^*), f = T|_{B_{F^*}}$ for some $T \in L(F^*, E)$.
 - $L(F^*, E) \approx (F^{**})^d \approx L(E^*, F^{**})$ algebraically.

- X ... a compact convex set
- *E* ... a Banach space of dimension $d < \infty$
- $f: X \to E$... an affine mapping of the first Baire class
 - ▶ WLOG $X = (B_{F^*}, w^*), f = T|_{B_{F^*}}$ for some $T \in L(F^*, E)$.
 - $L(F^*, E) \approx (F^{**})^d \approx L(E^*, F^{**})$ algebraically.
 - $L_{w^*}(F^*, E) \approx F^d \approx L(E^*, F)$ algebraically.

X ... a compact convex set

E ... a Banach space of dimension $d < \infty$

 $f: X \to E$... an affine mapping of the first Baire class

▶ WLOG
$$X = (B_{F^*}, w^*), f = T|_{B_{F^*}}$$
 for some $T \in L(F^*, E)$.

•
$$L(F^*, E) \approx (F^{**})^d \approx L(E^*, F^{**})$$
 algebraically.

•
$$L_{w^*}(F^*, E) \approx F^d \approx L(E^*, F)$$
 algebraically.

Under this identification

•
$$L(F^*, E) \approx L(E^*, F^{**})$$
 isometrically

X ... a compact convex set

E ... a Banach space of dimension $d < \infty$

 $f: X \rightarrow E$... an affine mapping of the first Baire class

▶ WLOG
$$X = (B_{F^*}, w^*), f = T|_{B_{F^*}}$$
 for some $T \in L(F^*, E)$.

•
$$L(F^*, E) \approx (F^{**})^d \approx L(E^*, F^{**})$$
 algebraically.

•
$$L_{w^*}(F^*, E) \approx F^d \approx L(E^*, F)$$
 algebraically.

Under this identification

•
$$L(F^*, E) \approx L(E^*, F^{**})$$
 isometrically

► [Dean 1973] $L(E^*, F)^{**} \approx L(E^*, F^{**})$ isometrically

X ... a compact convex set

E ... a Banach space of dimension $d < \infty$

 $f: X \rightarrow E$... an affine mapping of the first Baire class

▶ WLOG
$$X = (B_{F^*}, w^*), f = T|_{B_{F^*}}$$
 for some $T \in L(F^*, E)$.

•
$$L(F^*, E) \approx (F^{**})^d \approx L(E^*, F^{**})$$
 algebraically.

•
$$L_{w^*}(F^*, E) \approx F^d \approx L(E^*, F)$$
 algebraically.

Under this identification

- $L(F^*, E) \approx L(E^*, F^{**})$ isometrically
- ► [Dean 1973] L(E*, F)** ≈ L(E*, F**) isometrically

•
$$T \in L(E^*, F)^{**}, ||T|| = ||f||_{\infty}$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

- X ... a compact convex set
- *E* ... a Banach space of dimension $d < \infty$
- $f: X \to E$... an affine mapping of the first Baire class
 - ▶ WLOG $X = (B_{F^*}, w^*)$, $f = T|_{B_{F^*}}$ for some $T \in L(F^*, E)$.
 - $L(F^*, E) \approx (F^{**})^d \approx L(E^*, F^{**})$ algebraically.
 - $L_{w^*}(F^*, E) \approx F^d \approx L(E^*, F)$ algebraically.

Under this identification

- $L(F^*, E) \approx L(E^*, F^{**})$ isometrically
- ▶ [Dean 1973] $L(E^*, F)^{**} \approx L(E^*, F^{**})$ isometrically
- $T \in L(E^*, F)^{**}, ||T|| = ||f||_{\infty}$
- T is of the first Baire class in the weak* topology

X ... a compact convex set

E ... a Banach space of dimension $d < \infty$

 $f: X \to E$... an affine mapping of the first Baire class

▶ WLOG
$$X = (B_{F^*}, w^*), f = T|_{B_{F^*}}$$
 for some $T \in L(F^*, E)$.

•
$$L(F^*, E) \approx (F^{**})^d \approx L(E^*, F^{**})$$
 algebraically.

•
$$L_{w^*}(F^*, E) \approx F^d \approx L(E^*, F)$$
 algebraically.

Under this identification

- $L(F^*, E) \approx L(E^*, F^{**})$ isometrically
- ► [Dean 1973] $L(E^*, F)^{**} \approx L(E^*, F^{**})$ isometrically
- $T \in L(E^*, F)^{**}, ||T|| = ||f||_{\infty}$
- T is of the first Baire class in the weak* topology
- ► There are $T_n \in L(E^*, F) \approx L_{w^*}(F^*, E)$, $||T_n|| \leq T$, $T_n \xrightarrow{w^*} T$ (by [Odell-Rosenthal 1975])

通 と く ヨ と く ヨ と

Let *X* be a compact convex set and *E* a Banach space. Let $f: X \to E$ be an affine mapping of the first Baire class.

Then there is a sequence of affine continuous mappings $u_n : X \to E$ such that $u_n \to f$ pointwise if one of the following assertions is satisfied:

Let *X* be a compact convex set and *E* a Banach space. Let $f: X \to E$ be an affine mapping of the first Baire class. Then there is a sequence of affine continuous mappings $u_n: X \to E$ such that $u_n \to f$ pointwise if one of the following assertions is satisfied:

► *X* is a Choquet simplex.

Let *X* be a compact convex set and *E* a Banach space. Let $f: X \to E$ be an affine mapping of the first Baire class. Then there is a sequence of affine continuous mappings $u_n: X \to E$ such that $u_n \to f$ pointwise if one of the following assertions is satisfied:

- ► X is a Choquet simplex.
- ► X = (B_{F*}, w^{*}), F^{*} is isometric to some L¹-space (real or complex).

Let *X* be a compact convex set and *E* a Banach space. Let $f: X \to E$ be an affine mapping of the first Baire class. Then there is a sequence of affine continuous mappings $u_n: X \to E$ such that $u_n \to f$ pointwise if one of the following assertions is satisfied:

- ► X is a Choquet simplex.
- ► X = (B_{F*}, w^{*}), F^{*} is isometric to some L¹-space (real or complex).
- ► 𝔅(X) is isomorphic to a complemented subspace of an L¹-predual.

Let *X* be a compact convex set and *E* a Banach space. Let $f: X \to E$ be an affine mapping of the first Baire class. Then there is a sequence of affine continuous mappings $u_n: X \to E$ such that $u_n \to f$ pointwise if one of the following assertions is satisfied:

- ► X is a Choquet simplex.
- ► X = (B_{F*}, w^{*}), F^{*} is isometric to some L¹-space (real or complex).
- ► 𝔅(X) is isomorphic to a complemented subspace of an L¹-predual.

Question

Is it enough to suppose that $\mathfrak{A}(X)$ has the a.p. (b.a.p., c.a.p.)?