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Lp spaces Lp,λ spaces

Lindenstrauss and Pelczynski (1968) introduced Lp spaces having the
property that each finite dimensional subspace is contained in another finite
dimensional subspace which is not farther than a fixed constant from `n

p space.

Definition
Let 1 ≤ p ≤ ∞ and 1 ≤ λ ≤ ∞. A Banach space X is a Lp,λ space if for each finite
dimensional subspace F of X there is a finite dimensional subspace E of X
containing F such that d(E , `n

p) ≤ λ, where n = dim(E) and d(E , `n
p) is the

Banach-Mazur distance between E and `n
p.

A Banach space X is a Lp space if it is Lp,λ space for some 1 ≤ λ <∞.

Theorem
Let 1 < p <∞, p 6= 2 and X be a Banach space such that X is not isomorphic
to `2. Then X is a Lp space if and only if X is isomorphic to a complemented
subspace of Lp(µ) for some µ.
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Lp spaces Examples

Classical Examples: Let 1 < p <∞, p 6= 2. `p, `p ⊕ `2, `p(`2) and Lp are
mutually non isomorphic Lp spaces.

Rosenthal’s space Xp (1970):

Definition

Let 2 < p <∞ and w = {wn} be a sequence of positive scalars. Define
Xp,w := {{xn} : xn ∈ R,

∑
|xn|p <∞ and

∑
|wnxn|2 <∞}.

For x = {xn} ∈ Xp,w define the norm ||x ||p,w := max{(
∑
|xn|p)

1
p , (

∑
|wnxn|2)

1
2 }.

If w satisfies the condition: for each ε > 0,
∑

wn<ε
wn

2p
p−2 =∞, then Xp,w is not

isomorphic to any of the classical Lp space.

For any sequence of scalars w ,w ′ satisfying the above condition, Xp,w and
Xp,w ′ are isomorphic.
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Lp spaces More Examples

More Examples: Let 2 < p <∞.
Bp = `p(Xn) where each Xn ∼ `2 with sup d(Xn, `2) =∞. (Rosenthal-1970)

Dp ∼ (`2n

p ⊗ `2)p,2,(1). (Alspach-1974)
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Trees Definition

We consider ∪n≥1Nn with a natural order (x1, · · · , xn) ≺ (y1, · · · , ym) provided
m ≥ n and xi = yi for 1 ≤ i ≤ n.

Definition

(i) A tree on N is a subset of ∪n≥1Nn with the property that (x1, · · · , xn) ∈ T
whenever (x1, · · · , xn, xn+1) ∈ T .

(ii) A subtree S of a tree T is a subset of T such that S itself is a tree.

(iii) A branch F in T is a subset of mutually comparable elements of T .

(iv) A tree T is well founded provided there is no sequence {nk} in N such that
(n1, · · · ,nm) ∈ T for all m ∈ N.
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Trees Definition
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Trees Order of a tree

Definition
For a tree T , we define the derived tree

D(T ) = ∪n≥1{(n1, · · · ,nm) : (n1, · · · ,nm,n) ∈ T for some n ∈ N}.

Proceeding by induction, we can construct a transfinite system of trees as follows.

(i) Take T 0 = T .

(ii) If Tα is obtained, let Tα+1 = D(Tα).

(iii) For a limit ordinal γ, define T γ = ∩α<γTα. If T is well-founded, then Tα’s are
strictly decreasing as α increases. Hence Tα will be empty for some ordinal α. For a
well founded tree T , we will denote order of T , namely o(T ), to be the smallest
ordinal for which T o(T ) = ∅.
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Trees Order of a tree
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Trees Canonical trees

Definition
For countable ordinal α < ω1 we will define the well founded canonical trees Tα
inductively:
(i) Take T1 to be the tree with a single element.

(ii) If Tα is obtained, define Tα+1 = Ṫα.

(iii) For a limit ordinal β define Tβ = ∪α<βTα with the relation ≺β= ∪α<β ≺α that
is, if u, v ∈ Tβ , u ≺β v if and only if u, v ∈ Tα for some α < β and u ≺α v . Tβ
may be visualized as simply setting the trees Tα side by side in such a way that if
α1 < α2 < β then Tα1 is kept on the left to Tα2 .
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Trees Tree spaces

If we consider the full tree C = ∪∞n=1Nn then G = {−1,1}C is group with
pointwise multiplication.

A measurable function f on G is said to depend only on the coordinates of a
branch Γ of C provided f (x) = f (y) whenever x , y ∈ G with x(c) = y(c) for all
c ∈ Γ.

Definition

Let 1 ≤ p <∞. For a tree T in C we denote X p
T the closed linear span in Lp(G) of

the functions depending on finite branches in T .
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Trees Tree space realization of Alspach’s Dp space

Consider the tree TDp :
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The space Dp(2 < p <∞) is isomorphic to X p
TDp

.
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Trees Tree space realization of Alspach’s Dp space

Theorem (Bourgain, Rosenthal, Schechtman 1981)

(i) For 1 < p <∞, the space X p
C is isomorphic to Lp(G).

(ii) Let 1 ≤ p <∞. If T1, T2 are trees such that T1 ⊆ T2 then X p
T1

is a
complemented subspace of X p

T2
.

Thus {X p
Tα}α<ω1 are Lp spaces for 1 < p <∞, p 6= 2.
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Isomorphic invariance

Let Dn be the set of all n-strings of 0 and 1.

For a Banach spaceX define X Dn to be the set of all functions from Dn to X ,
which can be identified with the set of all 2n tuples (u1, ...,u2n ).

Let XD = ∪∞n=0X Dn . If u ∈ XD then u ∈ X Dn for a unique n ∈ N ∪ {0}, denoted
by |u|. Denote ≺ on XD by u ≺ v if |u| < |v | and for k = |v | − |u|,
u(t) = 2−k/pΣs∈Dk v(t · s).

Let X
δ

be the set of all u ∈ XD such that

δ(Σt∈D|u| |c(t)|p)1/p ≤‖ Σt∈D|u|c(t)u(t) ‖X≤ (Σt∈D|u| |c(t)|p)1/p (1)

for all c ∈ RD|u| .
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Isomorphic invariance Lp Index

Definition

Let Hδ
0 (X ) = X

δ
.

If α = β + 1 and Hδ
β(X ) has been defined, define

Hδ
α(X ) = {u ∈ Hδ

β(X ) : u ≺ v for some v ∈ Hδ
β(X )}.

If α is a limit ordinal define Hδ
α(X ) = ∩β<αHδ

β(X ).

Let hp(δ,X ) be the least ordinal α such that Hδ
α(X ) = Hδ

α+1(X ). If Lp 6↪→ X , define
hp(X ) = sup0<δ≤1hp(δ,X ). If Lp ↪→ X , define hp(X ) = ω1.
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Isomorphic invariance Lp Index

Theorem (Bourgain, Rosenthal, Schechtman 1981)

Let 1 < p <∞, p 6= 2. Then there is a strictly increasing function τ : ω1 → ω1
such that for α < β < ω1, X p

Tτ(β)
6↪→ X p

Tτ(α)
.

X p
Tα spaces are isomorphically distinct at limit ordinals (Alspach 1999).
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Lp index for small subspaces of Lp Ordinal index of Xp
Tω

, `p and `2

Theorem (Dutta, K.)

Let 2 < p <∞ and X be an infinite dimensional subspace of Lp.

(a) hp(X ) = ω, hp(X ) = ω · 2 or hp(X ) ≥ ω2.

(b) hp(`2) = ω.

(c) Let X 6∼ `2. Then hp(X ) = ω if and only if X ↪→ `p.

(d) If X 6↪→ X p
Tω then hp(X ) ≥ ω2.
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Lp index for small subspaces of Lp Ordinal index of Xp
Tω

, `p and `2

Lemma
Let 2 < p <∞ and X be a subspace of Lp. If for some 0 < δ ≤ 1 and n ∈ N,
Hδ
ω+n(X ) 6= ∅ then there exists a constant C (depending on δ, p and X only)

such that X p
Tω+n,0

C
↪→ (X )p,2,(1).

Let X be a subspace of Lp(Ω, µ). For any sequence (xn) such that
xn ∈ X , let ||(xn)||p,2,(1) = max{(

∑
||xn||pp)1/p, (

∑
||xn||22)1/2}.

Define (X )p,2,(1) = {(xn) : xn ∈ X for all n and ||(xn)||p,2,(1) <∞}.
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Lp index for small subspaces of Lp Ordinal index of Xp
Tω

, `p and `2

Proof.
(Idea)

(i) X p
Tω ∼ X p

Tω+k
for all k ∈ N. (Since X p

Tω is square)

(ii) hp(X p
Tω+k

) ≥ ω + k + 1. (BRS)

(iii) Suppose hp(X p
Tω ) > ω · 2.

(iv) X p
Tω·2

A
↪→ X p

Tω . (Using Lemma, this needs a bit of work!)

This is a contradiction to `p(`2) ↪→ X p
Tω·2 as `p(`2) 6↪→ X p

Tω .

Thus hp(X p
Tω ) = ω · 2. Using similar arguments as above (but one needs

careful modifications) we can show that hp(`p) = ω and hp(`2) = ω.
If X 6↪→ X p

Tω then hp(X ) ≥ ω2 needs some results of HOS(2011),
Alspach(1999) and Schechtman(1975).
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Tω·2 as `p(`2) 6↪→ X p

Tω .

Thus hp(X p
Tω ) = ω · 2. Using similar arguments as above (but one needs

careful modifications) we can show that hp(`p) = ω and hp(`2) = ω.
If X 6↪→ X p

Tω then hp(X ) ≥ ω2 needs some results of HOS(2011),
Alspach(1999) and Schechtman(1975).
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