# Subspaces of $L_p$ defined on trees

Divya Khurana

(Joint work with S. Dutta)

Indian Institute of Technology, Kanpur

Warwick, June 2015

・ロト ・回ト ・ヨト ・ヨト

Lindenstrauss and Pelczynski (1968) introduced  $\mathcal{L}_p$  spaces having the property that each finite dimensional subspace is contained in another finite dimensional subspace which is not farther than a fixed constant from  $\ell_p^n$  space.

#### Definition

Let  $1 \le p \le \infty$  and  $1 \le \lambda \le \infty$ . A Banach space X is a  $\mathcal{L}_{p,\lambda}$  space if for each finite dimensional subspace F of X there is a finite dimensional subspace E of X containing F such that  $d(E, \ell_p^n) \le \lambda$ , where  $n = \dim(E)$  and  $d(E, \ell_p^n)$  is the Banach-Mazur distance between E and  $\ell_p^n$ .

A Banach space X is a  $\mathcal{L}_{\rho}$  space if it is  $\mathcal{L}_{\rho,\lambda}$  space for some  $1 \leq \lambda < \infty$ .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Lindenstrauss and Pelczynski (1968) introduced  $\mathcal{L}_p$  spaces having the property that each finite dimensional subspace is contained in another finite dimensional subspace which is not farther than a fixed constant from  $\ell_p^n$  space.

### Definition

Let  $1 \le p \le \infty$  and  $1 \le \lambda \le \infty$ . A Banach space X is a  $\mathcal{L}_{p,\lambda}$  space if for each finite dimensional subspace F of X there is a finite dimensional subspace E of X containing F such that  $d(E, \ell_p^n) \le \lambda$ , where  $n = \dim(E)$  and  $d(E, \ell_p^n)$  is the Banach-Mazur distance between E and  $\ell_p^n$ .

A Banach space X is a  $\mathcal{L}_{\rho}$  space if it is  $\mathcal{L}_{\rho,\lambda}$  space for some  $1 \leq \lambda < \infty$ .

#### Theorem

Let  $1 , <math>p \neq 2$  and X be a Banach space such that X is not isomorphic to  $\ell_2$ . Then X is a  $\mathcal{L}_p$  space if and only if X is isomorphic to a complemented subspace of  $L_p(\mu)$  for some  $\mu$ .

・ロン ・四 と ・ 回 と ・ 回 と

**Classical Examples:** Let  $1 , <math>p \neq 2$ .  $\ell_p$ ,  $\ell_p \oplus \ell_2$ ,  $\ell_p(\ell_2)$  and  $L_p$  are mutually non isomorphic  $\mathcal{L}_p$  spaces.

**Rosenthal's space**  $X_p$  (1970):

#### Definition

Let  $2 and <math>w = \{w_n\}$  be a sequence of positive scalars. Define  $X_{p,w} := \{\{x_n\} : x_n \in \mathbb{R}, \sum |x_n|^p < \infty \text{ and } \sum |w_n x_n|^2 < \infty\}.$ 

For  $x = \{x_n\} \in X_{\rho,w}$  define the norm  $||x||_{\rho,w} := max\{(\sum |x_n|^{\rho})^{\frac{1}{p}}, (\sum |w_nx_n|^2)^{\frac{1}{2}}\}.$ 

If *w* satisfies the condition: for each  $\epsilon > 0$ ,  $\sum_{w_n < \epsilon} w_n^{\frac{2p}{p-2}} = \infty$ , then  $X_{p,w}$  is not isomorphic to any of the classical  $\mathcal{L}_p$  space.

For any sequence of scalars w, w' satisfying the above condition,  $X_{p,w}$  and  $X_{p,w'}$  are isomorphic.

・ロト ・回ト ・ヨト ・ヨト … ヨ

**More Examples:** Let 2 . $<math>B_p = \ell_p(X_n)$  where each  $X_n \sim \ell_2$  with sup  $d(X_n, \ell_2) = \infty$ . (Rosenthal-1970)  $D_p \sim (\ell_p^{2^n} \otimes \ell_2)_{p,2,(1)}$ . (Alspach-1974)

(ロ) (部) (E) (E) (E)

We consider  $\bigcup_{n\geq 1}\mathbb{N}^n$  with a natural order  $(x_1, \cdots, x_n) \prec (y_1, \cdots, y_m)$  provided  $m \geq n$  and  $x_i = y_i$  for  $1 \leq i \leq n$ .

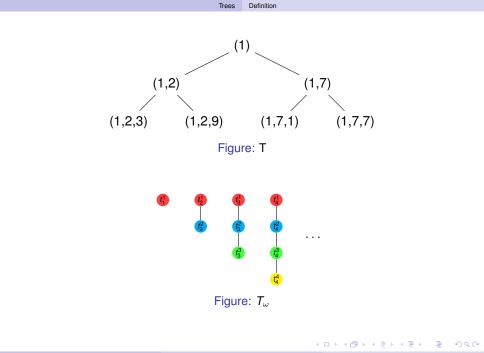
#### Definition

(*i*) A tree on  $\mathbb{N}$  is a subset of  $\bigcup_{n\geq 1}\mathbb{N}^n$  with the property that  $(x_1, \cdots, x_n) \in T$  whenever  $(x_1, \cdots, x_n, x_{n+1}) \in \overline{T}$ .

(ii) A subtree S of a tree T is a subset of T such that S itself is a tree.

(iii) A branch F in T is a subset of mutually comparable elements of T.

(*iv*) A tree *T* is well founded provided there is no sequence  $\{n_k\}$  in  $\mathbb{N}$  such that  $(n_1, \dots, n_m) \in T$  for all  $m \in \mathbb{N}$ .



#### Definition

For a tree T, we define the derived tree

$$D(T) = \bigcup_{n \ge 1} \{ (n_1, \cdots, n_m) : (n_1, \cdots, n_m, n) \in T \text{ for some } n \in \mathbb{N} \}.$$

Proceeding by induction, we can construct a transfinite system of trees as follows.

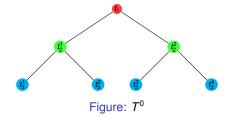
(*i*) Take 
$$T^0 = T$$
.

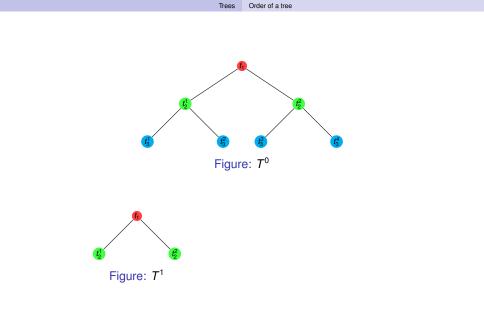
(*ii*) If 
$$T^{\alpha}$$
 is obtained, let  $T^{\alpha+1} = D(T^{\alpha})$ .

(*iii*) For a limit ordinal  $\gamma$ , define  $T^{\gamma} = \bigcap_{\alpha < \gamma} T^{\alpha}$ . If *T* is well-founded, then  $T^{\alpha}$ 's are strictly decreasing as  $\alpha$  increases. Hence  $T^{\alpha}$  will be empty for some ordinal  $\alpha$ . For a well founded tree *T*, we will denote order of *T*, namely o(T), to be the smallest ordinal for which  $T^{o(T)} = \emptyset$ .

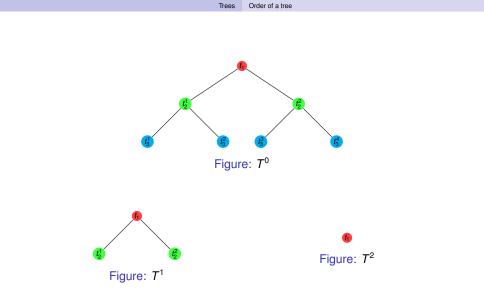
・ロト ・回ト ・ヨト ・ヨト … ヨ







<ロ> (日) (日) (日) (日) (日)



<ロト <回 > < 回 > < 回 > < 回 >

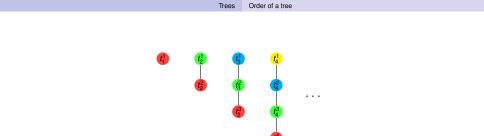
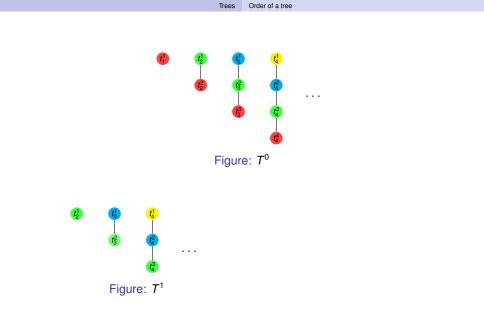
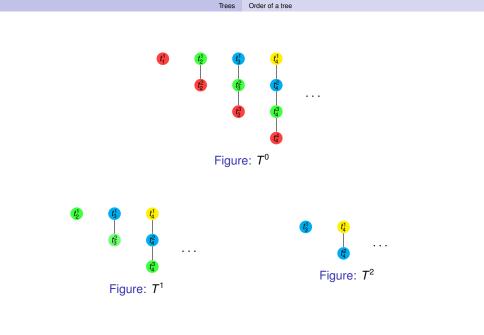


Figure: T<sup>0</sup>

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > <



<ロ> <同> <同> < 同> < 同>



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

### Definition

For countable ordinal  $\alpha < \omega_1$  we will define the well founded canonical trees  $T_{\alpha}$  inductively:

(i) Take  $T_1$  to be the tree with a single element.

(*ii*) If  $T_{\alpha}$  is obtained, define  $T_{\alpha+1} = \dot{T}_{\alpha}$ .

(*iii*) For a limit ordinal  $\beta$  define  $T_{\beta} = \bigcup_{\alpha < \beta} T_{\alpha}$  with the relation  $\prec_{\beta} = \bigcup_{\alpha < \beta} \prec_{\alpha}$  that is, if  $u, v \in T_{\beta}, u \prec_{\beta} v$  if and only if  $u, v \in T_{\alpha}$  for some  $\alpha < \beta$  and  $u \prec_{\alpha} v$ .  $T_{\beta}$  may be visualized as simply setting the trees  $T_{\alpha}$  side by side in such a way that if  $\alpha_1 < \alpha_2 < \beta$  then  $T_{\alpha_1}$  is kept on the left to  $T_{\alpha_2}$ .

| Trees | Canonical trees |
|-------|-----------------|
|-------|-----------------|

・ロト・日本・日本・日本・日本・日本



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

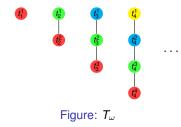


◆□→ ◆□→ ◆注→ ◆注→ ○注



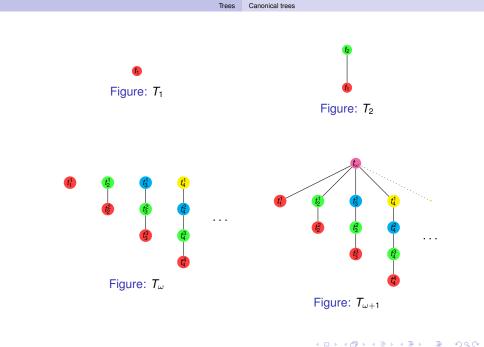
◆□→ ◆□→ ◆注→ ◆注→ ○注





æ

<ロ> <同> <同> < 同> < 同>



If we consider the full tree  $C = \bigcup_{n=1}^{\infty} \mathbb{N}^n$  then  $G = \{-1, 1\}^C$  is group with pointwise multiplication.

A measurable function f on G is said to depend only on the coordinates of a branch  $\Gamma$  of C provided f(x) = f(y) whenever  $x, y \in G$  with x(c) = y(c) for all  $c \in \Gamma$ .

### Definition

Let  $1 \le p < \infty$ . For a tree T in C we denote  $X_T^p$  the closed linear span in  $L_p(G)$  of the functions depending on finite branches in T.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Consider the tree  $T_{D_p}$ :

# The space $D_{\rho}(2 < \rho < \infty)$ is isomorphic to $X^{\rho}_{T_{D_{\rho}}}$ .

æ

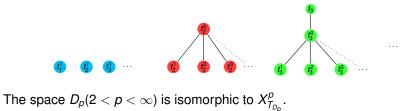
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Consider the tree  $T_{D_o}$ :



The space  $D_{\rho}(2 < \rho < \infty)$  is isomorphic to  $X^{\rho}_{T_{D_{\rho}}}$ .

### Consider the tree $T_{D_o}$ :



< 67 ▶

#### Theorem (Bourgain, Rosenthal, Schechtman 1981)

(i) For  $1 , the space <math>X_{\mathcal{C}}^{p}$  is isomorphic to  $L_{p}(G)$ .

(ii) Let  $1 \le p < \infty$ . If  $T_1$ ,  $T_2$  are trees such that  $T_1 \subseteq T_2$  then  $X_{T_1}^p$  is a complemented subspace of  $X_{T_2}^p$ .

Thus  $\{X_{\mathcal{T}_{\alpha}}^{p}\}_{\alpha < \omega_{1}}$  are  $\mathcal{L}_{p}$  spaces for 1 .

・ロト ・回ト ・ヨト ・ヨト … ヨ

Let  $D_n$  be the set of all *n*-strings of 0 and 1.

For a Banach space X define  $X^{D_n}$  to be the set of all functions from  $D_n$  to X, which can be identified with the set of all  $2^n$  tuples  $(u_1, ..., u_{2^n})$ .

Let  $X^{\mathcal{D}} = \bigcup_{n=0}^{\infty} X^{D_n}$ . If  $u \in X^{\mathcal{D}}$  then  $u \in X^{D_n}$  for a unique  $n \in \mathbb{N} \cup \{0\}$ , denoted by |u|. Denote  $\prec$  on  $X^{\mathcal{D}}$  by  $u \prec v$  if |u| < |v| and for k = |v| - |u|,  $u(t) = 2^{-k/p} \sum_{s \in D_k} v(t \cdot s)$ .

Let  $\overline{X}^{\delta}$  be the set of all  $u \in X^{\mathcal{D}}$  such that

 $\delta(\sum_{t\in D_{|u|}}|c(t)|^{p})^{1/p} \le \|\sum_{t\in D_{|u|}}c(t)u(t)\|_{X} \le (\sum_{t\in D_{|u|}}|c(t)|^{p})^{1/p}$ (1)

for all  $c \in \mathbb{R}^{D_{|u|}}$ .

#### Definition

Let  $H_0^{\delta}(X) = \overline{X}^{\delta}$ . If  $\alpha = \beta + 1$  and  $H_{\beta}^{\delta}(X)$  has been defined, define

 $H^{\delta}_{\alpha}(X) = \{ u \in H^{\delta}_{\beta}(X) : u \prec v \text{ for some } v \in H^{\delta}_{\beta}(X) \}.$ 

If  $\alpha$  is a limit ordinal define  $H^{\delta}_{\alpha}(X) = \bigcap_{\beta < \alpha} H^{\delta}_{\beta}(X)$ .

Let  $h_p(\delta, X)$  be the least ordinal  $\alpha$  such that  $H^{\delta}_{\alpha}(X) = H^{\delta}_{\alpha+1}(X)$ . If  $L_p \nleftrightarrow X$ , define  $h_p(X) = \sup_{0 < \delta \le 1} h_p(\delta, X)$ . If  $L_p \hookrightarrow X$ , define  $h_p(X) = \omega_1$ .

### Theorem (Bourgain, Rosenthal, Schechtman 1981)

Let  $1 , <math>p \neq 2$ . Then there is a strictly increasing function  $\tau : \omega_1 \to \omega_1$  such that for  $\alpha < \beta < \omega_1$ ,  $X^{p}_{T_{\tau(\beta)}} \not\hookrightarrow X^{p}_{T_{\tau(\alpha)}}$ .

 $X_{T_{\alpha}}^{p}$  spaces are isomorphically distinct at limit ordinals (Alspach 1999).

#### Theorem (Dutta, K.)

Let  $2 and X be an infinite dimensional subspace of <math>L_p$ .

(a) 
$$h_{\rho}(X) = \omega$$
,  $h_{\rho}(X) = \omega \cdot 2$  or  $h_{\rho}(X) \ge \omega^2$ .

- (b)  $h_p(\ell_2) = \omega$ .
- (c) Let  $X \not\sim \ell_2$ . Then  $h_p(X) = \omega$  if and only if  $X \hookrightarrow \ell_p$ .

(d) If  $X \not\hookrightarrow X^p_{T_{\omega}}$  then  $h_p(X) \ge \omega^2$ .

<ロ> <同> <同> < 回> < 回> < 回> = 三

#### Lemma

Let 2 and <math>X be a subspace of  $L_p$ . If for some  $0 < \delta \le 1$  and  $n \in \mathbb{N}$ ,  $H^{\delta}_{\omega+n}(X) \neq \emptyset$  then there exists a constant C (depending on  $\delta$ , p and X only) such that  $X^p_{T_{\omega+n},0} \stackrel{C}{\hookrightarrow} (X)_{p,2,(1)}$ .

#### Lemma

Let 2 and <math>X be a subspace of  $L_p$ . If for some  $0 < \delta \le 1$  and  $n \in \mathbb{N}$ ,  $H^{\delta}_{\omega+n}(X) \neq \emptyset$  then there exists a constant C (depending on  $\delta$ , p and X only) such that  $X^p_{T_{\omega+n},0} \stackrel{C}{\hookrightarrow} (X)_{p,2,(1)}$ .

Let *X* be a subspace of  $L_p(\Omega, \mu)$ . For any sequence  $(x_n)$  such that  $x_n \in X$ , let  $||(x_n)||_{p,2,(1)} = max\{(\sum ||x_n||_p^p)^{1/p}, (\sum ||x_n||_2^2)^{1/2}\}$ . Define  $(X)_{p,2,(1)} = \{(x_n) : x_n \in X \text{ for all } n \text{ and } ||(x_n)||_{p,2,(1)} < \infty\}$ .

(D) (A) (A) (A) (A) (A) (A)

| Proof.           |  |
|------------------|--|
| Proof.<br>(Idea) |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |
|                  |  |

æ

(日) (日) (日) (日) (日)

# (Idea)

(i) 
$$X^{p}_{T_{\omega}} \sim X^{p}_{T_{\omega+k}}$$
 for all  $k \in \mathbb{N}$ . (Since  $X^{p}_{T_{\omega}}$  is square)

<ロ> <同> <同> < 同> < 同>

# (Idea)

(*i*) 
$$X_{T_{\omega}}^{p} \sim X_{T_{\omega+k}}^{p}$$
 for all  $k \in \mathbb{N}$ . (Since  $X_{T_{\omega}}^{p}$  is square)  
(*ii*)  $h_{p}(X_{T_{\omega+k}}^{p}) \ge \omega + k + 1$ . (BRS)

<ロ> <同> <同> < 同> < 同>

# (Idea)

(*i*) 
$$X_{T_{\omega}}^{p} \sim X_{T_{\omega+k}}^{p}$$
 for all  $k \in \mathbb{N}$ . (Since  $X_{T_{\omega}}^{p}$  is square)  
(*ii*)  $h_{p}(X_{T_{\omega+k}}^{p}) \ge \omega + k + 1$ . (BRS)  
(*iii*) Suppose  $h_{p}(X_{T_{\omega}}^{p}) > \omega \cdot 2$ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

# (Idea)

(*i*) 
$$X_{T_{\omega}}^{p} \sim X_{T_{\omega+k}}^{p}$$
 for all  $k \in \mathbb{N}$ . (Since  $X_{T_{\omega}}^{p}$  is square)  
(*ii*)  $h_{p}(X_{T_{\omega+k}}^{p}) \ge \omega + k + 1$ . (BRS)  
(*iii*) Suppose  $h_{p}(X_{T_{\omega}}^{p}) > \omega \cdot 2$ .  
(*iv*)  $X_{T_{\omega-2}}^{p} \stackrel{A}{\to} X_{T_{\omega}}^{p}$ . (Using Lemma, this needs a bit of work!)

<ロ> <同> <同> < 同> < 同>

# (Idea)

(*i*) 
$$X_{T_{\omega}}^{p} \sim X_{T_{\omega+k}}^{p}$$
 for all  $k \in \mathbb{N}$ . (Since  $X_{T_{\omega}}^{p}$  is square)  
(*ii*)  $h_{p}(X_{T_{\omega+k}}^{p}) \ge \omega + k + 1$ . (BRS)  
(*iii*) Suppose  $h_{p}(X_{T_{\omega}}^{p}) > \omega \cdot 2$ .  
(*iv*)  $X_{T_{\omega-2}}^{p} \xrightarrow{A} X_{T_{\omega}}^{p}$ . (Using Lemma, this needs a bit of work!)  
This is a contradiction to  $\ell_{p}(\ell_{2}) \hookrightarrow X_{T_{\omega-2}}^{p}$  as  $\ell_{p}(\ell_{2}) \nleftrightarrow X_{T_{\omega}}^{p}$ .

<ロ> <同> <同> < 同> < 同>

### (Idea)

(*i*) 
$$X^p_{T_{\omega}} \sim X^p_{T_{\omega+k}}$$
 for all  $k \in \mathbb{N}$ . (Since  $X^p_{T_{\omega}}$  is square)

(*ii*) 
$$h_p(X^p_{T_{\omega+k}}) \ge \omega + k + 1$$
. (BRS)

(iii) Suppose 
$$h_p(X^p_{T_\omega}) > \omega \cdot 2$$
.

(*iv*)  $X_{T_{a,c}}^{p} \stackrel{A}{\hookrightarrow} X_{T_{ac}}^{p}$ . (Using Lemma, this needs a bit of work!)

This is a contradiction to  $\ell_p(\ell_2) \hookrightarrow X^p_{\mathcal{T}_{\omega,2}}$  as  $\ell_p(\ell_2) \not\hookrightarrow X^p_{\mathcal{T}_{\omega}}$ .

Thus  $h_p(X_{T_\omega}^p) = \omega \cdot 2$ . Using similar arguments as above (but one needs careful modifications) we can show that  $h_p(\ell_p) = \omega$  and  $h_p(\ell_2) = \omega$ .

・ロト ・回ト ・ヨト ・ヨト

### (Idea)

(*i*) 
$$X^{p}_{T_{\omega}} \sim X^{p}_{T_{\omega+k}}$$
 for all  $k \in \mathbb{N}$ . (Since  $X^{p}_{T_{\omega}}$  is square)

(ii) 
$$h_p(X^p_{T_{\omega+k}}) \ge \omega + k + 1$$
. (BRS)

(iii) Suppose 
$$h_p(X^p_{T_\omega}) > \omega \cdot 2$$
.

(*iv*)  $X^{p}_{T_{\omega,2}} \stackrel{A}{\hookrightarrow} X^{p}_{T_{\omega}}$ . (Using Lemma, this needs a bit of work!)

This is a contradiction to  $\ell_p(\ell_2) \hookrightarrow X^p_{\mathcal{T}_{\omega,2}}$  as  $\ell_p(\ell_2) \not\hookrightarrow X^p_{\mathcal{T}_{\omega}}$ .

Thus  $h_p(X_{T_\omega}^p) = \omega \cdot 2$ . Using similar arguments as above (but one needs careful modifications) we can show that  $h_p(\ell_p) = \omega$  and  $h_p(\ell_2) = \omega$ . If  $X \nleftrightarrow X_{T_\omega}^p$  then  $h_p(X) \ge \omega^2$  needs some results of HOS(2011), Alspach(1999) and Schechtman(1975).