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Currents are generalized oriented manifolds, a geometric version of
”generalized functions” i.e. distributions.

Here k-dimensional manifold M is rather understood via its action
on differential forms

ω ∈ Dk 7→
∫
M
ω

this embedding manifolds into the dual of Dk gives (weak-∗)
compactness and hope to solve geometric minimization problems.
Main task: are these generalized manifolds geometrically

meaningfull?
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Currents are generalized oriented manifolds, a geometric version of
”generalized functions” i.e. distributions.

mfd Mk seen as ω ∈ Dk 7→
∫
M
ω

gives (weak-∗) compactness, hope to solve geometric minimization
problems.
Main task: are these generalized manifolds geometrically

meaningfull? Successfully answered:
• Caccioppoli sets, n − 1-dimensional ”boundaries” ∂E in Rn

understood as distributional deriv. of χE (De Giorgi)

• theory of k-dim. currents Dk in Rn (Federer-Fleming).
FF-currents
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both times differentiable structure and finite dimension of ambient
space essential (also for compactness) .

De Giorgi suggested a
much more general approach:
Lipschitz forms Let E be a complete metric space, Dk(E ) are all
(k + 1)-ples ω = (f , π1, . . . , πk) of Lipschitz real valued functions
in E with the first function f in Lipb(E )
Can define a formal “exterior differential”

dω = d(f , π1, . . . , πk) := (1, f , π1, . . . , πk)

mapping Dk(E ) into Dk+1(E ), note ddω 6= 0?? and
for ϕ ∈ Lip(E ,F ) a pull back operator

ϕ#ω = ϕ#(f , π1, . . . , πk) = (f ◦ ϕ, π1 ◦ ϕ, . . . , πk ◦ ϕ)

mapping Dk(F ) into Dk(E ).
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objects acting on lipschitz forms will mostly correspond to ”normal
FF-currents”, i.e. finite mass and finite mass of the boundary.

Nk(E ) is vector space of all T : Dk → R which are
i) multilinear in (f , π1, . . . , πk)
ii) T (f , π1, . . . , πk) = 0 if for some i ∈ {1, . . . , k} the function

πi is constant near {f 6= 0}. ”locality”
iii) limi→∞ T (f , πi1, . . . , π

i
k) = T (f , π1, . . . , πk) whenever

πij → πj pointw. in E with Lip(πij ) ≤ C ”weak continuity”
iv) ∃‖T‖ (minimal) finite measure s.t.

|T (f , π1, . . . , πk)| ≤
k∏

i=1

Lip(πi )

∫
E
|f | d‖T‖

if (f , π1, . . . , πk) ∈ Dk(E ) ”finite mass” of T
v) boundary ∂T : ω ∈ Dk+1 → T (dω) = T (1, f , π1, . . . , πk)

in Nk+1(E ), i.e. has also finite mass. Note ∂∂T = 0 by ii)
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meaning of these conditions becomes clear looking at
”pushforwards” under ϕ ∈ Lip(E ,F )

ϕ#T : ω ∈ Dk(F )→ T (ϕ#ω)
In particular, if F = Rn then ϕ#T is a normal k-dim. FF-current.

This idea of De Giorgi avoids use of multilinear algebra in E but
gives all usual rules, for instance product and chain rules

T (f dπ1∧. . .∧dπk)+T (π1 df ∧. . .∧dπk) = T (1 d(f π1)∧. . .∧dπk)

whenever f , π1 ∈ Lipb(E ), and

T (f dψ1(π) ∧ . . . ∧ dψk(π)) = T (f det∇ψ(π) dπ1 ∧ . . . ∧ dπk)

whenever ψ = (ψ1, . . . , ψk) ∈ [C 1(Rk)]k and ∇ψ is bounded;
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T (f dψ1(π) ∧ . . . ∧ dψk(π)) = T (f det∇ψ(π) dπ1 ∧ . . . ∧ dπk)

whenever ψ = (ψ1, . . . , ψk) ∈ [C 1(Rk)]k and ∇ψ is bounded.

In particular T alternating in the πj ’s.
So rather use notation ω = f dπ = f dπ1 ∧ . . . ∧ dπk , call f weight
and dπ the differential part.
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The (outer) Hausdorff k-dimensional measure of B ⊂ E is

Hk(B) := lim
δ↓0

ωk

2k
inf

{ ∞∑
i=0

[diam(Bi )]k : B ⊂
∞⋃
i=0

Bi , diam(Bi ) < δ

}

where ωk is the Lebesgue measure of the unit ball of Rk .
Hk -measurable set S ⊂ E is countably Hk-rectifiable if there
exist sets Ai ⊂ Rk and Lipschitz functions fi : Ai → E such that

Hk

(
S \

∞⋃
i=0

fi (Ai )

)
= 0.

This gives a σ-stable notion of k-dimensional surface.

Finally, we say (normal) T is rectifiable, T ∈ Rk(E ) if there is a
k-rectifiable B such that ‖T‖(E \ B) = 0 ” concentrated on B”.
Note ‖T‖ � Hk for all T ∈ Nk(E )
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We also have the following parametric presentation: T ∈ Rk(E ),
iff there are compacts Ki ⊂ Rk , functions θi ∈ L1(Rk) with
supp θi ⊂ Ki and bi-Lipschitz maps fi : Ki → E such that

T =
∞∑
i=0

fi#[[θi ]] and
∞∑
i=0

M(fi#[[θi ]]) = M(T ),

M(T ) = ‖T‖(E ) and [[θ]](fdπ) =
∫
Rk f θdet(Dπ) dx current in Rk .

We say, that T is integer rectifiable or integral (since T ∈ Nk(E ))
if the θi ’s can be choosen integervalued. This is equivalent to
T ∈ Rk(E ) and for all ϕ ∈ Lip(E ,Rk) and any open set A ⊂ E
we have ϕ#(T A) = [[θ]] for some θ ∈ L1(Rk ,Z).
Crucial question Is Ik(E ) closed under weak (i.e. pointwise ∀ω)
convergence, is this compact if E not (locally) compact?
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We also have the following parametric presentation: T ∈ Rk(E ),
iff there are compacts Ki ⊂ Rk , functions θi ∈ L1(Rk) with
supp θi ⊂ Ki and bi-Lipschitz maps fi : Ki → E such that

T =
∞∑
i=0

fi#[[θi ]] and
∞∑
i=0

M(fi#[[θi ]]) = M(T ),

M(T ) = ‖T‖(E ) and [[θ]](fdπ) =
∫
Rk f θdet(Dπ) dx current in Rk .

We say, that T is integer rectifiable or integral (since T ∈ Nk(E ))
if the θi ’s can be choosen integervalued. This is equivalent to
T ∈ Rk(E ) and for all ϕ ∈ Lip(E ,Rk) and any open set A ⊂ E
we have ϕ#(T A) = [[θ]] for some θ ∈ L1(Rk ,Z).
Crucial question Is Ik(E ) closed under weak (i.e. pointwise ∀ω)
convergence, is this compact if E not (locally) compact?
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Slices
BV-property of slices

It turns out, that a normal current T can not concentrate on
Hk -(σ)-finite purely k-unrectifiable sets M, i.e. Hk(M ∩ S) = 0
for all k-rectifiable k .

In fact, in Euclidean space there is a strong structure theory for
such M available. Key property, due to Besicovitch-Federer, here is
that almost all projections on k-planes are Hk -zero. Test with a
general k-dim. differential form ω, rewrite in terms of zero
projection coordinates so T (ω) = 0 = T .
This argument has difficulties if E not sufficient homogeneous
(how to rewrite lipschitz forms) but also in `2 as unrectifiable sets
do not have generic zero projections [de Pauw]. Rather use
behaviour on slices.

Currents in infinite dimensions



Metric currents
Closure Theorem

Compactness in Banach spaces

Slices
BV-property of slices

It turns out, that a normal current T can not concentrate on
Hk -(σ)-finite purely k-unrectifiable sets M, i.e. Hk(M ∩ S) = 0
for all k-rectifiable k .
In fact, in Euclidean space there is a strong structure theory for
such M available. Key property, due to Besicovitch-Federer, here is
that almost all projections on k-planes are Hk -zero.

Test with a
general k-dim. differential form ω, rewrite in terms of zero
projection coordinates so T (ω) = 0 = T .
This argument has difficulties if E not sufficient homogeneous
(how to rewrite lipschitz forms) but also in `2 as unrectifiable sets
do not have generic zero projections [de Pauw]. Rather use
behaviour on slices.

Currents in infinite dimensions



Metric currents
Closure Theorem

Compactness in Banach spaces

Slices
BV-property of slices

It turns out, that a normal current T can not concentrate on
Hk -(σ)-finite purely k-unrectifiable sets M, i.e. Hk(M ∩ S) = 0
for all k-rectifiable k .
In fact, in Euclidean space there is a strong structure theory for
such M available. Key property, due to Besicovitch-Federer, here is
that almost all projections on k-planes are Hk -zero. Test with a
general k-dim. differential form ω, rewrite in terms of zero
projection coordinates so T (ω) = 0 = T .

This argument has difficulties if E not sufficient homogeneous
(how to rewrite lipschitz forms) but also in `2 as unrectifiable sets
do not have generic zero projections [de Pauw]. Rather use
behaviour on slices.

Currents in infinite dimensions



Metric currents
Closure Theorem

Compactness in Banach spaces

Slices
BV-property of slices

It turns out, that a normal current T can not concentrate on
Hk -(σ)-finite purely k-unrectifiable sets M, i.e. Hk(M ∩ S) = 0
for all k-rectifiable k .
In fact, in Euclidean space there is a strong structure theory for
such M available. Key property, due to Besicovitch-Federer, here is
that almost all projections on k-planes are Hk -zero. Test with a
general k-dim. differential form ω, rewrite in terms of zero
projection coordinates so T (ω) = 0 = T .
This argument has difficulties if E not sufficient homogeneous
(how to rewrite lipschitz forms) but also in `2 as unrectifiable sets
do not have generic zero projections [de Pauw].

Rather use
behaviour on slices.

Currents in infinite dimensions



Metric currents
Closure Theorem

Compactness in Banach spaces

Slices
BV-property of slices

It turns out, that a normal current T can not concentrate on
Hk -(σ)-finite purely k-unrectifiable sets M, i.e. Hk(M ∩ S) = 0
for all k-rectifiable k .
In fact, in Euclidean space there is a strong structure theory for
such M available. Key property, due to Besicovitch-Federer, here is
that almost all projections on k-planes are Hk -zero. Test with a
general k-dim. differential form ω, rewrite in terms of zero
projection coordinates so T (ω) = 0 = T .
This argument has difficulties if E not sufficient homogeneous
(how to rewrite lipschitz forms) but also in `2 as unrectifiable sets
do not have generic zero projections [de Pauw]. Rather use
behaviour on slices.

Currents in infinite dimensions



Metric currents
Closure Theorem

Compactness in Banach spaces

Slices
BV-property of slices

Let ω = (g , τ1, . . . , τm) ∈ Dm(E ), with m ≤ k (ω = g if m = 0).
We define the (k −m)-dimensional restriction of T denoted T ω,
by setting

T ω(f , π1, . . . , πk−m) := T (fg , τ1, . . . , τm, π1, . . . , πk−m).

We can show the existence of slices of any normal T w.r.t. any
π ∈ Lip(E ,Rm), i.e. existence of a family
Tx = 〈T , π, x〉 ∈ Nk−m(E ) for x ∈ Rm such that∫

Rm

〈T , π, x〉ψ(x) dx = T (ψ ◦ π) dπ ∀ψ ∈ Cc(Rk).

moreover Tx and ∂Tx is concentrated on π−1(x) ∩ L if T and ∂T
are so and the mass-measure also disintegrates∫

Rm

‖〈T , π, x〉‖ dx = ‖T dπ‖

Using the parametric presentation, slices of rectifiable/integral
currents are rectifiable/integral.
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crucial observation, inspired by R.Jerrard - but see also [Fed,
5.3.5(1)], the map x 7→ Tx of bounded variation in for proper
metric on the currents, has geometric meaning if m = k, i.e. sTx

0-dimensional.

On N0(E ) put flat metric

F(T ) = sup{{T (φ) : φ ∈ Lipb(E ), Lip(φ) + ‖φ‖∞ ≤ 1}

For Dirac measures F (δa − δb) ∼ dist(a, b) locally, so since
BV -maps from Rk into metric spaces are σ-lipschitz, we see that
the set of all atoms of all 0-dim slices is k-rectifiable. So T is
rectifiable provided its 0-dim slices are rectifiable, i.e. discrete
measures. Controlling the masses of Tj , ∂Tj and the Hk(Sj),
where Sj is the set on which Tj lives, the (weak) limit T is again
normal and the slices are discrete (slices of Tj could not smear
out). Hence T is rectfiable.
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Compactness in Banach spaces
equi-compactness

The closure theorem, just mentioned, give compactness of Ik(E ) if
E is compact. In ∞-dimensions this does not help ... look at
diracs.
What do we really want to do? Find

min M(T ) over all T ∈ Ik(E ) such that ∂T = S ∈ Ik−1(E )

i.e. solve the Plateau problem. Here ∂S = 0, spt(S) compact
supposed. We need somehow to localize the Ts and produce limits.
For the pointwise convergence of the currents, we restrict ourself to
w∗-continuous lipschitz forms. These capture enough information
because measure live in general on σ-compact sets and we have

Theorem [E.Kopecka (for nonseparable case)] Let E = Y be dual
to a separable space, A ⊂ Y be w∗-compact and let f : A→ R be
lipschitz and w∗-continuous. Then there is a w∗-continuous
extension of f to all of Y with same lip-constant.
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We still need our minimizing Tj to be compact in a geometrical
sense, so that some equicontinous parametrization is possible.

Want to isometrically embed all ij : Tj → C into a single compact
space C and know Then, the graphs of ij converge, up to a
subsequence in (B, %w∗)× C B ⊂ Y a fixed ball. For existence of
C use Gromovs criterium, the spt(Tj) must be equibounded and
equicompact, this should follow from a lower density estimate

‖Tj‖(B(x , r)) ≥ ε0rk for x ∈ spt(Tj)
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By Ekland-Bishop-Phelps find nearly-minimizers, so we only need a
standart argument... use isoperimetric inequality.
We reproved these isoperimetric inequalities using an idea of
Gromov, which gives a uniform ck such that for all finite
dimensional V and S ∈ Ik−1(V ) a compact cycle in V some filling
T ∈ Ik(V ) with ∂T = S and

M(T ) ≤ ckM(S)k/k−1

exists.

The same estimate for general banach spaces ?? Only if there was
some finite approximation property. Stefan Wenger could establish
them using a more intrinsic argument.
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