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Currents are generalized oriented manifolds, a geometric version of
"generalized functions” i.e. distributions.

mfd I\/IkseenasweDkH/w
M

gives (weak-*) compactness, hope to solve geometric minimization
problems.
Main task: are these generalized manifolds geometrically
meaningfull? Successfully answered:
e Caccioppoli sets, n — 1-dimensional "boundaries” OE in R"
understood as distributional deriv. of xg (De Giorgi)
e theory of k-dim. currents Dy in R" (Federer-Fleming).
FF-currents
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space essential (also for compactness) .De Giorgi suggested a
much more general approach:

Lipschitz forms Let E be a complete metric space, D¥(E) are all
(k + 1)-ples w = (f, 71, ..., mk) of Lipschitz real valued functions
in E with the first function f in Lip,(E)

Can define a formal “exterior differential”
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mapping DX(E) into D*T1(E), note ddw # 077
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both times differentiable structure and finite dimension of ambient
space essential (also for compactness) .De Giorgi suggested a
much more general approach:

Lipschitz forms Let E be a complete metric space, D¥(E) are all
(k + 1)-ples w = (f, 71, ..., mk) of Lipschitz real valued functions
in E with the first function f in Lip,(E)

Can define a formal “exterior differential”

dw:d(f,ﬂ'l,...,ﬂ'k) = (1,f,71'1,...,7['k)

mapping D¥(E) into D*T1(E), note ddw # 0?7 and
for ¢ € Lip(E, F) a pull back operator

QD#WZQO#(f,’]T]_,...,Wk):(ngO,T(lO(p,...,’/TkOgD)

mapping DX(F) into DK(E).
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FF-currents”, i.e. finite mass and finite mass of the boundary.
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objects acting on lipschitz forms will mostly correspond to " normal
FF-currents”, i.e. finite mass and finite mass of the boundary.
N, (E) is vector space of all T : D¥ — R which are
i) multilinear in (f,71,...,m)
i) T(f,m1,...,m) =0 if for some i € {1,..., k} the function
i is constant near {f # 0}. "locality”
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objects acting on lipschitz forms will mostly correspond to " normal
FF-currents”, i.e. finite mass and finite mass of the boundary.
N, (E) is vector space of all T : D¥ — R which are
i) multilinear in (f,71,...,m)
i) T(f,m1,...,m) =0 if for some i € {1,..., k} the function
i is constant near {f # 0}. "locality”
i) lim; o0 T(F, 7, ... ,7T;'() = T(f,m1,...,mk) whenever
7rj’: — m; pointw. in E with Lip(wj’:) < C "weak continuity”
iv) 3| T|| (minimal) finite measure s.t.
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Currents in infinite dimensions



Lipschitz forms

Metric currents q
normal metric currents

basics properties normal currents
Rectifiable sets and currents

objects acting on lipschitz forms will mostly correspond to " normal
FF-currents”, i.e. finite mass and finite mass of the boundary.
N, (E) is vector space of all T : D¥ — R which are
i) multilinear in (f,71,...,m)
i) T(f,m1,...,m) =0 if for some i € {1,..., k} the function
i is constant near {f # 0}. "locality”
i) lim; o0 T(F, 7, ... ,7T;'() = T(f,m1,...,mk) whenever
7rj’: — m; pointw. in E with Lip(wj’:) < C "weak continuity”
iv) 3| T|| (minimal) finite measure s.t.

k
T(Fome,. )] SHLip(w,-)/EWdHTH
i=1

if (f,m1,...,m) € DK(E) "finite mass” of T
v) boundary 0T : w € D**! — T(dw) = T(1,f,m1,...,Tk)
in Ni11(E), i.e. has also finite mass.
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objects acting on lipschitz forms will mostly correspond to " normal
FF-currents”, i.e. finite mass and finite mass of the boundary.
N, (E) is vector space of all T : D¥ — R which are
i) multilinear in (f,71,...,m)
i) T(f,m1,...,m) =0 if for some i € {1,..., k} the function
i is constant near {f # 0}. "locality”
i) lim; o0 T(F, 7, ... ,715() = T(f,m1,...,mk) whenever
771’: — m; pointw. in E with Lip(wj’:) < C "weak continuity”
iv) 3| T|| (minimal) finite measure s.t.

k
T(Fome,. )] SHLip(w,-)/EWdHTH
i=1

if (f,m1,...,m) € DK(E) "finite mass” of T
v) boundary 0T : w € D**! — T(dw) = T(1,f,m1,...,Tk)
in Niy1(E), i.e. has also finite mass. Note 90T = 0 by ii)
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" pushforwards” under ¢ € Lip(E, F)
04T we€DXF) = T(p%w)
In particular, if F =R" then 4T is a normal k-dim. FF-current.
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meaning of these conditions becomes clear looking at
" pushforwards” under ¢ € Lip(E, F)

04T we€DXF) = T(p%w)
In particular, if F =R" then 4T is a normal k-dim. FF-current.
This idea of De Giorgi avoids use of multilinear algebra in E but
gives all usual rules, for instance product and chain rules

T(f dmiN.. ./\d7rk)—|— T(7T1 dfA. . ./\d7Tk) = T(l d(fﬂl)/\. . ./\d7Tk)
whenever f, 71 € Lip,(E), and
T(f dr(m) Ao Adg(m)) = T(FdetVp(m) dmy A ... A dmg)

whenever ¢ = (Y1, ...,¢x) € [CL(R¥)]* and V4 is bounded;
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"pushforwards” ¢ € Lip(E,F) ¢4 T :w € DX(F) = T(p*w)
In particular, if F =R" then ¢4 T is a normal k-dim. FF-current.
This idea of De Giorgi avoids use of multilinear algebra in E but
gives all usual rules, for instance product and chain rules

T(f dmiA.. Admg)+T(mrdfA. . Admg) = T(Ld(fr)A. . . Admg)
whenever f, 1 € Lip,(E), and
T(fdyr(m) A ... Adg(m)) = T(FdetVp(m) dmi A ... A dmy)

whenever ¢ = (1, ...,1x) € [CY(RK)]* and V4 is bounded.
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"pushforwards” ¢ € Lip(E,F) ¢4 T :w € DX(F) = T(p*w)
In particular, if F =R" then ¢4 T is a normal k-dim. FF-current.
This idea of De Giorgi avoids use of multilinear algebra in E but
gives all usual rules, for instance product and chain rules

T(f dmiA.. Admg)+T(mrdfA. . Admg) = T(Ld(fr)A. . . Admg)
whenever f, 1 € Lip,(E), and
T(fdyr(m) A ... Adg(m)) = T(FdetVp(m) dmi A ... A dmy)

whenever ¢ = (1, ...,1x) € [CY(RK)]* and V4 is bounded.
In particular T alternating in the 7;’s.
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"pushforwards” ¢ € Lip(E,F) ¢4 T :w € DX(F) = T(p*w)
In particular, if F =R" then ¢4 T is a normal k-dim. FF-current.
This idea of De Giorgi avoids use of multilinear algebra in E but
gives all usual rules, for instance product and chain rules

T(f dmiA.. Admg)+T(mrdfA. . Admg) = T(Ld(fr)A. . . Admg)
whenever f, 1 € Lip,(E), and
T(fdyr(m) A ... Adg(m)) = T(FdetVp(m) dmi A ... A dmy)

whenever ¢ = (1, ...,1x) € [CY(RK)]* and V4 is bounded.

In particular T alternating in the 7;’s.

So rather use notation w = fdm = fdmy A ... Admy, call f weight
and d the differential part.
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The (outer) Hausdorff k-dimensional measure of B C E is

HK(B) := lim 2K inf {Z [diam(B))]*: B C [j Bi, diam(B;) < (5}

k
510 2
+ i=0

where wy is the Lebesgue measure of the unit ball of RX.
HK-measurable set S C E is countably 7{*-rectifiable if there
exist sets A; C R¥ and Lipschitz functions f; : A — E such that

“ (5\ G f,-(A,-)> -
i=0

This gives a o-stable notion of k-dimensional surface.
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The (outer) Hausdorff k-dimensional measure of B C E is

H5(B) := lim = > mf{i[diam(B;)]k . BC G B;, diam(B;) < 5}

ok
640
+ i=0 i=0

where wy is the Lebesgue measure of the unit ball of RX.
HK-measurable set S C E is countably 7{*-rectifiable if there
exist sets A; C R¥ and Lipschitz functions f; : A — E such that

“ (5\ G f,-(A,-)> -
i=0

This gives a o-stable notion of k-dimensional surface.

Finally, we say (normal) T is rectifiable, T € Rx(E) if there is a
k-rectifiable B such that | T||(E\ B) =0 " concentrated on B".
Note || T|| < H¥ for all T € Ny (E)
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We also have the following parametric presentation: T € Ry (E),
iff there are compacts K; C R¥, functions §; € L(R¥) with
supp 8; C K; and bi-Lipschitz maps f; : K; — E such that

T — Z fiy[0:] and Z M(fix[0:]) = M(T),
i=0 i=0

M(T) = || T||(E) and [0](fdm) = [« fOdet(Dr) dx current in R
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We also have the following parametric presentation: T € Ry (E),
iff there are compacts K; C R¥, functions §; € L(R¥) with
supp 8; C K; and bi-Lipschitz maps f; : K; — E such that

T — Z fiy[0:] and Z M(fix[0:]) = M(T),
i=0 i=0

M(T) = || T||(E) and [0](fdm) = [« fOdet(Dr) dx current in R
We say, that T is integer rectifiable or integral (since T € N¢(E))
if the 6;'s can be choosen integervalued. This is equivalent to

T € Ri(E) and for all ¢ € Lip(E,R¥) and any open set A C E
we have 4 (TLA) = [0] for some 0 € L}(RX,Z).
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We also have the following parametric presentation: T € Ry (E),
iff there are compacts K; C R¥, functions §; € L(R¥) with
supp 8; C K; and bi-Lipschitz maps f; : K; — E such that

T — Z fiy[0:] and Z M(fix[0:]) = M(T),
i=0 i=0

M(T) = || T||(E) and [0](fdm) = [« fOdet(Dr) dx current in R
We say, that T is integer rectifiable or integral (since T € N¢(E))
if the 6;'s can be choosen integervalued. This is equivalent to

T € Ri(E) and for all ¢ € Lip(E,R¥) and any open set A C E
we have 4 (TLA) = [0] for some 0 € L}(RX,Z).

Crucial question Is I,(E) closed under weak (i.e. pointwise Vw)
convergence, is this compact if E not (locally) compact?
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BV-property of slices

It turns out, that a normal current T can not concentrate on
HKk-(o)-finite purely k-unrectifiable sets M, i.e. HX(M NS) =0
for all k-rectifiable k.
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It turns out, that a normal current T can not concentrate on
HKk-(o)-finite purely k-unrectifiable sets M, i.e. HX(M NS) =0
for all k-rectifiable k.

In fact, in Euclidean space there is a strong structure theory for
such M available. Key property, due to Besicovitch-Federer, here is
that almost all projections on k-planes are H*-zero.
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It turns out, that a normal current T can not concentrate on
HKk-(o)-finite purely k-unrectifiable sets M, i.e. HX(M NS) =0
for all k-rectifiable k.

In fact, in Euclidean space there is a strong structure theory for
such M available. Key property, due to Besicovitch-Federer, here is
that almost all projections on k-planes are H*-zero. Test with a
general k-dim. differential form w, rewrite in terms of zero
projection coordinates so T(w) =0=T.
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Closure Theorem

BV-property of slices

It turns out, that a normal current T can not concentrate on
HKk-(o)-finite purely k-unrectifiable sets M, i.e. HX(M NS) =0
for all k-rectifiable k.

In fact, in Euclidean space there is a strong structure theory for
such M available. Key property, due to Besicovitch-Federer, here is
that almost all projections on k-planes are H*-zero. Test with a
general k-dim. differential form w, rewrite in terms of zero
projection coordinates so T(w) =0=T.

This argument has difficulties if E not sufficient homogeneous
(how to rewrite lipschitz forms) but also in £2 as unrectifiable sets
do not have generic zero projections [de Pauw].
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Slices
Closure Theorem

BV-property of slices

It turns out, that a normal current T can not concentrate on
HKk-(o)-finite purely k-unrectifiable sets M, i.e. HX(M NS) =0
for all k-rectifiable k.

In fact, in Euclidean space there is a strong structure theory for
such M available. Key property, due to Besicovitch-Federer, here is
that almost all projections on k-planes are H*-zero. Test with a
general k-dim. differential form w, rewrite in terms of zero
projection coordinates so T(w) =0=T.

This argument has difficulties if E not sufficient homogeneous
(how to rewrite lipschitz forms) but also in £2 as unrectifiable sets
do not have generic zero projections [de Pauw]. Rather use
behaviour on slices.
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Slices
Closure Theorem

BV-property of slices

Let w=(g,71,...,7m) € DT(E), with m < k (w = g if m = 0).
We define the (k — m)-dimensional restriction of T denoted T L w,
by setting

TLw(f,m, ..o, Tkem) = T(fg, 1,y Tmy Ty v oy Thk—m)-
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Slices
Closure Theorem

BV-property of slices

Let w=(g,71,...,7m) € DT(E), with m < k (w = g if m = 0).
We define the (k — m)-dimensional restriction of T denoted T L w,
by setting

TLw(f,m, ..o, Tkem) = T(fg, 1,y Tmy Ty v oy Thk—m)-

We can show the existence of slices of any normal T w.r.t. any
7 € Lip(E,R™), i.e. existence of a family
T =(T,m,x) € Ny_n(E) for x € R™ such that

/m<T,7r,x>w(X) dx = TL(Ypom)dr Y € CC(Rk).

moreover T, and 0T, is concentrated on 7~ }(x) N Lif T and 0T
are so and the mass-measure also disintegrates

LT ml de = | T
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Slices
Closure Theorem

BV-property of slices

Let w=(g,71,...,7m) € DT(E), with m < k (w = g if m = 0).
We define the (k — m)-dimensional restriction of T denoted T L w,
by setting

TLw(f,m, ..o, Tkem) = T(fg, 1,y Tmy Ty v oy Thk—m)-

We can show the existence of slices of any normal T w.r.t. any
7 € Lip(E,R™), i.e. existence of a family
T =(T,m,x) € Ny_n(E) for x € R™ such that

/m<T,7r,x>w(X) dx = TL(Ypom)dr Y € CC(Rk).

moreover T, and 0T, is concentrated on 7~ }(x) N Lif T and 0T
are so and the mass-measure also disintegrates

LT ml de = | T

Using the parametric presentation, slices of rectifiable/integral
currents are rectifiable/integral.
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Slices
Closure Theorem

BV-property of slices

crucial observation, inspired by R.Jerrard - but see also [Fed,
5.3.5(1)], the map x — Ty of bounded variation in for proper
metric on the currents, has geometric meaning if m = k, i.e. sTy
0-dimensional.

Currents in infinite dimensions



Slices
Closure Theorem

BV-property of slices

crucial observation, inspired by R.Jerrard - but see also [Fed,
5.3.5(1)], the map x — Ty of bounded variation in for proper
metric on the currents, has geometric meaning if m = k, i.e. sTy
O-dimensional. On Ng(E) put flat metric

F(T) =sup{{T(¢) : ¢ € Lipp(E), Lip(¢) + [|p[loc <1}

For Dirac measures F(0, — 0p) ~ dist(a, b) locally, so since
BV-maps from R¥ into metric spaces are o-lipschitz, we see that
the set of all atoms of all 0-dim slices is k-rectifiable. So T is
rectifiable provided its 0-dim slices are rectifiable, i.e. discrete
measures.
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Slices
Closure Theorem

BV-property of slices

crucial observation, inspired by R.Jerrard - but see also [Fed,
5.3.5(1)], the map x — Ty of bounded variation in for proper
metric on the currents, has geometric meaning if m = k, i.e. sTy
O-dimensional. On Ng(E) put flat metric

F(T) =sup{{T(¢) : ¢ € Lipp(E), Lip(¢) + [|p[loc <1}

For Dirac measures F(0, — 0p) ~ dist(a, b) locally, so since
BV-maps from R¥ into metric spaces are o-lipschitz, we see that
the set of all atoms of all O-dim slices is k-rectifiable. So T is
rectifiable provided its 0-dim slices are rectifiable, i.e. discrete
measures. Controlling the masses of T, OT; and the HX(S;),
where S; is the set on which T; lives, the (weak) limit T is again
normal and the slices are discrete (slices of T; could not smear
out). Hence T is rectfiable.
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equi-compactness

Compactness in Banach spaces

The closure theorem, just mentioned, give compactness of Ix(E) if
E is compact. In co-dimensions this does not help ... look at
diracs.

What do we really want to do? Find

min M(T) over all T € Ix(E) such that 9T =S € l,_1(E)

i.e. solve the Plateau problem. Here 9S = 0, spt(S) compact
supposed. We need somehow to localize the Ts and produce limits.
For the pointwise convergence of the currents, we restrict ourself to
w*-continuous lipschitz forms. These capture enough information
because measure live in general on o-compact sets and we have
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Compactness in Banach spaces

The closure theorem, just mentioned, give compactness of Ix(E) if
E is compact. In co-dimensions this does not help ... look at
diracs.

What do we really want to do? Find

min M(T) over all T € Ix(E) such that 9T =S € l,_1(E)

i.e. solve the Plateau problem. Here 9S = 0, spt(S) compact
supposed. We need somehow to localize the Ts and produce limits.
For the pointwise convergence of the currents, we restrict ourself to
w*-continuous lipschitz forms. These capture enough information
because measure live in general on o-compact sets and we have
Theorem [E.Kopecka (for nonseparable case)] Let E = Y be dual
to a separable space, A C Y be w*-compact and let f : A — R be
lipschitz and w*-continuous. Then there is a w*-continuous
extension of f to all of Y with same lip-constant.
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The closure theorem, just mentioned, give compactness of Ix(E) if
E is compact. In co-dimensions this does not help ... look at
diracs.

What do we really want to do? Find

min M(T) over all T € Ix(E) such that 9T =S € l,_1(E)

i.e. solve the Plateau problem. Here 9S = 0, spt(S) compact
supposed. We need somehow to localize the Ts and produce limits.
For the pointwise convergence of the currents, we restrict ourself to
w*-continuous lipschitz forms. These capture enough information
because measure live in general on o-compact sets and we have
Theorem [E.Kopecka (for nonseparable case)] Let E = Y be dual
to a separable space, A C Y be w*-compact and let f : A — R be
lipschitz and w*-continuous. Then there is a w*-continuous
extension of f to all of Y with same lip-constant.

Currents in infinite dimensions



equi-compactness

Compactness in Banach spaces

We still need our minimizing T; to be compact in a geometrical
sense, so that some equicontinous parametrization is possible.
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equi-compactness

Compactness in Banach spaces

We still need our minimizing T; to be compact in a geometrical
sense, so that some equicontinous parametrization is possible.
Want to isometrically embed all j; : T; — C into a single compact
space C and know Then, the graphs of i; converge, up to a
subsequence in (B, ou+) X C B C Y a fixed ball.
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equi-compactness

Compactness in Banach spaces

We still need our minimizing T; to be compact in a geometrical
sense, so that some equicontinous parametrization is possible.
Want to isometrically embed all j; : T; — C into a single compact
space C and know Then, the graphs of i; converge, up to a
subsequence in (B, ou+) X C B C Y a fixed ball. For existence of
C use Gromovs criterium, the spt(7;) must be equibounded and
equicompact, this should follow from a lower density estimate

ITS1(B(x, 1) > cor* for x € spt(T)
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equi-compactness

Compactness in Banach spaces

By Ekland-Bishop-Phelps find nearly-minimizers, so we only need a
standart argument... use isoperimetric inequality.

We reproved these isoperimetric inequalities using an idea of
Gromov, which gives a uniform ¢, such that for all finite
dimensional V and S € I,_1(V) a compact cycle in V some filling
T € 1,(V) with 9T = S and

M(T) < cM(S)K/k-1

exists.
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Compactness in Banach spaces

By Ekland-Bishop-Phelps find nearly-minimizers, so we only need a
standart argument... use isoperimetric inequality.

We reproved these isoperimetric inequalities using an idea of
Gromov, which gives a uniform ¢, such that for all finite
dimensional V and S € I,_1(V) a compact cycle in V some filling
T € 1,(V) with 9T = S and

M(T) < cM(S)K/k-1

exists.

The same estimate for general banach spaces ?7 Only if there was
some finite approximation property. Stefan Wenger could establish
them using a more intrinsic argument.
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