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A description of the problem class
• Let X be a Banach space
• T : X → X a linear operator

Find conditions on T and X such that the identity on X factors through T
(or Id−T ), i.e.

X
Id //

E
��

X

X
T
// X

P

OO

‖E‖‖P‖ ≤ C.

• The problem has finite dimensional (quantitative) and infinite
dimensional (qualitative) aspects.

• Classical examples include: `p (Pelczynski), C([0, 1])
(Lindenstrauss-Pelczynski), Lp (Gamlen-Gaudet), L1 (Enflo-Starbird),
`pn (Bourgain-Tzafriri).

• Generically, we expect that T has a large diagonal with respect to an
unconditional basis in X.

• We consider special cases where X = Hp(Hq) with the bi-parameter
Haar system as its unconditional basis.
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Dyadic Hp

• D = {[k−12n ,
k
2n [ : k ≥ 0, n ≥ 0} denotes the dyadic intervals on the unit

interval,
• hI the L∞-normalized Haar function, I ∈ D .
• Let f =

∑
I∈D aIhI be a finite linear combination,

• then the square function S(f) of f is given by

S(f) =
(∑

I∈D

a2Ih
2
I

)1/2
.

• The norm of the one-parameter Hardy space Hp, 1 ≤ p <∞ is defined
by

‖f‖Hp = ‖ S(f)‖Lp =
(∫ 1

0

(∑

I∈D

a2Ih
2
I(x)

)p/2
dx
)1/p
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Andrew 1D
Theorem
Let 1 < p <∞, δ > 0 and T : Hp → Hp be a linear operator with large
diagonal, i.e. 〈ThI , hI〉 ≥ δ|I|. Then we have

Hp Id //

E
��

Hp

Hp
T
// Hp

P

OO

‖E‖‖P‖ ≤ C/δ,

where the constant C > 0 is universal.
By Gamlen-Gaudet construction (BI) and a random choice of signs εI there
exists a block basis b(ε)I =

∑
K∈BI

εKhK of the Haar system such that

Tb
(ε)
I = αIb

(ε)
I + small error, αI ≥ δ.

The orthogonal projection Qf =
∑

I∈D
〈f,b(ε)I 〉
‖b(ε)I ‖22

bI is bounded on Hp

(Gamlen-Gaudet).
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Comments on Andrew 1D

• Andrew precedes the study of operators with property A
(Johnson-Maurey-Schechtman-Tzafriri).

• The Rademacher system converges weakly to 0 in Hp.
• The operator T is preconditioned by multiplying the Haar system with
highly oscillating Rademacher functions.

• This gives that 〈Tb(ε)I , b
(ε)
J 〉 ≈ 0, if I 6= J .

• The second part consists of choosing signs εI such that
〈Tb(ε)I , b

(ε)
I 〉 ≥ δ‖b

(ε)
I ‖22.

• The block basis {b(ε)I : I ∈ D} is equivalent to the Haar system.
• Andrew’s method of proof used a semi-random choice of signs εI , hence
it is strictly limited to the range 1 < p <∞.
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Mixed-norm Hardy spaces Hp(Hq)

• R = {I × J : I, J ∈ D} denotes the dyadic rectangles on the unit
square,

• hI×J(x, y) = hI(x)hJ(y) the L∞-normalized tensor product Haar
function, I × J ∈ R.

• Let f =
∑

I×J∈R aI×JhI×J be a finite linear combination,
• then the square function S(f) of f is given by

S(f) =
( ∑

I×J∈R

a2I×Jh
2
I×J
)1/2

.

• we define the norm of the bi-parameter Hardy spaces Hp(Hq),
1 ≤ p, q <∞ by

‖f‖Hp(Hq) =
(∫ 1

0

(∫ 1

0

(∑

I∈D

a2I×Jh
2
I×J(x, y)

)q/2
dy
)p/q

dx
)1/p
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Capon’s theorem: Hp(Hq) is primary (augmented)

Theorem
Let 1 < p, q <∞ or p = q = 1. For any operator T the identity on Hp(Hq)
factors through H = T or H = Id−T , i.e.

Hp(Hq)
Id //

E
��

Hp(Hq)

Hp(Hq)
H
// Hp(Hq)

P

OO

‖E‖‖P‖ ≤ C,

where C = C(‖T‖).
Capon invents a specific bi-parameter Gamlen-Gaudet selection process
which leads to a block basis bI×J =

∑
K×L∈BI×J

hK×L such that

HbI×J = αI×JbI×J + small error, αI×J ≥ 1/2.

and the projection Qf =
∑

I×J∈R
〈f,bI×J 〉
‖bI×J‖22

bI×J is bounded on Hp(Hq).
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Localization in H1(H1)

H1
N (H1

N ) = span{hI×J : |I|, |J | ≥ 2−N} ⊂ H1(H1).

Theorem (R. L. & P. F. X. M.)
For each n ∈ N there exists N(n) ∈ N, so that for each bounded linear
operator T : H1

N (H1
N )→ H1

N (H1
N ) we have

H1
n(H1
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H
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N (H1
N )
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OO

‖E‖‖P‖ ≤ C,

where H = T or H = Id−T , and C = C(‖T‖).

• We need quantitative, finite dimensional estimates.
• This leads to a combinatorial problem for coloured dyadic rectangles.
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We aim for
a block basis bI×J =

∑
K×L∈BI×L

hK×L ∈ H1
N (H1

N ) such that

• it well spans a copy of H1
n(H1

n),

• HbI×J = αI×JbI×J + small error, αI×J ≥ 1/2,

• and Q is bounded on Hp
N (Hq

N ) with universal constants, where

Qf =
∑

I×J∈R

〈f, bI×J〉
‖bI×J‖22

bI×J .

To get there we use
a quantitative, finite dimensional replacement for

〈x, rm ⊗ h[0,1]〉 → 0 as m→∞,

where {rm} is the Rademacher system.
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Combinatorial covering lemma

Let τ, δ > 0,
x ∈ H1(H1) and ‖x‖ ≤ 1.

There exists a large collection of pairwise disjoint dyadic intervals K such
that

|〈x, hK×[0,1]〉| ≤ τ |K| and |K| ≥ δ2τ2 (m ≥ − log2 δ
2τ2).
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Andrew 2D
Theorem (R. L. & P. F. X. M.)
Let 1 ≤ p, q <∞, δ > 0 and T : Hp(Hq)→ Hp(Hq) be a linear operator
with large diagonal, i.e. 〈ThI×J , hI×J〉 ≥ δ|I × J |. Then we have

Hp(Hq)
Id //

E
��

Hp(Hq)

Hp(Hq)
T
// Hp(Hq)

P

OO

‖E‖‖P‖ ≤ C/δ,

where the constant C > 0 is universal.
By Capon’s bi-parameter construction (BI×J) and a random choice of signs
εI×J , there exists a block basis b(ε)I×J =

∑
K∈BI×J

εK×LhK×L of the Haar
system such that

Tb
(ε)
I×J = αI×Jb

(ε)
I×J + small error, αI×J ≥ δ.

The orthogonal projection Qf =
∑

I∈D
〈f,bI×J 〉
‖bI×J‖22

bI×J is bounded on Hp(Hq).
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Summary
Let T : Hp(Hq)→ Hp(Hq) be a linear operator. When does the identity
factor through T (or Id−T )?
• Results for H = T or H = Id−T :

• Capon’s theorem for Hp(Hq),
• local result in H1

N (H1
N ) (R. L. & P. F. X. M.).

• Positive results, if T has a large diagonal:
• Andrew 1D for Hp,
• Andrew 2D for Hp(Hq) (R. L. & P. F. X. M.),
• local version of Andrew 2D for Hp

N (Hq
N ) (R. L. & P. F. X. M.).

• Full characterization in 1D for Hp by property A (JMST):
• {bI : I ∈ D} equivalent to the Haar system,
• Λ(E) = limi→∞ S2

(∑
I⊂E,|I|=2−i TbI

)
exists almost everywhere,

• infn
∫ 1

0
maxE∈D, |E|=2−n Λp/2(E) dt > 0.

Outlook
• Full characterization in 2D for Hp(Hq)

• 2D version of property A,
• Projection Q onto more general block basis bI×J in Hp(Hq).
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