Localization and projections on bi-parameter BMO

R. Lechner
P. F. X. Müller
J. Kepler University, Linz

Warwick, June, 2015

Overview

(1) A description of the problem class
(2) One dimension
(3) Two dimensions

Overview

(1) A description of the problem class
(2) One dimension

A description of the problem class

- Let X be a Banach space
- $T: X \rightarrow X$ a linear operator

Find conditions on T and X such that the identity on X factors through T (or $\operatorname{Id}-T$), i.e.

A description of the problem class

- Let X be a Banach space
- $T: X \rightarrow X$ a linear operator

A description of the problem class

- Let X be a Banach space
- $T: X \rightarrow X$ a linear operator

Find conditions on T and X such that the identity on X factors through T (or $\operatorname{Id}-T$), i.e.

A description of the problem class

- Let X be a Banach space
- $T: X \rightarrow X$ a linear operator

Find conditions on T and X such that the identity on X factors through T (or Id $-T$), i.e.

$$
\begin{aligned}
& \|E\|\|P\| \leq C .
\end{aligned}
$$

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^{p} (Pelczynski), $C([0,1])$ (Lindenstrauss-Pelczynski), L^{p} (Gamlen-Gaudet), L^{1} (Enflo-Starbird) ℓ_{n}^{p} (Bourgain-Tzafriri)
- Generically, we expect that T has a large diagonal with respect to an unconditional basis in X.
- We consider special cases where $X=H^{p}\left(H^{q}\right)$ with the bi-parameter Haar system as its unconditional basis.

A description of the problem class

- Let X be a Banach space
- $T: X \rightarrow X$ a linear operator

Find conditions on T and X such that the identity on X factors through T (or $\operatorname{Id}-T$), i.e.

$$
\begin{aligned}
& \|E\|\|P\| \leq C .
\end{aligned}
$$

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
 unconditional basis in X.

A description of the problem class

- Let X be a Banach space
- $T: X \rightarrow X$ a linear operator

Find conditions on T and X such that the identity on X factors through T (or $\operatorname{Id}-T$), i.e.

$$
\begin{aligned}
& \|E\|\|P\| \leq C .
\end{aligned}
$$

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^{p} (Pelczynski), $C([0,1])$ (Lindenstrauss-Pelczynski), L^{p} (Gamlen-Gaudet), L^{1} (Enflo-Starbird), ℓ_{n}^{p} (Bourgain-Tzafriri).

A description of the problem class

- Let X be a Banach space
- $T: X \rightarrow X$ a linear operator

Find conditions on T and X such that the identity on X factors through T (or $\operatorname{Id}-T$), i.e.

$$
\begin{aligned}
& \|E\|\|P\| \leq C .
\end{aligned}
$$

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^{p} (Pelczynski), $C([0,1])$ (Lindenstrauss-Pelczynski), L^{p} (Gamlen-Gaudet), L^{1} (Enflo-Starbird), ℓ_{n}^{p} (Bourgain-Tzafriri).
- Generically, we expect that T has a large diagonal with respect to an unconditional basis in X.

A description of the problem class

- Let X be a Banach space
- $T: X \rightarrow X$ a linear operator

Find conditions on T and X such that the identity on X factors through T (or $\operatorname{Id}-T$), i.e.

$$
\begin{aligned}
& \|E\|\|P\| \leq C .
\end{aligned}
$$

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^{p} (Pelczynski), $C([0,1])$ (Lindenstrauss-Pelczynski), L^{p} (Gamlen-Gaudet), L^{1} (Enflo-Starbird), ℓ_{n}^{p} (Bourgain-Tzafriri).
- Generically, we expect that T has a large diagonal with respect to an unconditional basis in X.
- We consider special cases where $X=H^{p}\left(H^{q}\right)$ with the bi-parameter Haar system as its unconditional basis.

Overview

(1) A description of the problem class

(2) One dimension

Dyadic H^{p}

- $\mathscr{D}=\left\{\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}[: k \geq 0, n \geq 0\}\right.\right.$ denotes the dyadic intervals on the unit interval,
- h_{I} the L^{∞}-normalized Haar function, $I \in \mathscr{D}$.
- Let $f=\sum_{I \in \mathscr{D}} a_{I} h_{I}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

- The norm of the one-parameter Hardy space $H^{p}, 1 \leq p<\infty$ is defined

Dyadic H^{p}

- $\mathscr{D}=\left\{\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}[: k \geq 0, n \geq 0\}\right.\right.$ denotes the dyadic intervals on the unit interval,
- h_{I} the L^{∞}-normalized Haar function, $I \in \mathscr{D}$.
- Let $f=\sum_{I \in \mathscr{G}} a_{I} h_{I}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

- The norm of the one-parameter Hardy space $H^{p}, 1 \leq p<\infty$ is defined

Dyadic H^{p}

- $\mathscr{D}=\left\{\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}[: k \geq 0, n \geq 0\}\right.\right.$ denotes the dyadic intervals on the unit interval,
- h_{I} the L^{∞}-normalized Haar function, $I \in \mathscr{D}$.
- Let $f=\sum_{I \in \mathscr{D}} a_{I} h_{I}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

- The norm of the one-parameter Hardy space $H^{p}, 1 \leq p<\infty$ is defined

Dyadic H^{p}

- $\mathscr{D}=\left\{\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}[: k \geq 0, n \geq 0\}\right.\right.$ denotes the dyadic intervals on the unit interval,
- h_{I} the L^{∞}-normalized Haar function, $I \in \mathscr{D}$.
- Let $f=\sum_{I \in \mathscr{D}} a_{I} h_{I}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$
\mathbb{S}(f)=\left(\sum_{I \in \mathscr{D}} a_{I}^{2} h_{I}^{2}\right)^{1 / 2}
$$

- The norm of the one-parameter Hardy space $H^{p}, 1 \leq p<\infty$ is defined

Dyadic H^{p}

- $\mathscr{D}=\left\{\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}[: k \geq 0, n \geq 0\}\right.\right.$ denotes the dyadic intervals on the unit interval,
- h_{I} the L^{∞}-normalized Haar function, $I \in \mathscr{D}$.
- Let $f=\sum_{I \in \mathscr{D}} a_{I} h_{I}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$
\mathbb{S}(f)=\left(\sum_{I \in \mathscr{D}} a_{I}^{2} h_{I}^{2}\right)^{1 / 2}
$$

- The norm of the one-parameter Hardy space $H^{p}, 1 \leq p<\infty$ is defined by

$$
\|f\|_{H^{p}}=\|\mathbb{S}(f)\|_{L^{p}}=\left(\int_{0}^{1}\left(\sum_{I \in \mathscr{D}} a_{I}^{2} h_{I}^{2}(x)\right)^{p / 2} \mathrm{~d} x\right)^{1 / p}
$$

Andrew 1D

Theorem
Let $1<p<\infty, \delta>0$ and $T: H^{p} \rightarrow H^{p}$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I}, h_{I}\right\rangle \geq \delta|I|$. Then we have

where the constant $C>0$ is universal.
By Gamlen-Gaudet construction $\left(\mathscr{B}_{I}\right)$ and a random choice of signs ε_{I} there exists a block basis $b_{I}^{(\varepsilon)}=\sum_{K \in \mathscr{B}_{I}} \varepsilon_{K} h_{K}$ of the Haar system such that

Andrew 1D

Theorem
Let $1<p<\infty, \delta>0$ and $T: H^{p} \rightarrow H^{p}$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I}, h_{I}\right\rangle \geq \delta|I|$. Then we have

$$
\begin{aligned}
& H^{p} \xrightarrow{\mathrm{Id}} H^{p} \\
& { }^{E} \downarrow \quad \uparrow_{P} \quad\|E\|\|P\| \leq C / \delta, \\
& H^{p} \xrightarrow[T]{ } H^{p}
\end{aligned}
$$

where the constant $C>0$ is universal.
By Gamlen-Gaudet construction $\left(\mathscr{B}_{I}\right)$ and a random choice of signs ε_{I} there exists a block basis $b_{I}^{(\varepsilon)}=\sum_{K \in \mathscr{B}_{I}} \varepsilon_{K} h_{K}$ of the Haar system such that

$$
T b_{I}^{(\varepsilon)}=\alpha_{I} b_{I}^{(\varepsilon)}+\text { small error }
$$

Andrew 1D

Theorem

Let $1<p<\infty, \delta>0$ and $T: H^{p} \rightarrow H^{p}$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I}, h_{I}\right\rangle \geq \delta|I|$. Then we have

$$
\begin{gathered}
H^{p} \\
{ }_{\downarrow}{ }_{\downarrow}^{\mathrm{Id}}{ }_{H^{p}}^{H^{p}} \xrightarrow{\longrightarrow} H^{p} \quad\|E\|\|P\| \leq C / \delta,
\end{gathered}
$$

where the constant $C>0$ is universal.
By Gamlen-Gaudet construction $\left(\mathscr{B}_{I}\right)$ and a random choice of signs ε_{I} there exists a block basis $b_{I}^{(\varepsilon)}=\sum_{K \in \mathscr{B}_{I}} \varepsilon_{K} h_{K}$ of the Haar system such that

Andrew 1D

Theorem

Let $1<p<\infty, \delta>0$ and $T: H^{p} \rightarrow H^{p}$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I}, h_{I}\right\rangle \geq \delta|I|$. Then we have

$$
H_{i}^{H^{p}} \stackrel{\mathrm{Id}}{\longrightarrow} H^{p}
$$

where the constant $C>0$ is universal.
By Gamlen-Gaudet construction $\left(\mathscr{B}_{I}\right)$ and a random choice of signs ε_{I} there exists a block basis $b_{I}^{(\varepsilon)}=\sum_{K \in \mathscr{B}_{I}} \varepsilon_{K} h_{K}$ of the Haar system such that

$$
T b_{I}^{(\varepsilon)}=\alpha_{I} b_{I}^{(\varepsilon)}+\text { small error }, \quad \alpha_{I} \geq \delta
$$

Andrew 1D

Theorem

Let $1<p<\infty, \delta>0$ and $T: H^{p} \rightarrow H^{p}$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I}, h_{I}\right\rangle \geq \delta|I|$. Then we have

$$
\begin{aligned}
& H^{p} \xrightarrow{\mathrm{Id}} H^{p} \\
& { }_{E}^{{ }_{H}^{p}} \underset{T}{{ }_{T}}{ }_{P}^{H^{p}} \quad\|E\|\|P\| \leq C / \delta,
\end{aligned}
$$

where the constant $C>0$ is universal.
By Gamlen-Gaudet construction $\left(\mathscr{B}_{I}\right)$ and a random choice of signs ε_{I} there exists a block basis $b_{I}^{(\varepsilon)}=\sum_{K \in \mathscr{B}_{I}} \varepsilon_{K} h_{K}$ of the Haar system such that

$$
T b_{I}^{(\varepsilon)}=\alpha_{I} b_{I}^{(\varepsilon)}+\text { small error, } \quad \alpha_{I} \geq \delta
$$

The orthogonal projection $Q f=\sum_{I \in \mathscr{D}} \frac{\left\langle f, b_{I}^{(\varepsilon)}\right\rangle}{\left\|b_{I}^{(\varepsilon)}\right\|_{2}^{2}} b_{I}$ is bounded on H^{p} (Gamlen-Gaudet).

The Gamlen-Gaudet construction

The Gamlen－Gaudet construction

The Gamlen-Gaudet construction

The Gamlen-Gaudet construction

The Gamlen-Gaudet construction

Comments on Andrew 1D

- Andrew precedes the study of operators with property A (Johnson-Maurey-Schechtman-Tzafriri).
- The Rademacher system converges weakly to 0 in H^{p}.
- The operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\left\langle T b_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\right\rangle \approx 0$, if $I \neq J$
- The second part consists of choosing signs ε_{I} such that $\left\langle T b_{I}^{(\varepsilon)}, b_{I}^{(\varepsilon)}\right\rangle \geq \delta\left\|b_{I}^{(\varepsilon)}\right\|_{2}^{2}$
- The block basis $\left\{b_{I}^{(\varepsilon)}: I \in \mathscr{D}\right\}$ is equivalent to the Haar system.
- Andrew's method of proof used a semi-random choice of signs ε_{I}, hence it is strictly limited to the range $1<p<\infty$.

Comments on Andrew 1D

- Andrew precedes the study of operators with property A (Johnson-Maurey-Schechtman-Tzafriri).
- The Rademacher system converges weakly to 0 in H^{p}.
- The operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\left\langle T h_{T}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\right\rangle \approx 0$ if $I \neq I$
- The second part consists of choosing signs ε_{I} such that $\left\langle T b_{I}^{(\varepsilon)}, b_{I}^{(\varepsilon)}\right\rangle \geq \delta\left\|b_{I}^{(\varepsilon)}\right\|_{2}^{2}$
- The block basis $\left\{b_{T}^{(\varepsilon)}: I \in \mathscr{D}\right\}$ is equivalent to the Haar system.
- Andrew's method of proof used a semi-random choice of signs ε_{I}, hence it is strictly limited to the range $1<p<\infty$.

Comments on Andrew 1D

- Andrew precedes the study of operators with property A (Johnson-Maurey-Schechtman-Tzafriri).
- The Rademacher system converges weakly to 0 in H^{p}.
- The operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\left\langle T b_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\right\rangle \approx 0$, if $I \neq J$
- The second part consists of choosing signs ε_{I} such that $\left\langle T b_{I}^{(\varepsilon)}, b_{I}^{(\varepsilon)}\right\rangle \geq \delta\left\|b_{I}^{(\varepsilon)}\right\|_{2}^{2}$.
- The block basis $\left\{b_{I}^{(\varepsilon)}: I \in \mathscr{D}\right\}$ is equivalent to the Haar system.
- Andrew's method of proof used a semi-random choice of signs ε_{I}, hence it is strictly limited to the range $1<p<\infty$.

Comments on Andrew 1D

- Andrew precedes the study of operators with property A (Johnson-Maurey-Schechtman-Tzafriri).
- The Rademacher system converges weakly to 0 in H^{p}.
- The operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\left\langle T b_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\right\rangle \approx 0$, if $I \neq J$.
- The second part consists of choosing signs ε_{I} such that
$\left\langle T b_{I}^{(\varepsilon)}, b_{I}^{(\varepsilon)}\right\rangle \geq \delta\left\|b_{I}^{(\varepsilon)}\right\|_{2}^{2}$.
- The block basis $\left\{b_{I}^{(\varepsilon)}: I \in \mathscr{D}\right\}$ is equivalent to the Haar system.
- Andrew's method of proof used a semi-random choice of signs ε_{I}, hence it is strictly limited to the range $1<p<\infty$.

Comments on Andrew 1D

- Andrew precedes the study of operators with property A (Johnson-Maurey-Schechtman-Tzafriri).
- The Rademacher system converges weakly to 0 in H^{p}.
- The operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\left\langle T b_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\right\rangle \approx 0$, if $I \neq J$.
- The second part consists of choosing signs ε_{I} such that $\left\langle T b_{I}^{(\varepsilon)}, b_{I}^{(\varepsilon)}\right\rangle \geq \delta\left\|b_{I}^{(\varepsilon)}\right\|_{2}^{2}$.
- Andrew's method of proof used a semi-random choice of signs ε_{I}, hence it is strictly limited to the range $1<p<\infty$.

Comments on Andrew 1D

- Andrew precedes the study of operators with property A (Johnson-Maurey-Schechtman-Tzafriri).
- The Rademacher system converges weakly to 0 in H^{p}.
- The operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\left\langle T b_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\right\rangle \approx 0$, if $I \neq J$.
- The second part consists of choosing signs ε_{I} such that $\left\langle T b_{I}^{(\varepsilon)}, b_{I}^{(\varepsilon)}\right\rangle \geq \delta\left\|b_{I}^{(\varepsilon)}\right\|_{2}^{2}$.
- The block basis $\left\{b_{I}^{(\varepsilon)}: I \in \mathscr{D}\right\}$ is equivalent to the Haar system.
- Andrew's method of proof used a semi-random choice of signs ε_{I}, hence it is strictly limited to the range $1<p<\infty$.

Comments on Andrew 1D

- Andrew precedes the study of operators with property A (Johnson-Maurey-Schechtman-Tzafriri).
- The Rademacher system converges weakly to 0 in H^{p}.
- The operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\left\langle T b_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\right\rangle \approx 0$, if $I \neq J$.
- The second part consists of choosing signs ε_{I} such that $\left\langle T b_{I}^{(\varepsilon)}, b_{I}^{(\varepsilon)}\right\rangle \geq \delta\left\|b_{I}^{(\varepsilon)}\right\|_{2}^{2}$.
- The block basis $\left\{b_{I}^{(\varepsilon)}: I \in \mathscr{D}\right\}$ is equivalent to the Haar system.
- Andrew's method of proof used a semi-random choice of signs ε_{I}, hence it is strictly limited to the range $1<p<\infty$.

Overview

(1) A description of the problem class

(2) One dimension
(3) Two dimensions

Mixed-norm Hardy spaces $H^{p}\left(H^{q}\right)$

- $\mathscr{R}=\{I \times J: I, J \in \mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y)=h_{I}(x) h_{J}(y)$ the L^{∞}-normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f=\sum_{T \times J \subset \mathscr{M}} a_{I \times I} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

- we define the norm of the bi-parameter Hardy spaces $H^{p}\left(H^{q}\right)$, $1 \leq p, q<\infty$ by

Mixed-norm Hardy spaces $H^{p}\left(H^{q}\right)$

- $\mathscr{R}=\{I \times J: I, J \in \mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y)=h_{I}(x) h_{J}(y)$ the L^{∞}-normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f=\sum_{I \times J \in \mathscr{R}} a_{I \times J} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

- we define the norm of the bi-parameter Hardy spaces $H^{p}\left(H^{q}\right)$, $1 \leq p, q<\infty$ by

Mixed-norm Hardy spaces $H^{p}\left(H^{q}\right)$

- $\mathscr{R}=\{I \times J: I, J \in \mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y)=h_{I}(x) h_{J}(y)$ the L^{∞}-normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f=\sum_{I \times J \in \mathscr{R}} a_{I \times J} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

- we define the norm of the bi-parameter Hardy spaces $H^{p}\left(H^{q}\right)$,

Mixed-norm Hardy spaces $H^{p}\left(H^{q}\right)$

- $\mathscr{R}=\{I \times J: I, J \in \mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y)=h_{I}(x) h_{J}(y)$ the L^{∞}-normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f=\sum_{I \times J \in \mathscr{R}} a_{I \times J} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$
\mathbb{S}(f)=\left(\sum_{I \times J \in \mathscr{R}} a_{I \times J}^{2} h_{I \times J}^{2}\right)^{1 / 2}
$$

- we define the norm of the bi-parameter Hardy spaces $H^{p}\left(H^{q}\right)$,

Mixed-norm Hardy spaces $H^{p}\left(H^{q}\right)$

- $\mathscr{R}=\{I \times J: I, J \in \mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y)=h_{I}(x) h_{J}(y)$ the L^{∞}-normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f=\sum_{I \times J \in \mathscr{R}} a_{I \times J} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$
\mathbb{S}(f)=\left(\sum_{I \times J \in \mathscr{R}} a_{I \times J}^{2} h_{I \times J}^{2}\right)^{1 / 2}
$$

- we define the norm of the bi-parameter Hardy spaces $H^{p}\left(H^{q}\right)$, $1 \leq p, q<\infty$ by

$$
\|f\|_{H^{p}\left(H^{q}\right)}=\left(\int_{0}^{1}\left(\int_{0}^{1}\left(\sum_{I \in \mathscr{D}} a_{I \times J}^{2} h_{I \times J}^{2}(x, y)\right)^{q / 2} \mathrm{~d} y\right)^{p / q} \mathrm{~d} x\right)^{1 / p}
$$

Capon's theorem: $H^{p}\left(H^{q}\right)$ is primary (augmented)
Theorem
Let $1<p, q<\infty$ or $p=q=1$. For any operator T the identity on $H^{p}\left(H^{q}\right)$ factors through $H=T$ or $H=\operatorname{Id}-T$, i.e.

where $C=C(\|T\|)$.
Capon invents a specific bi-parameter Gamlen-Gaudet selection process which leads to a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times J}} h_{K \times L}$ such that

Capon's theorem: $H^{p}\left(H^{q}\right)$ is primary (augmented)
Theorem
Let $1<p, q<\infty$ or $p=q=1$. For any operator T the identity on $H^{p}\left(H^{q}\right)$ factors through $H=T$ or $H=\operatorname{Id}-T$, i.e.

$$
\begin{gathered}
H^{p}\left(H^{q}\right) \\
\underbrace{\mathrm{Id}}_{\downarrow} \\
H^{p}\left(H^{q}\right) \\
{ }_{H} \\
H^{p}\left(H^{q}\right) \\
P
\end{gathered} H^{p}\left(H^{q}\right) \quad\|E\|\|P\| \leq C,
$$

where $C=C(\|T\|)$.
Capon invents a specific bi-parameter Gamlen-Gaudet selection process
which leads to a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times J}} h_{K \times L}$ such that

$$
I H b_{I \times J}=a_{I \times J} b_{I \times J}+\text { small error },
$$

Capon's theorem: $H^{p}\left(H^{q}\right)$ is primary (augmented)

Theorem
Let $1<p, q<\infty$ or $p=q=1$. For any operator T the identity on $H^{p}\left(H^{q}\right)$ factors through $H=T$ or $H=\operatorname{Id}-T$, i.e.

$$
\begin{gathered}
H^{p}\left(H^{q}\right) \\
E \downarrow \overbrace{\downarrow}^{\mathrm{Id}} H^{p}\left(H^{q}\right) \\
H^{p}\left(H^{q}\right) \xrightarrow[H]{\longrightarrow} H^{p}\left(H^{q}\right)
\end{gathered}\|E\|\|P\| \leq C
$$

where $C=C(\|T\|)$.
Capon invents a specific bi-parameter Gamlen-Gaudet selection process which leads to a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times J}} h_{K \times L}$ such that

Capon's theorem: $H^{p}\left(H^{q}\right)$ is primary (augmented)

Theorem
Let $1<p, q<\infty$ or $p=q=1$. For any operator T the identity on $H^{p}\left(H^{q}\right)$ factors through $H=T$ or $H=\operatorname{Id}-T$, i.e.

$$
H_{E}^{H^{p}\left(H^{q}\right)} \xrightarrow[\downarrow_{\mathrm{Id}}^{\mathrm{Id}}]{H^{p}} H^{p}\left(H^{q}\right)
$$

where $C=C(\|T\|)$.
Capon invents a specific bi-parameter Gamlen-Gaudet selection process which leads to a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times J}} h_{K \times L}$ such that

$$
H b_{I \times J}=\alpha_{I \times J} b_{I \times J}+\text { small error, } \quad \alpha_{I \times J} \geq 1 / 2 .
$$

Capon's theorem: $H^{p}\left(H^{q}\right)$ is primary (augmented)

Theorem
Let $1<p, q<\infty$ or $p=q=1$. For any operator T the identity on $H^{p}\left(H^{q}\right)$ factors through $H=T$ or $H=\operatorname{Id}-T$, i.e.

$$
\begin{gathered}
H^{p}\left(H^{q}\right) \\
\underbrace{\mathrm{Id}}_{\downarrow} H^{p}\left(H^{q}\right) \\
H^{p}\left(H^{q}\right) \xrightarrow[H]{\longrightarrow} H^{p}\left(H^{q}\right)
\end{gathered} \quad\|E\|\|P\| \leq C,
$$

where $C=C(\|T\|)$.
Capon invents a specific bi-parameter Gamlen-Gaudet selection process which leads to a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times J}} h_{K \times L}$ such that

$$
H b_{I \times J}=\alpha_{I \times J} b_{I \times J}+\text { small error, } \quad \alpha_{I \times J} \geq 1 / 2
$$

and the projection $Q f=\sum_{I \times J \in \mathscr{R}} \frac{\left\langle f, b_{I \times J}\right\rangle}{\left\|b_{I \times J J}^{2}\right\|_{2}^{2}} b_{I \times J}$ is bounded on $H^{p}\left(H^{q}\right)$.

Localization in $H^{1}\left(H^{1}\right)$

$$
H_{N}^{1}\left(H_{N}^{1}\right)=\operatorname{span}\left\{h_{I \times J}:|I|,|J| \geq 2^{-N}\right\} \subset H^{1}\left(H^{1}\right) .
$$

For each $n \in \mathbb{N}$ there exists $N(n) \in \mathbb{N}$, so that for each bounded linear operator $T: H_{N}^{1}\left(H_{N}^{1}\right) \rightarrow H_{N}^{1}\left(H_{N}^{1}\right)$ we have

where $H=T$ or $H=\mathrm{Id}-T$, and $C=C(\|T\|)$.

Localization in $H^{1}\left(H^{1}\right)$

$H_{N}^{1}\left(H_{N}^{1}\right)=\operatorname{span}\left\{h_{I \times J}:|I|,|J| \geq 2^{-N}\right\} \subset H^{1}\left(H^{1}\right)$.
Theorem (R. L. \& P. F. X. M.)
For each $n \in \mathbb{N}$ there exists $N(n) \in \mathbb{N}$, so that for each bounded linear operator $T: H_{N}^{1}\left(H_{N}^{1}\right) \rightarrow H_{N}^{1}\left(H_{N}^{1}\right)$ we have

Localization in $H^{1}\left(H^{1}\right)$
$H_{N}^{1}\left(H_{N}^{1}\right)=\operatorname{span}\left\{h_{I \times J}:|I|,|J| \geq 2^{-N}\right\} \subset H^{1}\left(H^{1}\right)$.
Theorem (R. L. \& P. F. X. M.)
For each $n \in \mathbb{N}$ there exists $N(n) \in \mathbb{N}$, so that for each bounded linear operator $T: H_{N}^{1}\left(H_{N}^{1}\right) \rightarrow H_{N}^{1}\left(H_{N}^{1}\right)$ we have

$$
\begin{aligned}
& H_{n}^{1}\left(H_{n}^{1}\right) \xrightarrow{\mathrm{Id}} H_{n}^{1}\left(H_{n}^{1}\right) \\
& { }^{\downarrow} \downarrow{ }^{\downarrow} \quad{ }_{P} \quad\|E\|\|P\| \leq C \text {, } \\
& H_{N}^{1}\left(H_{N}^{1}\right) \xrightarrow[H]{\longrightarrow} H_{N}^{1}\left(H_{N}^{1}\right)
\end{aligned}
$$

where $H=T$ or $H=\operatorname{Id}-T$, and $C=C(\|T\|)$.

- We need quantitative, finite dimensional estimates.
- This leads to a combinatorial problem for coloured dyadic rectangles.

Localization in $H^{1}\left(H^{1}\right)$

$H_{N}^{1}\left(H_{N}^{1}\right)=\operatorname{span}\left\{h_{I \times J}:|I|,|J| \geq 2^{-N}\right\} \subset H^{1}\left(H^{1}\right)$.
Theorem (R. L. \& P. F. X. M.)
For each $n \in \mathbb{N}$ there exists $N(n) \in \mathbb{N}$, so that for each bounded linear operator $T: H_{N}^{1}\left(H_{N}^{1}\right) \rightarrow H_{N}^{1}\left(H_{N}^{1}\right)$ we have

$$
\begin{gathered}
H_{n}^{1}\left(H_{n}^{1}\right) \xrightarrow{\mathrm{Id}}{ }_{\bullet} H_{n}^{1}\left(H_{n}^{1}\right) \\
H_{N}^{1}\left(H_{N}^{1}\right) \xrightarrow[H]{\longrightarrow} H_{N}^{1}\left(H_{N}^{1}\right)
\end{gathered} \quad\|E\|\|P\| \leq C,
$$

where $H=T$ or $H=\operatorname{Id}-T$, and $C=C(\|T\|)$.

- We need quantitative, finite dimensional estimates.
- This leads to a combinatorial problem for coloured dyadic rectangles.

Localization in $H^{1}\left(H^{1}\right)$

$H_{N}^{1}\left(H_{N}^{1}\right)=\operatorname{span}\left\{h_{I \times J}:|I|,|J| \geq 2^{-N}\right\} \subset H^{1}\left(H^{1}\right)$.
Theorem (R. L. \& P. F. X. M.)
For each $n \in \mathbb{N}$ there exists $N(n) \in \mathbb{N}$, so that for each bounded linear operator $T: H_{N}^{1}\left(H_{N}^{1}\right) \rightarrow H_{N}^{1}\left(H_{N}^{1}\right)$ we have

$$
\begin{gathered}
H_{n}^{1}\left(H_{n}^{1}\right) \\
\stackrel{\text { Id }}{\longrightarrow} H_{n}^{1}\left(H_{n}^{1}\right) \\
\uparrow_{N}^{1}\left(H_{N}^{1}\right) \xrightarrow[H]{\longrightarrow} H_{N}^{1}\left(H_{N}^{1}\right)
\end{gathered} \quad\|E\|\|P\| \leq C,
$$

where $H=T$ or $H=\mathrm{Id}-T$, and $C=C(\|T\|)$.

- We need quantitative, finite dimensional estimates.
- This leads to a combinatorial problem for coloured dyadic rectangles.

We aim for
a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times L}} h_{K \times L} \in H_{N}^{1}\left(H_{N}^{1}\right)$ such that

- it well spans a copy of $H_{n}^{1}\left(H_{n}^{1}\right)$,
- $H b_{I \times J}=\alpha_{I \times J} b_{I \times J}+$ small error, $\quad \alpha_{I \times J} \geq 1 / 2$,
- and Q is bounded on $H_{N}^{p}\left(H_{N}^{q}\right)$ with universal constants, where

To get there we use
a quantitative, finite dimensional replacement for

where $\left\{r_{m}\right\}$ is the Rademacher system.

We aim for
a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times L}} h_{K \times L} \in H_{N}^{1}\left(H_{N}^{1}\right)$ such that

- it well spans a copy of $H_{n}^{1}\left(H_{n}^{1}\right)$,
- $H b_{I \times J}=\alpha_{I \times J} b_{I \times J}+$ small error, $\quad \alpha_{I \times J} \geq 1 / 2$,
- and Q is bounded on $H_{N}^{p}\left(H_{N}^{q}\right)$ with universal constants, where

To get there we use
a quantitative, finite dimensional replacement for

where $\left\{r_{m}\right\}$ is the Rademacher system.

We aim for
a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times L}} h_{K \times L} \in H_{N}^{1}\left(H_{N}^{1}\right)$ such that

- it well spans a copy of $H_{n}^{1}\left(H_{n}^{1}\right)$,
- $H b_{I \times J}=\alpha_{I \times J} b_{I \times J}+$ small error, $\quad \alpha_{I \times J} \geq 1 / 2$,
- and Q is bounded on $H_{N}^{p}\left(H_{N}^{q}\right)$ with universal constants, where

To get there we use
a quantitative, finite dimensional replacement for

We aim for
a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times L}} h_{K \times L} \in H_{N}^{1}\left(H_{N}^{1}\right)$ such that

- it well spans a copy of $H_{n}^{1}\left(H_{n}^{1}\right)$,
- $H b_{I \times J}=\alpha_{I \times J} b_{I \times J}+$ small error, $\quad \alpha_{I \times J} \geq 1 / 2$,
- and Q is bounded on $H_{N}^{p}\left(H_{N}^{q}\right)$ with universal constants, where

$$
Q f=\sum_{I \times J \in \mathscr{R}} \frac{\left\langle f, b_{I \times J}\right\rangle}{\left\|b_{I \times J}\right\|_{2}^{2}} b_{I \times J}
$$

To get there we use
a quantitative, finite dimensional replacement for

We aim for

a block basis $b_{I \times J}=\sum_{K \times L \in \mathscr{B}_{I \times L}} h_{K \times L} \in H_{N}^{1}\left(H_{N}^{1}\right)$ such that

- it well spans a copy of $H_{n}^{1}\left(H_{n}^{1}\right)$,
- $H b_{I \times J}=\alpha_{I \times J} b_{I \times J}+$ small error, $\quad \alpha_{I \times J} \geq 1 / 2$,
- and Q is bounded on $H_{N}^{p}\left(H_{N}^{q}\right)$ with universal constants, where

$$
Q f=\sum_{I \times J \in \mathscr{R}} \frac{\left\langle f, b_{I \times J}\right\rangle}{\left\|b_{I \times J}\right\|_{2}^{2}} b_{I \times J}
$$

To get there we use
a quantitative, finite dimensional replacement for

$$
\left\langle x, r_{m} \otimes h_{[0,1]}\right\rangle \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

where $\left\{r_{m}\right\}$ is the Rademacher system.

Combinatorial covering lemma

Let $\tau, \delta>0$,

$$
x \in H^{1}\left(H^{1}\right) \quad \text { and } \quad\|x\| \leq 1 .
$$

There exists a large collection of pairwise disjoint dyadic intervals K such that

$$
\left|\left\langle x, h_{K \times[0,1]}\right\rangle\right| \leq \tau|K| \quad \text { and } \quad|K| \geq \delta^{2} \tau^{2} \quad\left(m \geq-\log _{2} \delta^{2} \tau^{2}\right) .
$$

Combinatorial covering lemma

Let $\tau, \delta>0$,

$$
x \in H^{1}\left(H^{1}\right) \quad \text { and } \quad\|x\| \leq 1 .
$$

There exists a large collection of pairwise disjoint dyadic intervals K such that

$$
\left|\left\langle x, h_{K \times[0,1]}\right\rangle\right| \leq \tau|K| \quad \text { and } \quad|K| \geq \delta^{2} \tau^{2} \quad\left(m \geq-\log _{2} \delta^{2} \tau^{2}\right) .
$$

Combinatorial covering lemma
Let $\tau, \delta>0$,

$$
x \in H^{1}\left(H^{1}\right) \quad \text { and } \quad\|x\| \leq 1 .
$$

There exists a large collection of pairwise disjoint dyadic intervals K such that

$$
\left|\left\langle x, h_{K \times[0,1]}\right\rangle\right| \leq \tau|K| \quad \text { and } \quad|K| \geq \delta^{2} \tau^{2} \quad\left(m \geq-\log _{2} \delta^{2} \tau^{2}\right) .
$$

Combinatorial covering lemma
Let $\tau, \delta>0$,

$$
x \in H^{1}\left(H^{1}\right) \quad \text { and } \quad\|x\| \leq 1 .
$$

There exists a large collection of pairwise disjoint dyadic intervals K such that

$$
\left|\left\langle x, h_{K \times[0,1]}\right\rangle\right| \leq \tau|K| \quad \text { and } \quad|K| \geq \delta^{2} \tau^{2} \quad\left(m \geq-\log _{2} \delta^{2} \tau^{2}\right) .
$$

$$
\sum|K| \geq(1-\delta)
$$

$$
\sum|L| \geq(1-\delta)
$$

Combinatorial covering lemma
Let $\tau, \delta>0$,

$$
x \in H^{1}\left(H^{1}\right)^{*} \quad \text { and } \quad\|x\| \leq 1 .
$$

There exists a large collection of pairwise disjoint dyadic intervals K such that

$$
\left|\left\langle x, h_{K \times[0,1]}\right\rangle\right| \leq \tau|K| \quad \text { and } \quad|K| \geq \delta^{2} \tau^{2} \quad\left(m \geq-\log _{2} \delta^{2} \tau^{2}\right) .
$$

$$
\sum|K| \geq(1-\delta)
$$

$$
\sum|L| \geq(1-\delta)
$$

Andrew 2D

Theorem (R. L. \& P. F. X. M.)
Let $1 \leq p, q<\infty, \delta>0$ and $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I \times J}, h_{I \times J}\right\rangle \geq \delta|I \times J|$. Then we have

where the constant $C>0$ is universal.

By Capon's bi-parameter construction ($B_{I \times J}$) and a random choice of signs $\varepsilon_{I \times J,}$ there exists a block basis $b_{I \times J}^{(\varepsilon)}=\sum_{K \in \mathscr{B}_{I \times J}} \varepsilon_{K \times L} h_{K \times L}$ of the Haar system such that

Andrew 2D

Theorem (R. L. \& P. F. X. M.)
Let $1 \leq p, q<\infty, \delta>0$ and $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I \times J}, h_{I \times J}\right\rangle \geq \delta|I \times J|$. Then we have

$$
\begin{array}{cc}
H^{p}\left(H^{q}\right) & \xrightarrow{\mathrm{Id}} H^{p}\left(H^{q}\right) \\
E & \uparrow_{P} \\
H^{p}\left(H^{q}\right) & \xrightarrow[T]{\longrightarrow} H^{p}\left(H^{q}\right)
\end{array} \quad\|E\|\|P\| \leq C / \delta,
$$

where the constant $C>0$ is universal.

Andrew 2D

Theorem (R. L. \& P. F. X. M.)
Let $1 \leq p, q<\infty, \delta>0$ and $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I \times J}, h_{I \times J}\right\rangle \geq \delta|I \times J|$. Then we have

$$
\begin{array}{cc}
H^{p}\left(H^{q}\right) & \xrightarrow{\mathrm{Id}} H^{p}\left(H^{q}\right) \\
{ }_{\Downarrow} & \uparrow_{P} \\
H^{p}\left(H^{q}\right) & \xrightarrow[T]{\longrightarrow} H^{p}\left(H^{q}\right)
\end{array} \quad\|E\|\|P\| \leq C / \delta,
$$

where the constant $C>0$ is universal.
By Capon's bi-parameter construction $\left(\mathscr{B}_{I \times J}\right)$ and a random choice of signs $\varepsilon_{I \times J}$, there exists a block basis $b_{I \times J}^{(\varepsilon)}=\sum_{K \in \mathscr{B}_{I \times J}} \varepsilon_{K \times L} h_{K \times L}$ of the Haar system such that

Andrew 2D

Theorem (R. L. \& P. F. X. M.)
Let $1 \leq p, q<\infty, \delta>0$ and $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I \times J}, h_{I \times J}\right\rangle \geq \delta|I \times J|$. Then we have

$$
\begin{array}{cc}
H^{p}\left(H^{q}\right) & \xrightarrow{\mathrm{Id}} H^{p}\left(H^{q}\right) \\
{ }_{\Downarrow} & \uparrow_{P} \\
H^{p}\left(H^{q}\right) & \xrightarrow[T]{\longrightarrow} H^{p}\left(H^{q}\right)
\end{array} \quad\|E\|\|P\| \leq C / \delta,
$$

where the constant $C>0$ is universal.
By Capon's bi-parameter construction $\left(\mathscr{B}_{I \times J}\right)$ and a random choice of signs $\varepsilon_{I \times J}$, there exists a block basis $b_{I \times J}^{(\varepsilon)}=\sum_{K \in \mathscr{B}_{I \times J}} \varepsilon_{K \times L} h_{K \times L}$ of the Haar system such that

$$
T b_{I \times J}^{(\varepsilon)}=\alpha_{I \times J} b_{I \times J}^{(\varepsilon)}+\text { small error, } \quad \alpha_{I \times J} \geq \delta .
$$

Andrew 2D

Theorem (R. L. \& P. F. X. M.)
Let $1 \leq p, q<\infty, \delta>0$ and $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator with large diagonal, i.e. $\left\langle T h_{I \times J}, h_{I \times J}\right\rangle \geq \delta|I \times J|$. Then we have

$$
\begin{aligned}
& H^{p}\left(H^{q}\right) \xrightarrow{\mathrm{Id}} H^{p}\left(H^{q}\right) \\
& \underset{H^{p}\left(H^{q}\right) \underset{T}{\longrightarrow}{ }_{H^{p}\left(H^{q}\right)}^{\hat{P}_{P}} \quad\|E\|\|P\| \leq C / \delta,}{ }
\end{aligned}
$$

where the constant $C>0$ is universal.
By Capon's bi-parameter construction $\left(\mathscr{B}_{I \times J}\right)$ and a random choice of signs $\varepsilon_{I \times J}$, there exists a block basis $b_{I \times J}^{(\varepsilon)}=\sum_{K \in \mathscr{B}_{I \times J}} \varepsilon_{K \times L} h_{K \times L}$ of the Haar system such that

$$
T b_{I \times J}^{(\varepsilon)}=\alpha_{I \times J} b_{I \times J}^{(\varepsilon)}+\text { small error, } \quad \alpha_{I \times J} \geq \delta .
$$

The orthogonal projection $Q f=\sum_{I \in \mathscr{D}} \frac{\left\langle f, b_{I \times J}\right\rangle}{\left\|b_{I \times J}\right\|_{2}^{2}} b_{I \times J}$ is bounded on $H^{p}\left(H^{q}\right)$.

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or $\mathrm{Id}-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- Positive results, if T has a large diagonal:
- Full characterization in 1D for H^{p} by property A (JMST):

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Full characterization in 1D for H^{p} by property A (JMST):

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- Positive results, if T has a large diagonal:
- Full characterization in 1D for H^{p} by property A (JMST):

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property $\mathrm{A}(\mathrm{JMST})$:

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- local version of Andrew 2D for $H_{N}^{p}\left(H_{N}^{q}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property A (JMST):

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Full characterization in 1D for H^{p} by property A (JMST):

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- Full characterization in 1D for H^{p} by property A (JMST):

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- local version of Andrew 2D for $H_{N}^{p}\left(H_{N}^{q}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property A (JMST):

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\operatorname{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- local version of Andrew 2D for $H_{N}^{p}\left(H_{N}^{q}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property A (JMST):

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\operatorname{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- local version of Andrew 2D for $H_{N}^{p}\left(H_{N}^{q}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property A (JMST):
- $\left\{b_{I}: I \in \mathscr{D}\right\}$ equivalent to the Haar system,

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\operatorname{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- local version of Andrew 2D for $H_{N}^{p}\left(H_{N}^{q}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property A (JMST):
- $\left\{b_{I}: I \in \mathscr{D}\right\}$ equivalent to the Haar system,
- $\Lambda(E)=\lim _{i \rightarrow \infty} \mathbb{S}^{2}\left(\sum_{I \subset E,|I|=2^{-i}} T b_{I}\right)$ exists almost everywhere,

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\operatorname{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- local version of Andrew 2D for $H_{N}^{p}\left(H_{N}^{q}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property A (JMST):
- $\left\{b_{I}: I \in \mathscr{D}\right\}$ equivalent to the Haar system,
- $\Lambda(E)=\lim _{i \rightarrow \infty} \mathbb{S}^{2}\left(\sum_{I \subset E,|I|=2^{-i}} T b_{I}\right)$ exists almost everywhere,
- $\inf _{n} \int_{0}^{1} \max _{E \in \mathscr{D},|E|=2^{-n}} \Lambda^{p / 2}(E) \mathrm{d} t>0$.

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- local version of Andrew 2D for $H_{N}^{p}\left(H_{N}^{q}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property A (JMST):
- $\left\{b_{I}: I \in \mathscr{D}\right\}$ equivalent to the Haar system,
- $\Lambda(E)=\lim _{i \rightarrow \infty} \mathbb{S}^{2}\left(\sum_{I \subset E,|I|=2^{-i}} T b_{I}\right)$ exists almost everywhere,
- $\inf _{n} \int_{0}^{1} \max _{E \in \mathscr{D},|E|=2^{-n}} \Lambda^{p / 2}(E) \mathrm{d} t>0$.

Outlook

- Full characterization in 2D for $H^{p}\left(H^{q}\right)$???

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\operatorname{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- local version of Andrew 2D for $H_{N}^{p}\left(H_{N}^{q}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property A (JMST):
- $\left\{b_{I}: I \in \mathscr{D}\right\}$ equivalent to the Haar system,
- $\Lambda(E)=\lim _{i \rightarrow \infty} \mathbb{S}^{2}\left(\sum_{I \subset E,|I|=2^{-i}} T b_{I}\right)$ exists almost everywhere,
- $\inf _{n} \int_{0}^{1} \max _{E \in \mathscr{D},|E|=2^{-n}} \Lambda^{p / 2}(E) \mathrm{d} t>0$.

Outlook

- Full characterization in 2D for $H^{p}\left(H^{q}\right)$?
- 2D version of property A,

Summary

Let $T: H^{p}\left(H^{q}\right) \rightarrow H^{p}\left(H^{q}\right)$ be a linear operator. When does the identity factor through T (or Id $-T$)?

- Results for $H=T$ or $H=\mathrm{Id}-T$:
- Capon's theorem for $H^{p}\left(H^{q}\right)$,
- local result in $H_{N}^{1}\left(H_{N}^{1}\right)$ (R. L. \& P. F. X. M.).
- Positive results, if T has a large diagonal:
- Andrew 1D for H^{p},
- Andrew 2D for $H^{p}\left(H^{q}\right)$ (R. L. \& P. F. X. M.),
- local version of Andrew 2D for $H_{N}^{p}\left(H_{N}^{q}\right)$ (R. L. \& P. F. X. M.).
- Full characterization in 1D for H^{p} by property A (JMST):
- $\left\{b_{I}: I \in \mathscr{D}\right\}$ equivalent to the Haar system,
- $\Lambda(E)=\lim _{i \rightarrow \infty} \mathbb{S}^{2}\left(\sum_{I \subset E,|I|=2^{-i}} T b_{I}\right)$ exists almost everywhere,
- $\inf _{n} \int_{0}^{1} \max _{E \in \mathscr{D},|E|=2^{-n}} \Lambda^{p / 2}(E) \mathrm{d} t>0$.

Outlook

- Full characterization in 2D for $H^{p}\left(H^{q}\right)$?
- 2D version of property A,
- Projection Q onto more general block basis $b_{I \times J}$ in $H^{p}\left(H^{q}\right)$.

