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Definition

A function f : [0, 1]→ X is said to be Riemann integrable with integral
x ∈ X if for every ε > 0 there is δ > 0 such that∥∥∥∥∥

N∑
i=1

f (si )(ti − ti−1)− x

∥∥∥∥∥ < ε

whenever 0 = t0 < t1 < ... < tN = 1, si ∈ (ti−1, ti ) and |ti − ti−1| < δ for
every i = 1, ...,N.
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Theorem (Lebesgue’s Criterion for integrability)

A function f : [0, 1]→ R is Riemann integrable if and only if f is bounded
and continuous almost everywhere.

In 1927, Graves showed that the Lebesgue’s criterion does not hold if we
replace R by a general Banach space X !

f : [0, 1]→ `∞([0, 1])

f (r)(t) =

{
0 for 0 ≤ t < r ,

1 for r ≤ t ≤ 1,
0 ≤ r ≤ 1.
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Thus, two problems arise:

(P1) Given a Banach space X , determine necessary and sufficient
conditions for the Riemann integrability of a function f : [0, 1]→ X .

(P2) Characterize those Banach spaces X such that every Riemann
integrable function f : [0, 1]→ X is continuous almost everywhere.
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Definition

A Banach space X is said to have the Lebesgue Property (LP for short) if
every Riemann integrable function f : [0, 1]→ X is continuous almost
everywhere.

(1972, Redjouani et al) `1 has the LP.

`p for 1 < p <∞, c0 and Lp([0, 1]) for 1 ≤ p <∞ do not have the
LP

(G. C. da Rocha Filho, 1979) The Tsirelson space has the LP.

(A. Pe lczyński and G. C. da Rocha Filho) Each spreading model of
a Banach space with the LP is equivalent to the standard unit vector
basis of `1.

(R. Haydon, 1984) If a stable Banach space with uniformly
separable types has the Schur property, then it has the LP. There is a
separable stable space with the Schur property but not the LP.

(K. M. Naralenkov, 2007) Every asymptotic `1 Banach space has
the LP
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(A. Pe lczyński and G. C. da Rocha Filho) Each spreading model of
a Banach space with the LP is equivalent to the standard unit vector
basis of `1.

(R. Haydon, 1984) If a stable Banach space with uniformly
separable types has the Schur property, then it has the LP. There is a
separable stable space with the Schur property but not the LP.

(K. M. Naralenkov, 2007) Every asymptotic `1 Banach space has
the LP

Gonzalo Mart́ınez Cervantes Riemann integrability versus weak continuity Warwick, Tuesday 9th June, 2015 5 / 13



Definition

A Banach space X is said to have the Lebesgue Property (LP for short) if
every Riemann integrable function f : [0, 1]→ X is continuous almost
everywhere.

(1972, Redjouani et al) `1 has the LP.

`p for 1 < p <∞, c0 and Lp([0, 1]) for 1 ≤ p <∞ do not have the
LP

(G. C. da Rocha Filho, 1979) The Tsirelson space has the LP.
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Definition

A Banach space X is said to have the weak Lebesgue Property (WLP for
short) if every Riemann integrable function f : [0, 1]→ X is weakly
continuous almost everywhere.

1 Alexiewicz and Orlicz constructed in 1951 a Riemann integrable
function which is not weak-continuous almost everywhere. In
particular, they proved that C([0, 1]) does not have the WLP.

2 (Wang Chonghu, 1996) Every space with separable dual has the WLP

3 (Wang and Wan, 2001)L1([0, 1]) has the WLP.
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The WLP property is not separably determined:

`2([0, 1]) does not have the WLP.

The LP is separably determined.

Theorem (M. Pizzoti, 1989)

If X is a Banach space without the LP and D is a countable dense subset
of [0, 1], then there exists a Riemann integrable function f : [0, 1]→ X
such that f (t) = 0 if t /∈ D and ‖f (t)‖ = 1 if t ∈ D.
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Main results

The WLP is stable under countable `p-sums and c0-sums.

The WLP is not stable under arbitrary `p-sums if p > 1 and
c0-sums: `p([0, 1]) and c0([0, 1]) do not have the WLP if p > 1.

The WLP is stable under arbitrary `1-sums.

C ([0, 1])∗ hast the WLP.

Main purpose

Characterize the spaces of the form c0(Γ), `p(Γ), L1(µ), C(K )∗

with the WLP.

What is the minimum cardinality of a set Γ such that c0(Γ)
does not have the WLP?
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Let F be a family of null sets of [0, 1]. Does there exist a Lebesgue null
set N ⊂ R such that for every E ∈ F there exists x ∈ R with x + E ⊂ N?

If F is the family of all null sets of [0, 1], then the answer is NO.

Suppose {χE : E ∈ F} is uniformly Riemann integrable in the
following sense:

for every ε > 0, there exists δ > 0 such that∥∥∥∥∥
N∑
i=1

χE (si )(ti − ti−1)

∥∥∥∥∥ < ε for every E ∈ F

whenever 0 = t0 < t1 < ... < tN = 1, si ∈ (ti−1, ti ) and
|ti − ti−1| < δ for every i = 1, ...,N.

Does there exist N with the previous property in this case?
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F = {E ⊂ [0, 1] : |E | = 2}

R0 1
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F = {E ⊂ [0, 1] : |E | = 3}

R0 1
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Definition

X is asymptotic `1 with respect to its normalized basis {ei} if there is
C ≥ 1 such that for each n ∈ N there is a function Fn : N ∪ {0} → N with
Fn(k) ≥ k for all k so that

C−1
n∑

i=1

|ai | ≤

∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥
for all normalized successive blocks {xi}ni=1 with respect to {ei} that
satisfy Fn(0) ≤ supp x1 and Fn(max supp xi ) < min supp xi+1,
i = 1, 2, ..., n − 1, and for all {ai}ni=1 ⊂ R.
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