Riemann integrability versus weak continuity

Gonzalo Martínez Cervantes

University of Murcia

Warwick, Tuesday 9th June, 2015

A function $f : [0,1] \to X$ is said to be Riemann integrable with integral $x \in X$ if for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\left|\sum_{i=1}^N f(s_i)(t_i-t_{i-1})-x\right| < \varepsilon$$

whenever $0 = t_0 < t_1 < ... < t_N = 1$, $s_i \in (t_{i-1}, t_i)$ and $|t_i - t_{i-1}| < \delta$ for every i = 1, ..., N.

Theorem (Lebesgue's Criterion for integrability)

A function $f : [0,1] \rightarrow \mathbb{R}$ is Riemann integrable if and only if f is bounded and continuous almost everywhere.

Theorem (Lebesgue's Criterion for integrability)

A function $f : [0,1] \rightarrow \mathbb{R}$ is Riemann integrable if and only if f is bounded and continuous almost everywhere.

In 1927, Graves showed that the Lebesgue's criterion does not hold if we replace \mathbb{R} by a general Banach space X!

Theorem (Lebesgue's Criterion for integrability)

A function $f : [0,1] \rightarrow \mathbb{R}$ is Riemann integrable if and only if f is bounded and continuous almost everywhere.

In 1927, Graves showed that the Lebesgue's criterion does not hold if we replace \mathbb{R} by a general Banach space X!

$$f:[0,1] o \ell_\infty([0,1])$$
 $f(r)(t) = egin{cases} 0 & ext{for } 0 \le t < r, \ 1 & ext{for } r \le t \le 1, \end{cases} \quad 0 \le r \le 1.$

Gonzalo Martínez Cervantes Riemann integrability versus weak continuity Warwick, Tuesday 9th

Warwick, Tuesday 9th June, 2015 3 / 13

Thus, two problems arise:

Thus, two problems arise:

(P1) Given a Banach space X, determine necessary and sufficient conditions for the Riemann integrability of a function $f : [0, 1] \rightarrow X$.

Thus, two problems arise:

- (P1) Given a Banach space X, determine necessary and sufficient conditions for the Riemann integrability of a function $f : [0, 1] \rightarrow X$.
- (P2) Characterize those Banach spaces X such that every Riemann integrable function $f : [0, 1] \rightarrow X$ is continuous almost everywhere.

A Banach space X is said to have the Lebesgue Property (LP for short) if every Riemann integrable function $f : [0,1] \rightarrow X$ is continuous almost everywhere.

 \circ (1972, Redjouani et al) ℓ_1 has the LP.

A Banach space X is said to have the Lebesgue Property (LP for short) if every Riemann integrable function $f : [0,1] \rightarrow X$ is continuous almost everywhere.

• (1972, Redjouani et al) ℓ_1 has the LP. • ℓ_p for $1 , <math>c_0$ and $L^p([0,1])$ for $1 \le p < \infty$ do not have the LP

- \circ (1972, Redjouani et al) ℓ_1 has the LP.
- $\circ~\ell_p$ for $1 and <math display="inline">L^p([0,1])$ for $1 \leq p < \infty$ do not have the LP
- (G. C. da Rocha Filho, 1979) The Tsirelson space has the LP.

- \circ (1972, Redjouani et al) ℓ_1 has the LP.
- $\circ~\ell_p$ for $1 and <math display="inline">L^p([0,1])$ for $1 \leq p < \infty$ do not have the LP
- (G. C. da Rocha Filho, 1979) The Tsirelson space has the LP.
- (A. Pełczyński and G. C. da Rocha Filho) Each spreading model of a Banach space with the LP is equivalent to the standard unit vector basis of ℓ_1 .

- \circ (1972, Redjouani et al) ℓ_1 has the LP.
- $\circ~\ell_p$ for $1 and <math display="inline">L^p([0,1])$ for $1 \leq p < \infty$ do not have the LP
- (G. C. da Rocha Filho, 1979) The Tsirelson space has the LP.
- (A. Pełczyński and G. C. da Rocha Filho) Each spreading model of a Banach space with the LP is equivalent to the standard unit vector basis of ℓ_1 .
- (R. Haydon, 1984) If a stable Banach space with uniformly separable types has the Schur property, then it has the LP. There is a separable stable space with the Schur property but not the LP.

A Banach space X is said to have the Lebesgue Property (LP for short) if every Riemann integrable function $f : [0,1] \rightarrow X$ is continuous almost everywhere.

- \circ (1972, Redjouani et al) ℓ_1 has the LP.
- $\circ~\ell_p$ for $1 and <math display="inline">L^p([0,1])$ for $1 \leq p < \infty$ do not have the LP
- (G. C. da Rocha Filho, 1979) The Tsirelson space has the LP.
- \circ (A. Pełczyński and G. C. da Rocha Filho) Each spreading model of a Banach space with the LP is equivalent to the standard unit vector basis of ℓ_1 .

 $_{\odot}$ (R. Haydon, 1984) If a stable Banach space with uniformly separable types has the Schur property, then it has the LP. There is a separable stable space with the Schur property but not the LP.

 \circ (K. M. Naralenkov, 2007) Every asymptotic ℓ_1 Banach space has the LP

A Banach space X is said to have the weak Lebesgue Property (WLP for short) if every Riemann integrable function $f : [0,1] \rightarrow X$ is weakly continuous almost everywhere.

Alexiewicz and Orlicz constructed in 1951 a Riemann integrable function which is not weak-continuous almost everywhere. In particular, they proved that C([0, 1]) does not have the WLP.

- Alexiewicz and Orlicz constructed in 1951 a Riemann integrable function which is not weak-continuous almost everywhere. In particular, they proved that C([0, 1]) does not have the WLP.
- (Wang Chonghu, 1996) Every space with separable dual has the WLP

- Alexiewicz and Orlicz constructed in 1951 a Riemann integrable function which is not weak-continuous almost everywhere. In particular, they proved that C([0, 1]) does not have the WLP.
- (Wang Chonghu, 1996) Every space with separable dual has the WLP
- (Wang and Wan, 2001) $L^1([0,1])$ has the WLP.

The WLP property is not separably determined:

The WLP property is not separably determined: $\ell_2([0,1])$ does not have the WLP.

The WLP property is not separably determined: $\ell_2([0,1])$ does not have the WLP. The LP is separably determined.

Theorem (M. Pizzoti, 1989)

If X is a Banach space without the LP and D is a countable dense subset of [0,1], then there exists a Riemann integrable function $f : [0,1] \rightarrow X$ such that f(t) = 0 if $t \notin D$ and ||f(t)|| = 1 if $t \in D$.

• The WLP is stable under countable ℓ_p -sums and c_0 -sums.

• The WLP is stable under countable ℓ_p -sums and c_0 -sums.

• The WLP is not stable under arbitrary ℓ_p -sums if p > 1 and c_0 -sums: $\ell_p([0, 1])$ and $c_0([0, 1])$ do not have the WLP if p > 1.

- The WLP is stable under countable ℓ_p -sums and c_0 -sums.
- The WLP is not stable under arbitrary ℓ_p-sums if p > 1 and c₀-sums: ℓ_p([0, 1]) and c₀([0, 1]) do not have the WLP if p > 1.
 The WLP is stable under arbitrary ℓ₁-sums.

- The WLP is stable under countable ℓ_p -sums and c_0 -sums.
- The WLP is not stable under arbitrary ℓ_p -sums if p > 1 and c_0 -sums: $\ell_p([0, 1])$ and $c_0([0, 1])$ do not have the WLP if p > 1.
- \circ The WLP is stable under arbitrary $\ell_1\text{-sums.}$
- $C([0,1])^*$ hast the WLP.

- The WLP is stable under countable ℓ_p -sums and c_0 -sums.
- The WLP is not stable under arbitrary ℓ_p -sums if p > 1 and c_0 -sums: $\ell_p([0, 1])$ and $c_0([0, 1])$ do not have the WLP if p > 1.
- \circ The WLP is stable under arbitrary $\ell_1\text{-sums.}$
- $C([0, 1])^*$ hast the WLP.

Main purpose

• Characterize the spaces of the form $c_0(\Gamma)$, $\ell_p(\Gamma)$, $L^1(\mu)$, $C(K)^*$ with the WLP.

- The WLP is stable under countable ℓ_p -sums and c_0 -sums.
- The WLP is not stable under arbitrary ℓ_p -sums if p > 1 and c_0 -sums: $\ell_p([0, 1])$ and $c_0([0, 1])$ do not have the WLP if p > 1.
- \circ The WLP is stable under arbitrary $\ell_1\text{-sums.}$
- $C([0, 1])^*$ hast the WLP.

Main purpose

• Characterize the spaces of the form $c_0(\Gamma)$, $\ell_p(\Gamma)$, $L^1(\mu)$, $C(K)^*$ with the WLP.

 \circ What is the minimum cardinality of a set Γ such that $c_0(\Gamma)$ does not have the WLP?

 \circ If \mathcal{F} is the family of all null sets of [0,1], then the answer is NO.

If *F* is the family of all null sets of [0, 1], then the answer is NO.
Suppose {*x_E* : *E* ∈ *F*} is uniformly Riemann integrable in the following sense:

If *F* is the family of all null sets of [0, 1], then the answer is NO.
Suppose {*x_E* : *E* ∈ *F*} is uniformly Riemann integrable in the following sense:

for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\left\|\sum_{i=1}^N \chi_E(s_i)(t_i-t_{i-1})\right\| < \varepsilon \text{ for every } E \in \mathcal{F}$$

whenever $0 = t_0 < t_1 < ... < t_N = 1$, $s_i \in (t_{i-1}, t_i)$ and $|t_i - t_{i-1}| < \delta$ for every i = 1, ..., N.

If *F* is the family of all null sets of [0, 1], then the answer is NO.
Suppose {*x_E* : *E* ∈ *F*} is uniformly Riemann integrable in the following sense:

for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\left\|\sum_{i=1}^N \chi_E(s_i)(t_i-t_{i-1})\right\| < \varepsilon \text{ for every } E \in \mathcal{F}$$

whenever $0 = t_0 < t_1 < ... < t_N = 1$, $s_i \in (t_{i-1}, t_i)$ and $|t_i - t_{i-1}| < \delta$ for every i = 1, ..., N.

Does there exist N with the previous property in this case?

$\mathcal{F} = \{E \subset [0,1] : |E| = 2\}$

$\mathcal{F} = \{ E \subset [0,1] : |E| = 2 \}$

$\mathcal{F} = \{E \subset [0,1] : |E| = 3\}$

$\mathcal{F} = \{ E \subset [0,1] : |E| = 3 \}$

Bibliography

- A. Alexiewicz and W. Orlicz, *Remarks on Riemann-integration of vector-valued functions*, Studia Math. **12** (1951), 125–132. MR 0043366 (13,250c)
- Russell Gordon, Survey article Riemann integration in Banach spaces, Rocky Mountain J. Math. 21 (1991), no. 3, 923–949.
- Lawrence M. Graves, *Riemann integration and Taylor's theorem in general analysis*, Trans. Amer. Math. Soc. **29** (1927), no. 1, 163–177. MR 1501382
- Richard Haydon, Darboux integrability and separability of types in stable Banach spaces., Sémin. analyse fonctionnelle, Paris 1983-84, Publ. Math. Univ. Paris VII 20, 95-115 (1984)., 1984.
- A. Pelczynski and G. C. da Rocha Filho, *Operadores de Darboux*, Seminario Brasileiro de Analise, 12, Sao Jose dos Campos, 1980. Trabalhos Apresentados. Rio de janeiro, SBM, 1980, pp. 293–296.
- Chonghu Wang and Kang Wan, On the weak property of Lebesgue of L¹(Ω, Σ, μ), Rocky Mountain J. Math. **31** (2001), no. 2, 697–703.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bibliography

- A. Alexiewicz and W. Orlicz, *Remarks on Riemann-integration of vector-valued functions*, Studia Math. **12** (1951), 125–132. MR 0043366 (13,250c)
- Russell Gordon, Survey article Riemann integration in Banach spaces, Rocky Mountain J. Math. 21 (1991), no. 3, 923–949.
- Lawrence M. Graves, *Riemann integration and Taylor's theorem in general analysis*, Trans. Amer. Math. Soc. **29** (1927), no. 1, 163–177. MR 1501382
- Richard Haydon, Darboux integrability and separability of types in stable Banach spaces., Sémin. analyse fonctionnelle, Paris 1983-84, Publ. Math. Univ. Paris VII 20, 95-115 (1984)., 1984.
- A. Pelczynski and G. C. da Rocha Filho, *Operadores de Darboux*, Seminario Brasileiro de Analise, 12, Sao Jose dos Campos, 1980. Trabalhos Apresentados. Rio de janeiro, SBM, 1980, pp. 293–296.
- Chonghu Wang and Kang Wan, On the weak property of Lebesgue of L¹(Ω, Σ, μ), Rocky Mountain J. Math. **31** (2001), no. 2, 697–703.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bibliography

- A. Alexiewicz and W. Orlicz, *Remarks on Riemann-integration of vector-valued functions*, Studia Math. **12** (1951), 125–132. MR 0043366 (13,250c)
- Russell Gordon, Survey article Riemann integration in Banach spaces, Rocky Mountain J. Math. 21 (1991), no. 3, 923–949.
- Lawrence M. Graves, *Riemann integration and Taylor's theorem in general analysis*, Trans. Amer. Math. Soc. **29** (1927), no. 1, 163–177. MR 1501382
- Richard Haydon, Darboux integrability and separability of types in stable Banach spaces., Sémin. analyse fonctionnelle, Paris 1983-84, Publ. Math. Univ. Paris VII 20, 95-115 (1984)., 1984.
- A. Pelczynski and G. C. da Rocha Filho, *Operadores de Darboux*, Seminario Brasileiro de Analise, 12, Sao Jose dos Campos, 1980. Trabalhos Apresentados. Rio de janeiro, SBM, 1980, pp. 293–296.
- Chonghu Wang and Kang Wan, On the weak property of Lebesgue of L¹(Ω, Σ, μ), Rocky Mountain J. Math. **31** (2001), no. 2, 697–703.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

X is asymptotic ℓ^1 with respect to its normalized basis $\{e_i\}$ if there is $C \ge 1$ such that for each $n \in \mathbb{N}$ there is a function $F_n : \mathbb{N} \cup \{0\} \to \mathbb{N}$ with $F_n(k) \ge k$ for all k so that

$$C^{-1}\sum_{i=1}^{n}|a_{i}| \leq \left\|\sum_{i=1}^{n}a_{i}x_{i}\right\|$$

for all normalized successive blocks $\{x_i\}_{i=1}^n$ with respect to $\{e_i\}$ that satisfy $F_n(0) \leq \text{supp } x_1$ and $F_n(\max \text{supp } x_i) < \min \text{supp } x_{i+1}$, i = 1, 2, ..., n-1, and for all $\{a_i\}_{i=1}^n \subset \mathbb{R}$.