

David Preiss

David Preiss

Olga Maleva

David Preiss

Olga Maleva

Martin Rmoutil

David Preiss

Olga Maleva

Martin Rmoutil

Daniel Seco

David Preiss

Martin Rmoutil

Olga Maleva

Thomas Zürcher

Measured sets

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ-finite measure to A.

Measured sets

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ-finite measure to A.

Question

Is there a non-empty set which is not measured?

Measured sets

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ-finite measure to A.

Question

Is there a non-empty set which is not measured?

- translation invariant: $\mu(B+x)=\mu(B)$ for every $x \in \mathbb{R}$ and Borel set B;
- $\mu(A)>0$ and μ restricted to A is σ-finite;
- μ on \mathbb{R} need not be σ-finite.

Measured sets

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ-finite measure to A.

Question

Is there a non-empty set which is not measured?

- translation invariant: $\mu(B+x)=\mu(B)$ for every $x \in \mathbb{R}$ and Borel set B;
- $\mu(A)>0$ and μ restricted to A is σ-finite;
- μ on \mathbb{R} need not be σ-finite.

Examples

- Any set of positive Lebesgue measure is measured by the Lebesgue measure;
- Cantor set is measured by the Hausdorff measure of dimension $\log 2 / \log 3$.

Measured sets

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ-finite measure to A.

Question

Is there a non-empty set which is not measured?

- translation invariant: $\mu(B+x)=\mu(B)$ for every $x \in \mathbb{R}$ and Borel set B;
- $\mu(A)>0$ and μ restricted to A is σ-finite;
- μ on \mathbb{R} need not be σ-finite.

Examples

- Any set of positive Lebesgue measure is measured by the Lebesgue measure;
- Cantor set is measured by the Hausdorff measure of dimension $\log 2 / \log 3$.

Nice examples of translation invariant measures:

- Hausdorff measures \mathcal{H}^{s},
- generalised Hausdorff \mathcal{H}^{g} and packing measures \mathcal{P}^{g} with gauge function g.

Sets which have zero or infinite measure for every translation invariant Borel measure

Sets which have zero or infinite measure for every translation invariant Borel measure

- any infinite countable set;

Sets which have zero or infinite measure for every translation invariant Borel measure

- any infinite countable set;
- \mathbb{R}.

A set which is not measured

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.

A set which is not measured

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.
Sketch of proof.

$$
A=B \cup(B+B) \cup(B+B+B) \cup(B+B+B+B) \cup \ldots
$$

A set which is not measured

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.
Sketch of proof.

$$
A=B \cup(B+B) \cup(B+B+B) \cup(B+B+B+B) \cup \ldots
$$

Let $B \subset[1,2]$ be an uncountable compact set for which these unions are all disjoint.

A set which is not measured

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.
Sketch of proof.

$$
A=B \cup(B+B) \cup(B+B+B) \cup(B+B+B+B) \cup \ldots
$$

Let $B \subset[1,2]$ be an uncountable compact set for which these unions are all disjoint.
$B+B=\cup_{b \in B}(B+b) . \quad \leftarrow$ these as well

A set which is not measured

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.
Sketch of proof.

$$
A=B \cup(B+B) \cup(B+B+B) \cup(B+B+B+B) \cup \ldots
$$

Let $B \subset[1,2]$ be an uncountable compact set for which these unions are all disjoint.
$B+B=\cup_{b \in B}(B+b) . \quad \leftarrow$ these as well
Lemma: If μ is translation invariant, $\mu(E)>0$ and F contains uncountably many disjoint translates of E, then μ is not σ-finite on F.

Other examples

Theorem (Elekes-Keleti 2006)

- The set of Liouville numbers
$L=\left\{x \in \mathbb{R} \backslash \mathbb{Q}:\right.$ for every n there are p, q with $\left.|x-p / q|<1 / q^{n}\right\}$ is not measured.

Other examples

Theorem (Elekes-Keleti 2006)

- The set of Liouville numbers
$L=\left\{x \in \mathbb{R} \backslash \mathbb{Q}:\right.$ for every n there are p, q with $\left.|x-p / q|<1 / q^{n}\right\}$ is not measured.
- Any non- F_{σ} additive subgroup of \mathbb{R} is not measured.

Other examples

Theorem (Elekes-Keleti 2006)

- The set of Liouville numbers
$L=\left\{x \in \mathbb{R} \backslash \mathbb{Q}:\right.$ for every n there are p, q with $\left.|x-p / q|<1 / q^{n}\right\}$ is not measured.
- Any non- F_{σ} additive subgroup of \mathbb{R} is not measured.

Remark

σ-finite Borel measures on a Borel set $A \subset \mathbb{R}$ are inner regular.

Theorem/Observation (Elekes-Keleti)

Let ν be a measure on A. Then ν has a translation invariant extension to \mathbb{R} if and only if

$$
\nu\left(A^{\prime}+t\right)=\nu\left(A^{\prime}\right) \quad \text { whenever } \quad A^{\prime} \subset A \text { and } A^{\prime}+t \subset A
$$

Theorem/Observation (Elekes-Keleti)

Let ν be a measure on A. Then ν has a translation invariant extension to \mathbb{R} if and only if

$$
\nu\left(A^{\prime}+t\right)=\nu\left(A^{\prime}\right) \quad \text { whenever } \quad A^{\prime} \subset A \text { and } A^{\prime}+t \subset A
$$

Proof.

$$
\mu(B)=\inf \left\{\sum_{i=1}^{\infty} \nu\left(A_{i}\right): A_{i} \subset A, B \subset \cup_{i}\left(A_{i}+t_{i}\right)\right\} .
$$

Theorem/Observation (Elekes-Keleti)

Let ν be a measure on A. Then ν has a translation invariant extension to \mathbb{R} if and only if

$$
\nu\left(A^{\prime}+t\right)=\nu\left(A^{\prime}\right) \quad \text { whenever } \quad A^{\prime} \subset A \text { and } A^{\prime}+t \subset A
$$

Proof.

$$
\mu(B)=\inf \left\{\sum_{i=1}^{\infty} \nu\left(A_{i}\right): A_{i} \subset A, B \subset \cup_{i}\left(A_{i}+t_{i}\right)\right\} .
$$

Remark

If A is such that $A \cap(A+t)$ is at most 1 point for all $t \in \mathbb{R}$, then any non-atomic measure on A is extendable.

Theorem/Observation (Elekes-Keleti)

Let ν be a measure on A. Then ν has a translation invariant extension to \mathbb{R} if and only if

$$
\nu\left(A^{\prime}+t\right)=\nu\left(A^{\prime}\right) \quad \text { whenever } \quad A^{\prime} \subset A \text { and } A^{\prime}+t \subset A
$$

Proof.

$$
\mu(B)=\inf \left\{\sum_{i=1}^{\infty} \nu\left(A_{i}\right): A_{i} \subset A, B \subset \cup_{i}\left(A_{i}+t_{i}\right)\right\} .
$$

Remark

If A is such that $A \cap(A+t)$ is at most 1 point for all $t \in \mathbb{R}$, then any non-atomic measure on A is extendable.

Corollary

If A is an uncountable Borel set such that $A \cap(A+t)$ is at most 1 point for all $t \in \mathbb{R}$, then A is measured.

Questions (Elekes-Keleti)

(1) Is it true that the union of two measured sets is measured?

Questions (Elekes-Keleti)

(1) Is it true that the union of two measured sets is measured?
(Is it true that every non-empty Borel set is a union of countably many measured sets?

Questions (Elekes-Keleti)

(1) Is it true that the union of two measured sets is measured?
(Is it true that every non-empty Borel set is a union of countably many measured sets?

- Is it true that every measured set is measured by a Hausdorff measure?

Questions (Elekes-Keleti)

(1) Is it true that the union of two measured sets is measured?
(Is it true that every non-empty Borel set is a union of countably many measured sets?

- Is it true that every measured set is measured by a Hausdorff measure?

Aim: find a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Polish groups

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.

Polish groups

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.
Example: Banach spaces; closed subgroups of Banach spaces.

Polish groups

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.
Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ-finite measure to A.

Polish groups

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.
Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ-finite measure to A.

Theorem (M)

A non-locally compact Polish group G is not a union of countably many measured sets.

Polish groups

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.
Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ-finite measure to A.

Theorem (M)

A non-locally compact Polish group G is not a union of countably many measured sets.

Beginning of the proof. Assume it is. $G=\cup_{i} A_{i}$. μ_{i}. Choose compact sets $K_{i} \subset A_{i}$ of small diameter such that $\mu_{i}\left(K_{i}\right)>0$.

Polish groups

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.
Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ-finite measure to A.

Theorem (M)

A non-locally compact Polish group G is not a union of countably many measured sets.

Beginning of the proof. Assume it is. $G=\cup_{i} A_{i}$. μ_{i}. Choose compact sets $K_{i} \subset A_{i}$ of small diameter such that $\mu_{i}\left(K_{i}\right)>0$.
Take $K=K_{1}+K_{2}+K_{3}+\ldots$,

Polish groups

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.
Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ-finite measure to A.

Theorem (M)

A non-locally compact Polish group G is not a union of countably many measured sets.

Beginning of the proof. Assume it is. $G=\cup_{i} A_{i}$. μ_{i}. Choose compact sets $K_{i} \subset A_{i}$ of small diameter such that $\mu_{i}\left(K_{i}\right)>0$.
Take $K=K_{1}+K_{2}+K_{3}+\ldots$, and consider the infinite convolution of the normalised measures

$$
\frac{\mu_{i} \mid K_{i}}{\mu_{i}\left(K_{i}\right)} .
$$

Haar null (shy) sets

Definition (Christensen)

A Borel set $A \subset G$ is called Haar null if there is a Borel probability measure μ such that

$$
\mu(g+A+h)=0 \quad \text { for all } g, h \in G .
$$

Haar null (shy) sets

Definition (Christensen)

A Borel set $A \subset G$ is called Haar null if there is a Borel probability measure μ such that

$$
\mu(g+A+h)=0 \quad \text { for all } g, h \in G .
$$

If G is locally compact, Haar null sets are the sets of zero Haar measure.

Haar null (shy) sets

Definition (Christensen)

A Borel set $A \subset G$ is called Haar null if there is a Borel probability measure μ such that

$$
\mu(g+A+h)=0 \quad \text { for all } g, h \in G .
$$

If G is locally compact, Haar null sets are the sets of zero Haar measure.

Haar null sets are closed under countable unions.

Haar null (shy) sets

Definition (Christensen)

A Borel set $A \subset G$ is called Haar null if there is a Borel probability measure μ such that

$$
\mu(g+A+h)=0 \quad \text { for all } g, h \in G
$$

If G is locally compact, Haar null sets are the sets of zero Haar measure.

Haar null sets are closed under countable unions.
\rightarrow prevalent sets.

Theorem (M)

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Theorem (M)

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$.

Theorem (M)

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$. (Take ℓ_{p} with the standard basis, $1 \leq p<\infty$.)

Theorem (M)

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$. (Take ℓ_{p} with the standard basis, $1 \leq p<\infty$.)
Let

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

This is the closure of the subgroup generated by $\left(e_{n} / n\right)$.

Theorem (M)

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$. (Take ℓ_{p} with the standard basis, $1 \leq p<\infty$.)
Let

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

This is the closure of the subgroup generated by $\left(e_{n} / n\right)$.
Note: if the sum converges, then $\frac{k_{n}}{n}$ is bounded and $\left\|\frac{k_{n}}{n}\right\| \leq C\left\|\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right\|$.

Theorem (M)

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$. (Take ℓ_{p} with the standard basis, $1 \leq p<\infty$.)
Let

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

This is the closure of the subgroup generated by $\left(e_{n} / n\right)$.
Note: if the sum converges, then $\frac{k_{n}}{n}$ is bounded and $\left\|\frac{k_{n}}{n}\right\| \leq C\left\|\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right\|$.
Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!}
$$

Theorem (M)

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$. (Take ℓ_{p} with the standard basis, $1 \leq p<\infty$.)
Let

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

This is the closure of the subgroup generated by $\left(e_{n} / n\right)$.
Note: if the sum converges, then $\frac{k_{n}}{n}$ is bounded and $\left\|\frac{k_{n}}{n}\right\| \leq C\left\|\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right\|$.
Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!} .
$$

f is a (restriction of a) bounded linear functional.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$.

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!} .
$$

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$.

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!} .
$$

$X_{r}=\{x \in X:\|x\| \leq r\}$.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$.

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!} .
$$

$X_{r}=\{x \in X:\|x\| \leq r\}$.

- f is a bounded linear functional, $f(G)$ is an additive subgroup of \mathbb{R}.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$.

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!} .
$$

$X_{r}=\{x \in X:\|x\| \leq r\}$.

- f is a bounded linear functional, $f(G)$ is an additive subgroup of \mathbb{R}.
- f is locally injective (injective on $G \cap X_{r}$ for small enough r)

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$.

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!} .
$$

$X_{r}=\{x \in X:\|x\| \leq r\}$.

- f is a bounded linear functional, $f(G)$ is an additive subgroup of \mathbb{R}.
- f is locally injective (injective on $G \cap X_{r}$ for small enough r)
- $f\left(G \cap X_{r}\right)$ is Borel; thus $f(G) \subset \mathbb{R}$ is Borel.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$.

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!} .
$$

$X_{r}=\{x \in X:\|x\| \leq r\}$.

- f is a bounded linear functional, $f(G)$ is an additive subgroup of \mathbb{R}.
- f is locally injective (injective on $G \cap X_{r}$ for small enough r)
- $f\left(G \cap X_{r}\right)$ is Borel; thus $f(G) \subset \mathbb{R}$ is Borel.
- G is a non-locally compact Polish space: not a union of countably many measured sets.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$.

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!} .
$$

$X_{r}=\{x \in X:\|x\| \leq r\}$.

- f is a bounded linear functional, $f(G)$ is an additive subgroup of \mathbb{R}.
- f is locally injective (injective on $G \cap X_{r}$ for small enough r)
- $f\left(G \cap X_{r}\right)$ is Borel; thus $f(G) \subset \mathbb{R}$ is Borel.
- G is a non-locally compact Polish space: not a union of countably many measured sets.
- By local injectivity, we can "pull back measures on $f(G)$ to measures on G ". Therefore $A=f(G)$ is not a union of countably many measured sets.

Let X be a Banach space with a normalised Schauder basis $\left(e_{n}\right)$.

$$
G=\left\{\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n} \in X: k_{n} \in \mathbb{Z}\right\} .
$$

Define $f: G \rightarrow \mathbb{R}$ by setting

$$
f\left(\sum_{n=1}^{\infty} \frac{k_{n}}{n} e_{n}\right)=\sum_{n=1}^{\infty} \frac{k_{n}}{n!} .
$$

$X_{r}=\{x \in X:\|x\| \leq r\}$.

- f is a bounded linear functional, $f(G)$ is an additive subgroup of \mathbb{R}.
- f is locally injective (injective on $G \cap X_{r}$ for small enough r)
- $f\left(G \cap X_{r}\right)$ is Borel; thus $f(G) \subset \mathbb{R}$ is Borel.
- G is a non-locally compact Polish space: not a union of countably many measured sets.
- By local injectivity, we can "pull back measures on $f(G)$ to measures on G ". Therefore $A=f(G)$ is not a union of countably many measured sets.
- If $\left(e_{n}\right)$ is boundedly complete, then $A=f(G)$ is σ-compact.

Union of measured sets in \mathbb{R}

The Hausdorff measure with gauge function g is

$$
\mathcal{H}^{g}(A)=\lim _{\delta \rightarrow 0+} \inf \left\{\sum_{i=1}^{\infty} g\left(\operatorname{diam} U_{i}\right): A \subset \cup_{i=1}^{\infty} U_{i} \text { and } \operatorname{diam} U_{i}<\delta\right\}
$$

Here g is monotone increasing right continuous function $g:[0, \infty) \rightarrow[0, \infty)$.

Union of measured sets in \mathbb{R}

The Hausdorff measure with gauge function g is

$$
\mathcal{H}^{g}(A)=\lim _{\delta \rightarrow 0+} \inf \left\{\sum_{i=1}^{\infty} g\left(\operatorname{diam} U_{i}\right): A \subset \cup_{i=1}^{\infty} U_{i} \text { and } \operatorname{diam} U_{i}<\delta\right\}
$$

Here g is monotone increasing right continuous function $g:[0, \infty) \rightarrow[0, \infty)$.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that B is of the second category.

Union of measured sets in \mathbb{R}

The Hausdorff measure with gauge function g is

$$
\mathcal{H}^{g}(A)=\lim _{\delta \rightarrow 0+} \inf \left\{\sum_{i=1}^{\infty} g\left(\operatorname{diam} U_{i}\right): A \subset \cup_{i=1}^{\infty} U_{i} \text { and } \operatorname{diam} U_{i}<\delta\right\}
$$

Here g is monotone increasing right continuous function $g:[0, \infty) \rightarrow[0, \infty)$.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that B is of the second category. Then there are Borel partitions $B=B_{1} \cup B_{2}, A=A_{1} \cup A_{2}$ and gauge functions g_{1}, g_{2} such that the Hausdorff measures satisfy

Union of measured sets in \mathbb{R}

The Hausdorff measure with gauge function g is

$$
\mathcal{H}^{g}(A)=\lim _{\delta \rightarrow 0+} \inf \left\{\sum_{i=1}^{\infty} g\left(\operatorname{diam} U_{i}\right): A \subset \cup_{i=1}^{\infty} U_{i} \text { and } \operatorname{diam} U_{i}<\delta\right\}
$$

Here g is monotone increasing right continuous function $g:[0, \infty) \rightarrow[0, \infty)$.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that B is of the second category. Then there are Borel partitions $B=B_{1} \cup B_{2}, A=A_{1} \cup A_{2}$ and gauge functions g_{1}, g_{2} such that the Hausdorff measures satisfy

$$
\begin{array}{ll}
\mathcal{H}^{g_{1}}\left(B_{1}\right)=1, & \mathcal{H}^{g_{1}}\left(A_{1}\right)=0, \\
\mathcal{H}^{g_{2}}\left(B_{2}\right)=1, & \mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
\end{array}
$$

Union of measured sets in \mathbb{R}

The Hausdorff measure with gauge function g is

$$
\mathcal{H}^{g}(A)=\lim _{\delta \rightarrow 0+} \inf \left\{\sum_{i=1}^{\infty} g\left(\operatorname{diam} U_{i}\right): A \subset \cup_{i=1}^{\infty} U_{i} \text { and } \operatorname{diam} U_{i}<\delta\right\}
$$

Here g is monotone increasing right continuous function $g:[0, \infty) \rightarrow[0, \infty)$.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that B is of the second category. Then there are Borel partitions $B=B_{1} \cup B_{2}, A=A_{1} \cup A_{2}$ and gauge functions g_{1}, g_{2} such that the Hausdorff measures satisfy

$$
\begin{array}{ll}
\mathcal{H}^{g_{1}}\left(B_{1}\right)=1, & \mathcal{H}^{g_{1}}\left(A_{1}\right)=0, \\
\mathcal{H}^{g_{2}}\left(B_{2}\right)=1, & \mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
\end{array}
$$

The theorem holds even if $A=B$; or when B has Hausdorff dimension zero and A has Hausdorff dimension 1.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that B is of the second category. Then there are Borel partitions $B=B_{1} \cup B_{2}, A=A_{1} \cup A_{2}$ and gauge functions g_{1}, g_{2} such that the Hausdorff measures satisfy

$$
\begin{array}{ll}
\mathcal{H}^{g_{1}}\left(B_{1}\right)=1, & \mathcal{H}^{g_{1}}\left(A_{1}\right)=0, \\
\mathcal{H}^{g_{2}}\left(B_{2}\right)=1, & \mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
\end{array}
$$

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that B is of the second category. Then there are Borel partitions $B=B_{1} \cup B_{2}, A=A_{1} \cup A_{2}$ and gauge functions g_{1}, g_{2} such that the Hausdorff measures satisfy

$$
\begin{array}{ll}
\mathcal{H}^{g_{1}}\left(B_{1}\right)=1, & \mathcal{H}^{g_{1}}\left(A_{1}\right)=0, \\
\mathcal{H}^{g_{2}}\left(B_{2}\right)=1, & \mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
\end{array}
$$

Corollary

Every Lebesgue nullset of the second category is a union of two measured sets.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that B is of the second category. Then there are Borel partitions $B=B_{1} \cup B_{2}, A=A_{1} \cup A_{2}$ and gauge functions g_{1}, g_{2} such that the Hausdorff measures satisfy

$$
\begin{array}{ll}
\mathcal{H}^{g_{1}}\left(B_{1}\right)=1, & \mathcal{H}^{g_{1}}\left(A_{1}\right)=0, \\
\mathcal{H}^{g_{2}}\left(B_{2}\right)=1, & \mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
\end{array}
$$

Corollary

Every Lebesgue nullset of the second category is a union of two measured sets.
There are Lebesgue nullsets of the second category which are not measured (e.g. set of Liouville numbers).

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that B is of the second category. Then there are Borel partitions $B=B_{1} \cup B_{2}, A=A_{1} \cup A_{2}$ and gauge functions g_{1}, g_{2} such that the Hausdorff measures satisfy

$$
\begin{array}{ll}
\mathcal{H}^{g_{1}}\left(B_{1}\right)=1, & \mathcal{H}^{g_{1}}\left(A_{1}\right)=0, \\
\mathcal{H}^{g_{2}}\left(B_{2}\right)=1, & \mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
\end{array}
$$

Corollary

Every Lebesgue nullset of the second category is a union of two measured sets.
There are Lebesgue nullsets of the second category which are not measured (e.g. set of Liouville numbers).

Corollary

The union of two measured sets need not be measured.

How to divide a set into two

How to divide a set into two

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_{1}, g_{2} be two gauge functions such that

$$
\mathcal{H}^{\min \left(g_{1}, g_{2}\right)}(A)=0
$$

Then there are disjoint Borel sets A_{1}, A_{2} such that

$$
A=A_{1} \cup A_{2} \quad \text { and } \quad \mathcal{H}^{g_{1}}\left(A_{1}\right)=\mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
$$

How to divide a set into two

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_{1}, g_{2} be two gauge functions such that

$$
\mathcal{H}^{\min \left(g_{1}, g_{2}\right)}(A)=0
$$

Then there are disjoint Borel sets A_{1}, A_{2} such that

$$
A=A_{1} \cup A_{2} \quad \text { and } \quad \mathcal{H}^{g_{1}}\left(A_{1}\right)=\mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
$$

Proof.

$g(x)=\min \left(g_{1}(x), g_{2}(x)\right)$.
Cover A with intervals I_{1}, I_{2}, \ldots such that $\sum_{j=1}^{\infty} g\left(I_{j}\right)<\varepsilon$.

How to divide a set into two

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_{1}, g_{2} be two gauge functions such that

$$
\mathcal{H}^{\min \left(g_{1}, g_{2}\right)}(A)=0
$$

Then there are disjoint Borel sets A_{1}, A_{2} such that

$$
A=A_{1} \cup A_{2} \quad \text { and } \quad \mathcal{H}^{g_{1}}\left(A_{1}\right)=\mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
$$

Proof.
$g(x)=\min \left(g_{1}(x), g_{2}(x)\right)$.
Cover A with intervals I_{1}, I_{2}, \ldots such that $\sum_{j=1}^{\infty} g\left(I_{j}\right)<\varepsilon$.
Let $S \subset\{1,2, \ldots\}$ be the set of those j for which $g\left(I_{j}\right)=g_{1}\left(I_{j}\right)$.

How to divide a set into two

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_{1}, g_{2} be two gauge functions such that

$$
\mathcal{H}^{\min \left(g_{1}, g_{2}\right)}(A)=0
$$

Then there are disjoint Borel sets A_{1}, A_{2} such that

$$
A=A_{1} \cup A_{2} \quad \text { and } \quad \mathcal{H}^{g_{1}}\left(A_{1}\right)=\mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
$$

Proof.
$g(x)=\min \left(g_{1}(x), g_{2}(x)\right)$.
Cover A with intervals I_{1}, I_{2}, \ldots such that $\sum_{j=1}^{\infty} g\left(I_{j}\right)<\varepsilon$.
Let $S \subset\{1,2, \ldots\}$ be the set of those j for which $g\left(I_{j}\right)=g_{1}\left(I_{j}\right)$.
Then

$$
\sum_{j \in S} g_{1}\left(I_{j}\right)+\sum_{j \notin S} g_{2}\left(I_{j}\right)<\varepsilon
$$

How to divide a set into two

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_{1}, g_{2} be two gauge functions such that

$$
\mathcal{H}^{\min \left(g_{1}, g_{2}\right)}(A)=0
$$

Then there are disjoint Borel sets A_{1}, A_{2} such that

$$
A=A_{1} \cup A_{2} \quad \text { and } \quad \mathcal{H}^{g_{1}}\left(A_{1}\right)=\mathcal{H}^{g_{2}}\left(A_{2}\right)=0 .
$$

Proof.
$g(x)=\min \left(g_{1}(x), g_{2}(x)\right)$.
Cover A with intervals I_{1}, I_{2}, \ldots such that $\sum_{j=1}^{\infty} g\left(I_{j}\right)<\varepsilon$.
Let $S \subset\{1,2, \ldots\}$ be the set of those j for which $g\left(I_{j}\right)=g_{1}\left(I_{j}\right)$.
Then

$$
\sum_{j \in S} g_{1}\left(I_{j}\right)+\sum_{j \notin S} g_{2}\left(I_{j}\right)<\varepsilon .
$$

$A_{1} \approx \cup_{j \in S} I_{j} \quad A_{2} \approx \cup_{j \notin S} I_{j}$
(use limsup and liminf sets)

Technical part of the proof

Proposition (M)

Let $B \subset \mathbb{R}$ be a Borel set of the second Baire category and let $A \subset \mathbb{R}$ have Lebesgue measure zero. Then there are gauge functions g_{1}, g_{2} such that $\mathcal{H}^{g_{1}}(B)>0$, $\mathcal{H}^{g_{2}}(B)>0$, and $\mathcal{H}^{\min \left(g_{1}, g_{2}\right)}(A)=0$.

Typical compact sets

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

Typical compact sets

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

A typical compact set in \mathbb{R} is measured.

Typical compact sets

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

A typical compact set in \mathbb{R} is measured.

- A typical compact set K satisfies that for all $t \in \mathbb{R}, K \cap(K+t)$ is at most 1 point.

Typical compact sets

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

A typical compact set in \mathbb{R} is measured.

- A typical compact set K satisfies that for all $t \in \mathbb{R}, K \cap(K+t)$ is at most 1 point.
- All such sets are measured.

Typical compact sets

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

A typical compact set in \mathbb{R} is measured.

- A typical compact set K satisfies that for all $t \in \mathbb{R}, K \cap(K+t)$ is at most 1 point.
- All such sets are measured.

Theorem (Balka-M)

For a typical compact set $K \subset \mathbb{R}$ there is a gauge function g with $\mathcal{H}^{g}(K)=1$.

A measured set which is not measured by Hausdorff

 measures
A measured set which is not measured by Hausdorff

measures

John von Neumann: there is an algebraically independent non-empty perfect set P in $(2, \infty)$.

A measured set which is not measured by Hausdorff

 measuresJohn von Neumann: there is an algebraically independent non-empty perfect set P in $(2, \infty)$.
Find disjoint perfect sets $P_{i}(i=1,2, \ldots)$ in P.

A measured set which is not measured by Hausdorff

 measuresJohn von Neumann: there is an algebraically independent non-empty perfect set P in $(2, \infty)$.
Find disjoint perfect sets $P_{i}(i=1,2, \ldots)$ in P. Let

$$
A=\bigcup_{n=1}^{\infty} P_{1} P_{2} \cdots P_{n}
$$

A measured set which is not measured by Hausdorff

measures

John von Neumann: there is an algebraically independent non-empty perfect set P in $(2, \infty)$.
Find disjoint perfect sets $P_{i}(i=1,2, \ldots)$ in P. Let

$$
\begin{gathered}
A=\bigcup_{n=1}^{\infty} P_{1} P_{2} \cdots P_{n} \\
B=\log A=\bigcup_{n=1}^{\infty}\left(\log P_{1}+\log P_{2}+\ldots+\log P_{n}\right)
\end{gathered}
$$

A measured set which is not measured by Hausdorff

measures

John von Neumann: there is an algebraically independent non-empty perfect set P in $(2, \infty)$.
Find disjoint perfect sets $P_{i}(i=1,2, \ldots)$ in P. Let

$$
\begin{gathered}
A=\bigcup_{n=1}^{\infty} P_{1} P_{2} \cdots P_{n} \\
B=\log A=\bigcup_{n=1}^{\infty}\left(\log P_{1}+\log P_{2}+\ldots+\log P_{n}\right)
\end{gathered}
$$

- Since P is algebraically independent, the equation $x-y=u-v$ in A only has trivial solutions. Therefore A is measured.

A measured set which is not measured by Hausdorff

measures

John von Neumann: there is an algebraically independent non-empty perfect set P in $(2, \infty)$.
Find disjoint perfect sets $P_{i}(i=1,2, \ldots)$ in P. Let

$$
\begin{gathered}
A=\bigcup_{n=1}^{\infty} P_{1} P_{2} \cdots P_{n} \\
B=\log A=\bigcup_{n=1}^{\infty}\left(\log P_{1}+\log P_{2}+\ldots+\log P_{n}\right)
\end{gathered}
$$

- Since P is algebraically independent, the equation $x-y=u-v$ in A only has trivial solutions. Therefore A is measured.
- B is not measured: this is basically Davies's example.

A measured set which is not measured by Hausdorff

measures

John von Neumann: there is an algebraically independent non-empty perfect set P in $(2, \infty)$.
Find disjoint perfect sets $P_{i}(i=1,2, \ldots)$ in P. Let

$$
\begin{gathered}
A=\bigcup_{n=1}^{\infty} P_{1} P_{2} \cdots P_{n} \\
B=\log A=\bigcup_{n=1}^{\infty}\left(\log P_{1}+\log P_{2}+\ldots+\log P_{n}\right)
\end{gathered}
$$

- Since P is algebraically independent, the equation $x-y=u-v$ in A only has trivial solutions. Therefore A is measured.
- B is not measured: this is basically Davies's example.
- B is a bi-Lipschitz image of A.

A measured set which is not measured by Hausdorff

measures

John von Neumann: there is an algebraically independent non-empty perfect set P in $(2, \infty)$.
Find disjoint perfect sets $P_{i}(i=1,2, \ldots)$ in P. Let

$$
\begin{gathered}
A=\bigcup_{n=1}^{\infty} P_{1} P_{2} \cdots P_{n} \\
B=\log A=\bigcup_{n=1}^{\infty}\left(\log P_{1}+\log P_{2}+\ldots+\log P_{n}\right)
\end{gathered}
$$

- Since P is algebraically independent, the equation $x-y=u-v$ in A only has trivial solutions. Therefore A is measured.
- B is not measured: this is basically Davies's example.
- B is a bi-Lipschitz image of A.

If there was g such that $\mathcal{H}^{g}(A)$ is positive and σ-finite, the same would hold for B.

A measured set which is not measured by Hausdorff measures

John von Neumann: there is an algebraically independent non-empty perfect set P in $(2, \infty)$.
Find disjoint perfect sets $P_{i}(i=1,2, \ldots)$ in P. Let

$$
\begin{gathered}
A=\bigcup_{n=1}^{\infty} P_{1} P_{2} \cdots P_{n} \\
B=\log A=\bigcup_{n=1}^{\infty}\left(\log P_{1}+\log P_{2}+\ldots+\log P_{n}\right)
\end{gathered}
$$

- Since P is algebraically independent, the equation $x-y=u-v$ in A only has trivial solutions. Therefore A is measured.
- B is not measured: this is basically Davies's example.
- B is a bi-Lipschitz image of A.

If there was g such that $\mathcal{H}^{g}(A)$ is positive and σ-finite, the same would hold for B.
So A is measured but not by Hausdorff measures.

