Measuring sets with translation invariant Borel measures

András Máthé

University of Warwick

University of Warwick, 12 June 2015

-

math ma ma

Olga Maleva

Olga Maleva

Martin Rmoutil

Olga Maleva

Martin Rmoutil

Daniel Seco

Olga Maleva

Martin Rmoutil

Daniel Seco

Thomas Zürcher

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ -finite measure to A.

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ -finite measure to A.

Question

Is there a non-empty set which is not measured?

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ -finite measure to A.

Question

Is there a non-empty set which is not measured?

- translation invariant: $\mu(B + x) = \mu(B)$ for every $x \in \mathbb{R}$ and Borel set *B*;
- $\mu(A) > 0$ and μ restricted to A is σ -finite;
- μ on \mathbb{R} need not be σ -finite.

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ -finite measure to A.

Question

Is there a non-empty set which is not measured?

- translation invariant: $\mu(B + x) = \mu(B)$ for every $x \in \mathbb{R}$ and Borel set *B*;
- $\mu(A) > 0$ and μ restricted to A is σ -finite;
- μ on \mathbb{R} need not be σ -finite.

Examples

- Any set of positive Lebesgue measure is measured by the Lebesgue measure;
- Cantor set is measured by the Hausdorff measure of dimension $\log 2/\log 3$.

Definition

A Borel set $A \subset \mathbb{R}$ is called measured if there is a translation invariant Borel measure μ on \mathbb{R} which assigns positive and σ -finite measure to A.

Question

Is there a non-empty set which is not measured?

- translation invariant: $\mu(B + x) = \mu(B)$ for every $x \in \mathbb{R}$ and Borel set *B*;
- $\mu(A) > 0$ and μ restricted to A is σ -finite;
- μ on \mathbb{R} need not be σ -finite.

Examples

- Any set of positive Lebesgue measure is measured by the Lebesgue measure;
- Cantor set is measured by the Hausdorff measure of dimension $\log 2/\log 3$.

Nice examples of translation invariant measures:

- Hausdorff measures \mathcal{H}^s ,
- generalised Hausdorff \mathcal{H}^g and packing measures \mathcal{P}^g with gauge function g.

Sets which have zero or infinite measure for every translation invariant Borel measure

Sets which have zero or infinite measure for every translation invariant Borel measure

• any infinite countable set;

Sets which have zero or infinite measure for every translation invariant Borel measure

- any infinite countable set;
- R.

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.

Sketch of proof.

 $A = B \cup (B+B) \cup (B+B+B) \cup (B+B+B+B) \cup \dots$

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.

Sketch of proof.

$$A = B \cup (B+B) \cup (B+B+B) \cup (B+B+B+B) \cup \dots$$

Let $B \subset [1,2]$ be an uncountable compact set for which these unions are all disjoint.

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.

Sketch of proof.

$$A = B \cup (B+B) \cup (B+B+B) \cup (B+B+B+B) \cup \dots$$

Let $B \subset [1,2]$ be an uncountable compact set for which these unions are all disjoint.

 $B + B = \bigcup_{b \in B} (B + b).$ \leftarrow these as well

Theorem (Davies 1971)

There is a non-empty compact set which is not measured.

Sketch of proof.

$$A = B \cup (B+B) \cup (B+B+B) \cup (B+B+B+B) \cup \dots$$

Let $B \subset [1,2]$ be an uncountable compact set for which these unions are all disjoint.

 $B + B = \bigcup_{b \in B} (B + b).$ \leftarrow these as well

Lemma: If μ is translation invariant, $\mu(E) > 0$ and *F* contains uncountably many disjoint translates of *E*, then μ is not σ -finite on *F*.

Other examples

Theorem (Elekes–Keleti 2006)

The set of Liouville numbers
 L = {x ∈ ℝ \ Q : for every n there are p, q with |x − p/q| < 1/qⁿ} is not measured.

Other examples

Theorem (Elekes-Keleti 2006)

- The set of Liouville numbers $L = \{x \in \mathbb{R} \setminus \mathbb{Q} : \text{ for every } n \text{ there are } p, q \text{ with } |x - p/q| < 1/q^n \}$ is not measured.
- Any non- F_{σ} additive subgroup of \mathbb{R} is not measured.

Other examples

Theorem (Elekes–Keleti 2006)

- The set of Liouville numbers $L = \{x \in \mathbb{R} \setminus \mathbb{Q} : \text{ for every } n \text{ there are } p, q \text{ with } |x - p/q| < 1/q^n \}$ is not measured.
- Any non- F_{σ} additive subgroup of \mathbb{R} is not measured.

Remark

 σ -finite Borel measures on a Borel set $A \subset \mathbb{R}$ are inner regular.

Let ν be a measure on A. Then ν has a translation invariant extension to $\mathbb R$ if and only if

 $\nu(A'+t) = \nu(A')$ whenever $A' \subset A$ and $A'+t \subset A$

Let ν be a measure on A. Then ν has a translation invariant extension to $\mathbb R$ if and only if

$$\nu(A'+t) = \nu(A')$$
 whenever $A' \subset A$ and $A'+t \subset A$

Proof.

$$\mu(B) = \inf \left\{ \sum_{i=1}^{\infty} \nu(A_i) : A_i \subset A, \ B \subset \bigcup_i (A_i + t_i) \right\}.$$

Let ν be a measure on A. Then ν has a translation invariant extension to \mathbb{R} if and only if

$$\nu(A'+t) = \nu(A')$$
 whenever $A' \subset A$ and $A'+t \subset A$

Proof.

$$\mu(B) = \inf \Big\{ \sum_{i=1}^{\infty} \nu(A_i) : A_i \subset A, \ B \subset \cup_i (A_i + t_i) \Big\}.$$

Remark

If *A* is such that $A \cap (A + t)$ is at most 1 point for all $t \in \mathbb{R}$, then any non-atomic measure on *A* is extendable.

Let ν be a measure on A. Then ν has a translation invariant extension to \mathbb{R} if and only if

$$\nu(A'+t) = \nu(A')$$
 whenever $A' \subset A$ and $A'+t \subset A$

Proof.

$$\mu(B) = \inf \Big\{ \sum_{i=1}^{\infty} \nu(A_i) : A_i \subset A, \ B \subset \cup_i (A_i + t_i) \Big\}.$$

Remark

If *A* is such that $A \cap (A + t)$ is at most 1 point for all $t \in \mathbb{R}$, then any non-atomic measure on *A* is extendable.

Corollary

If *A* is an uncountable Borel set such that $A \cap (A + t)$ is at most 1 point for all $t \in \mathbb{R}$, then *A* is measured.

• Is it true that the union of two measured sets is measured?

- Is it true that the union of two measured sets is measured?
- Is it true that every non-empty Borel set is a union of countably many measured sets?

- Is it true that the union of two measured sets is measured?
- Is it true that every non-empty Borel set is a union of countably many measured sets?
- Solution Is it true that every measured set is measured by a Hausdorff measure?

- Is it true that the union of two measured sets is measured?
- Is it true that every non-empty Borel set is a union of countably many measured sets?
- Solution Is it true that every measured set is measured by a Hausdorff measure?

Aim: find a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.

Example: Banach spaces; closed subgroups of Banach spaces.

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.

Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ -finite measure to A.

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.

Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ -finite measure to A.

Theorem (M)

A non-locally compact Polish group G is not a union of countably many measured sets.

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.

Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ -finite measure to A.

Theorem (M)

A non-locally compact Polish group G is not a union of countably many measured sets.

Beginning of the proof. Assume it is. $G = \bigcup_i A_i$. μ_i . Choose compact sets $K_i \subset A_i$ of small diameter such that $\mu_i(K_i) > 0$.

Polish groups

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.

Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ -finite measure to A.

Theorem (M)

A non-locally compact Polish group G is not a union of countably many measured sets.

Beginning of the proof. Assume it is. $G = \bigcup_i A_i$. μ_i . Choose compact sets $K_i \subset A_i$ of small diameter such that $\mu_i(K_i) > 0$. Take $K = K_1 + K_2 + K_3 + \dots$,

Polish groups

G is a Polish group if it is topological group homeomorphic to a separable complete metric space.

Example: Banach spaces; closed subgroups of Banach spaces.

Definition

A Borel set $A \subset G$ is measured if there is a (both left and right) translation invariant Borel measure μ on G which assigns positive and σ -finite measure to A.

Theorem (M)

A non-locally compact Polish group G is not a union of countably many measured sets.

Beginning of the proof. Assume it is. $G = \bigcup_i A_i$. μ_i . Choose compact sets $K_i \subset A_i$ of small diameter such that $\mu_i(K_i) > 0$. Take $K = K_1 + K_2 + K_3 + \ldots$, and consider the infinite convolution of the normalised measures

Definition (Christensen)

A Borel set $A \subset G$ is called Haar null if there is a Borel probability measure μ such that

 $\mu(g + A + h) = 0$ for all $g, h \in G$.

Definition (Christensen)

A Borel set $A \subset G$ is called Haar null if there is a Borel probability measure μ such that

 $\mu(g + A + h) = 0$ for all $g, h \in G$.

If G is locally compact, Haar null sets are the sets of zero Haar measure.

Definition (Christensen)

A Borel set $A \subset G$ is called Haar null if there is a Borel probability measure μ such that

 $\mu(g + A + h) = 0$ for all $g, h \in G$.

If G is locally compact, Haar null sets are the sets of zero Haar measure.

Haar null sets are closed under countable unions.

Definition (Christensen)

A Borel set $A \subset G$ is called Haar null if there is a Borel probability measure μ such that

 $\mu(g + A + h) = 0$ for all $g, h \in G$.

If G is locally compact, Haar null sets are the sets of zero Haar measure.

Haar null sets are closed under countable unions.

 \rightarrow prevalent sets.

There is a non-empty compact set in ${\mathbb R}$ which is not a union of countably many measured sets.

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let *X* be a Banach space with a normalised Schauder basis (e_n) .

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let *X* be a Banach space with a normalised Schauder basis (e_n) . (Take ℓ_p with the standard basis, $1 \le p < \infty$.)

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let *X* be a Banach space with a normalised Schauder basis (e_n) . (Take ℓ_p with the standard basis, $1 \le p < \infty$.) Let

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

This is the closure of the subgroup generated by (e_n/n) .

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let *X* be a Banach space with a normalised Schauder basis (e_n) . (Take ℓ_p with the standard basis, $1 \le p < \infty$.) Let

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

This is the closure of the subgroup generated by (e_n/n) .

Note: if the sum converges, then $\frac{k_n}{n}$ is bounded and $\|\frac{k_n}{n}\| \le C \|\sum_{n=1}^{\infty} \frac{k_n}{n} e_n\|$.

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let *X* be a Banach space with a normalised Schauder basis (e_n) . (Take ℓ_p with the standard basis, $1 \le p < \infty$.) Let

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

This is the closure of the subgroup generated by (e_n/n) .

Note: if the sum converges, then $\frac{k_n}{n}$ is bounded and $\|\frac{k_n}{n}\| \le C \|\sum_{n=1}^{\infty} \frac{k_n}{n} e_n\|$.

Define $f: G \to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right) = \sum_{n=1}^{\infty}\frac{k_n}{n!}.$$

There is a non-empty compact set in \mathbb{R} which is not a union of countably many measured sets.

Let *X* be a Banach space with a normalised Schauder basis (e_n) . (Take ℓ_p with the standard basis, $1 \le p < \infty$.) Let

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

This is the closure of the subgroup generated by (e_n/n) .

Note: if the sum converges, then $\frac{k_n}{n}$ is bounded and $\|\frac{k_n}{n}\| \le C \|\sum_{n=1}^{\infty} \frac{k_n}{n} e_n\|$.

Define $f: G \to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right) = \sum_{n=1}^{\infty}\frac{k_n}{n!}$$

f is a (restriction of a) bounded linear functional.

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

Define $f: G \to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right)=\sum_{n=1}^{\infty}\frac{k_n}{n!}.$$

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

Define $f:G\to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right) = \sum_{n=1}^{\infty}\frac{k_n}{n!}$$

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

Define $f: G \to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right)=\sum_{n=1}^{\infty}\frac{k_n}{n!}.$$

 $X_r = \{ x \in X : \|x\| \le r \}.$

• f is a bounded linear functional, f(G) is an additive subgroup of \mathbb{R} .

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

Define $f: G \to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right)=\sum_{n=1}^{\infty}\frac{k_n}{n!}.$$

- f is a bounded linear functional, f(G) is an additive subgroup of \mathbb{R} .
- *f* is locally injective (injective on $G \cap X_r$ for small enough *r*)

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

Define $f: G \to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right)=\sum_{n=1}^{\infty}\frac{k_n}{n!}.$$

- f is a bounded linear functional, f(G) is an additive subgroup of \mathbb{R} .
- *f* is locally injective (injective on $G \cap X_r$ for small enough *r*)
- $f(G \cap X_r)$ is Borel; thus $f(G) \subset \mathbb{R}$ is Borel.

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

Define $f: G \to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right)=\sum_{n=1}^{\infty}\frac{k_n}{n!}.$$

- f is a bounded linear functional, f(G) is an additive subgroup of \mathbb{R} .
- *f* is locally injective (injective on $G \cap X_r$ for small enough *r*)
- $f(G \cap X_r)$ is Borel; thus $f(G) \subset \mathbb{R}$ is Borel.
- *G* is a non-locally compact Polish space: not a union of countably many measured sets.

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

Define $f: G \to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right)=\sum_{n=1}^{\infty}\frac{k_n}{n!}.$$

- f is a bounded linear functional, f(G) is an additive subgroup of \mathbb{R} .
- *f* is locally injective (injective on $G \cap X_r$ for small enough *r*)
- $f(G \cap X_r)$ is Borel; thus $f(G) \subset \mathbb{R}$ is Borel.
- *G* is a non-locally compact Polish space: not a union of countably many measured sets.
- By local injectivity, we can "pull back measures on f(G) to measures on G". Therefore A = f(G) is not a union of countably many measured sets.

$$G = \left\{ \sum_{n=1}^{\infty} \frac{k_n}{n} e_n \in X : k_n \in \mathbb{Z} \right\}.$$

Define $f: G \to \mathbb{R}$ by setting

$$f\left(\sum_{n=1}^{\infty}\frac{k_n}{n}e_n\right)=\sum_{n=1}^{\infty}\frac{k_n}{n!}.$$

- f is a bounded linear functional, f(G) is an additive subgroup of \mathbb{R} .
- *f* is locally injective (injective on $G \cap X_r$ for small enough *r*)
- $f(G \cap X_r)$ is Borel; thus $f(G) \subset \mathbb{R}$ is Borel.
- *G* is a non-locally compact Polish space: not a union of countably many measured sets.
- By local injectivity, we can "pull back measures on f(G) to measures on G". Therefore A = f(G) is not a union of countably many measured sets.
- If (e_n) is boundedly complete, then A = f(G) is σ -compact.

The Hausdorff measure with gauge function g is

$$\mathcal{H}^{g}(A) = \lim_{\delta \to 0+} \inf \left\{ \sum_{i=1}^{\infty} g(\operatorname{diam} U_{i}) : A \subset \bigcup_{i=1}^{\infty} U_{i} \text{ and } \operatorname{diam} U_{i} < \delta \right\}$$

Here g is monotone increasing right continuous function $g:[0,\infty) \to [0,\infty)$.

The Hausdorff measure with gauge function g is

$$\mathcal{H}^{g}(A) = \lim_{\delta \to 0+} \inf \left\{ \sum_{i=1}^{\infty} g(\operatorname{diam} U_{i}) : A \subset \bigcup_{i=1}^{\infty} U_{i} \text{ and } \operatorname{diam} U_{i} < \delta \right\}$$

Here g is monotone increasing right continuous function $g: [0, \infty) \rightarrow [0, \infty)$.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that *B* is of the second category.

The Hausdorff measure with gauge function g is

$$\mathcal{H}^{g}(A) = \lim_{\delta \to 0+} \inf \left\{ \sum_{i=1}^{\infty} g(\operatorname{diam} U_{i}) : A \subset \bigcup_{i=1}^{\infty} U_{i} \text{ and } \operatorname{diam} U_{i} < \delta \right\}$$

Here g is monotone increasing right continuous function $g: [0, \infty) \rightarrow [0, \infty)$.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that *B* is of the second category. Then there are Borel partitions $B = B_1 \cup B_2$, $A = A_1 \cup A_2$ and gauge functions g_1, g_2 such that the Hausdorff measures satisfy

The Hausdorff measure with gauge function g is

$$\mathcal{H}^{g}(A) = \lim_{\delta \to 0+} \inf \left\{ \sum_{i=1}^{\infty} g(\operatorname{diam} U_{i}) : A \subset \bigcup_{i=1}^{\infty} U_{i} \text{ and } \operatorname{diam} U_{i} < \delta \right\}$$

Here g is monotone increasing right continuous function $g:[0,\infty) \to [0,\infty)$.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that *B* is of the second category. Then there are Borel partitions $B = B_1 \cup B_2$, $A = A_1 \cup A_2$ and gauge functions g_1, g_2 such that the Hausdorff measures satisfy

$$\mathcal{H}^{g_1}(B_1) = 1, \quad \mathcal{H}^{g_1}(A_1) = 0,$$

 $\mathcal{H}^{g_2}(B_2) = 1, \quad \mathcal{H}^{g_2}(A_2) = 0.$

The Hausdorff measure with gauge function g is

$$\mathcal{H}^{g}(A) = \lim_{\delta \to 0+} \inf \left\{ \sum_{i=1}^{\infty} g(\operatorname{diam} U_{i}) : A \subset \bigcup_{i=1}^{\infty} U_{i} \text{ and } \operatorname{diam} U_{i} < \delta \right\}$$

Here g is monotone increasing right continuous function $g: [0, \infty) \rightarrow [0, \infty)$.

Theorem (M)

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that *B* is of the second category. Then there are Borel partitions $B = B_1 \cup B_2$, $A = A_1 \cup A_2$ and gauge functions g_1, g_2 such that the Hausdorff measures satisfy

$$\mathcal{H}^{g_1}(B_1) = 1, \quad \mathcal{H}^{g_1}(A_1) = 0, \ \mathcal{H}^{g_2}(B_2) = 1, \quad \mathcal{H}^{g_2}(A_2) = 0.$$

The theorem holds even if A = B; or when B has Hausdorff dimension zero and A has Hausdorff dimension 1.

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that *B* is of the second category. Then there are Borel partitions $B = B_1 \cup B_2$, $A = A_1 \cup A_2$ and gauge functions g_1, g_2 such that the Hausdorff measures satisfy

 $\mathcal{H}^{g_1}(B_1) = 1, \quad \mathcal{H}^{g_1}(A_1) = 0, \ \mathcal{H}^{g_2}(B_2) = 1, \quad \mathcal{H}^{g_2}(A_2) = 0.$

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that *B* is of the second category. Then there are Borel partitions $B = B_1 \cup B_2$, $A = A_1 \cup A_2$ and gauge functions g_1, g_2 such that the Hausdorff measures satisfy

 $\mathcal{H}^{g_1}(B_1) = 1, \quad \mathcal{H}^{g_1}(A_1) = 0, \ \mathcal{H}^{g_2}(B_2) = 1, \quad \mathcal{H}^{g_2}(A_2) = 0.$

Corollary

Every Lebesgue nullset of the second category is a union of two measured sets.

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that *B* is of the second category. Then there are Borel partitions $B = B_1 \cup B_2$, $A = A_1 \cup A_2$ and gauge functions g_1, g_2 such that the Hausdorff measures satisfy

 $\mathcal{H}^{g_1}(B_1) = 1, \quad \mathcal{H}^{g_1}(A_1) = 0, \ \mathcal{H}^{g_2}(B_2) = 1, \quad \mathcal{H}^{g_2}(A_2) = 0.$

Corollary

Every Lebesgue nullset of the second category is a union of two measured sets.

There are Lebesgue nullsets of the second category which are not measured (e.g. set of Liouville numbers).

Let $A, B \subset \mathbb{R}$ be Borel sets of zero Lebesgue measure and assume that *B* is of the second category. Then there are Borel partitions $B = B_1 \cup B_2$, $A = A_1 \cup A_2$ and gauge functions g_1, g_2 such that the Hausdorff measures satisfy

 $\mathcal{H}^{g_1}(B_1) = 1, \quad \mathcal{H}^{g_1}(A_1) = 0, \ \mathcal{H}^{g_2}(B_2) = 1, \quad \mathcal{H}^{g_2}(A_2) = 0.$

Corollary

Every Lebesgue nullset of the second category is a union of two measured sets.

There are Lebesgue nullsets of the second category which are not measured (e.g. set of Liouville numbers).

Corollary

The union of two measured sets need not be measured.

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_1, g_2 be two gauge functions such that

 $\mathcal{H}^{\min(g_1,g_2)}(A)=0.$

Then there are disjoint Borel sets A_1, A_2 such that

 $A = A_1 \cup A_2$ and $\mathcal{H}^{g_1}(A_1) = \mathcal{H}^{g_2}(A_2) = 0.$

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_1, g_2 be two gauge functions such that

 $\mathcal{H}^{\min(g_1,g_2)}(A)=0.$

Then there are disjoint Borel sets A_1, A_2 such that

 $A = A_1 \cup A_2$ and $\mathcal{H}^{g_1}(A_1) = \mathcal{H}^{g_2}(A_2) = 0.$

Proof. $g(x) = \min(g_1(x), g_2(x)).$ Cover *A* with intervals I_1, I_2, \ldots such that $\sum_{j=1}^{\infty} g(I_j) < \varepsilon$.

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_1, g_2 be two gauge functions such that

 $\mathcal{H}^{\min(g_1,g_2)}(A)=0.$

Then there are disjoint Borel sets A_1, A_2 such that

 $A = A_1 \cup A_2$ and $\mathcal{H}^{g_1}(A_1) = \mathcal{H}^{g_2}(A_2) = 0.$

Proof. $g(x) = \min(g_1(x), g_2(x)).$ Cover *A* with intervals I_1, I_2, \ldots such that $\sum_{j=1}^{\infty} g(I_j) < \varepsilon$. Let $S \subset \{1, 2, \ldots\}$ be the set of those *j* for which $g(I_j) = g_1(I_j).$

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_1, g_2 be two gauge functions such that

 $\mathcal{H}^{\min(g_1,g_2)}(A)=0.$

Then there are disjoint Borel sets A_1, A_2 such that

 $A = A_1 \cup A_2$ and $\mathcal{H}^{g_1}(A_1) = \mathcal{H}^{g_2}(A_2) = 0.$

Proof. $g(x) = \min(g_1(x), g_2(x)).$ Cover *A* with intervals I_1, I_2, \ldots such that $\sum_{j=1}^{\infty} g(I_j) < \varepsilon$. Let $S \subset \{1, 2, \ldots\}$ be the set of those *j* for which $g(I_j) = g_1(I_j)$. Then

$$\sum_{j\in S} g_1(I_j) + \sum_{j
ot\in S} g_2(I_j) < arepsilon.$$

Lemma (M)

Let $A \subset \mathbb{R}$ be a Borel set. Let g_1, g_2 be two gauge functions such that

 $\mathcal{H}^{\min(g_1,g_2)}(A)=0.$

Then there are disjoint Borel sets A_1, A_2 such that

 $A = A_1 \cup A_2$ and $\mathcal{H}^{g_1}(A_1) = \mathcal{H}^{g_2}(A_2) = 0.$

Proof. $g(x) = \min(g_1(x), g_2(x)).$ Cover *A* with intervals I_1, I_2, \ldots such that $\sum_{j=1}^{\infty} g(I_j) < \varepsilon$. Let $S \subset \{1, 2, \ldots\}$ be the set of those *j* for which $g(I_j) = g_1(I_j)$. Then

$$\sum_{j\in S} g_1(I_j) + \sum_{j
ot\in S} g_2(I_j) < arepsilon.$$

 $A_1 \approx \bigcup_{j \in S} I_j \qquad A_2 \approx \bigcup_{j \notin S} I_j$ (use limsup and liminf sets)

Technical part of the proof

Proposition (M)

Let $B \subset \mathbb{R}$ be a Borel set of the second Baire category and let $A \subset \mathbb{R}$ have Lebesgue measure zero. Then there are gauge functions g_1, g_2 such that $\mathcal{H}^{g_1}(B) > 0$, $\mathcal{H}^{g_2}(B) > 0$, and $\mathcal{H}^{\min(g_1,g_2)}(A) = 0$.

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

A typical compact set in \mathbb{R} is measured.

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

A typical compact set in \mathbb{R} is measured.

• A typical compact set *K* satisfies that for all $t \in \mathbb{R}$, $K \cap (K + t)$ is at most 1 point.

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

A typical compact set in \mathbb{R} is measured.

- A typical compact set *K* satisfies that for all $t \in \mathbb{R}$, $K \cap (K + t)$ is at most 1 point.
- All such sets are measured.

Non-empty compact subsets of \mathbb{R} with the Hausdorff distance form a complete separable metric space.

A typical compact set in \mathbb{R} is measured.

- A typical compact set *K* satisfies that for all $t \in \mathbb{R}$, $K \cap (K + t)$ is at most 1 point.
- All such sets are measured.

Theorem (Balka–M)

For a typical compact set $K \subset \mathbb{R}$ there is a gauge function g with $\mathcal{H}^{g}(K) = 1$.

John von Neumann: there is an algebraically independent non-empty perfect set *P* in $(2, \infty)$.

John von Neumann: there is an algebraically independent non-empty perfect set *P* in $(2, \infty)$. Find disjoint perfect sets P_i (i = 1, 2, ...) in *P*.

John von Neumann: there is an algebraically independent non-empty perfect set *P* in $(2, \infty)$. Find disjoint perfect sets P_i (i = 1, 2, ...) in *P*. Let

$$A = \bigcup_{n=1}^{\infty} P_1 P_2 \cdots P_n$$

John von Neumann: there is an algebraically independent non-empty perfect set *P* in $(2, \infty)$. Find disjoint perfect sets P_i (i = 1, 2, ...) in *P*. Let

 $A = \bigcup_{n=1}^{\infty} P_1 P_2 \cdots P_n$

$$B = \log A = \bigcup_{n=1}^{\infty} (\log P_1 + \log P_2 + \ldots + \log P_n)$$

John von Neumann: there is an algebraically independent non-empty perfect set *P* in $(2, \infty)$. Find disjoint perfect sets P_i (i = 1, 2, ...) in *P*. Let

 $A = \bigcup_{n=1}^{\infty} P_1 P_2 \cdots P_n$

$$B = \log A = \bigcup_{n=1}^{\infty} (\log P_1 + \log P_2 + \ldots + \log P_n)$$

• Since *P* is algebraically independent, the equation x - y = u - v in *A* only has trivial solutions. Therefore *A* is measured.

Find disjoint perfect sets P_i (i = 1, 2, ...) in P. Let

$$A = \bigcup_{n=1}^{\infty} P_1 P_2 \cdots P_n$$

$$B = \log A = \bigcup_{n=1}^{\infty} (\log P_1 + \log P_2 + \ldots + \log P_n)$$

- Since *P* is algebraically independent, the equation x y = u v in *A* only has trivial solutions. Therefore *A* is measured.
- *B* is not measured: this is basically Davies's example.

John von Neumann: there is an algebraically independent non-empty perfect set *P* in $(2, \infty)$. Find disjoint perfect sets P_i (i = 1, 2, ...) in *P*. Let

 $A = \bigcup_{n=1}^{\infty} P_1 P_2 \cdots P_n$

$$B = \log A = \bigcup_{n=1}^{\infty} (\log P_1 + \log P_2 + \ldots + \log P_n)$$

- Since *P* is algebraically independent, the equation x y = u v in *A* only has trivial solutions. Therefore *A* is measured.
- *B* is not measured: this is basically Davies's example.
- *B* is a bi-Lipschitz image of *A*.

John von Neumann: there is an algebraically independent non-empty perfect set *P* in $(2, \infty)$. Find disjoint perfect sets P_i (i = 1, 2, ...) in *P*. Let

 $A = \bigcup_{n=1}^{\infty} P_1 P_2 \cdots P_n$

$$B = \log A = \bigcup_{n=1}^{\infty} (\log P_1 + \log P_2 + \ldots + \log P_n)$$

- Since *P* is algebraically independent, the equation x y = u v in *A* only has trivial solutions. Therefore *A* is measured.
- *B* is not measured: this is basically Davies's example.
- *B* is a bi-Lipschitz image of *A*. If there was *g* such that $\mathcal{H}^{g}(A)$ is positive and σ -finite, the same would hold for *B*.

John von Neumann: there is an algebraically independent non-empty perfect set *P* in $(2, \infty)$. Find disjoint perfect sets P_i (i = 1, 2, ...) in *P*. Let

 $A = \bigcup_{n=1}^{\infty} P_1 P_2 \cdots P_n$

$$B = \log A = \bigcup_{n=1}^{\infty} (\log P_1 + \log P_2 + \ldots + \log P_n)$$

- Since *P* is algebraically independent, the equation x y = u v in *A* only has trivial solutions. Therefore *A* is measured.
- *B* is not measured: this is basically Davies's example.
- *B* is a bi-Lipschitz image of *A*. If there was *g* such that $\mathcal{H}^{g}(A)$ is positive and σ -finite, the same would hold for *B*.

So A is measured but not by Hausdorff measures.