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David Preiss Olga Maleva

Martin Rmoutil

Daniel Seco Thomas Zürcher
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Measured sets
Definition
A Borel set A ⊂ R is called measured if there is a translation invariant Borel measure
µ on R which assigns positive and σ-finite measure to A.

Question
Is there a non-empty set which is not measured?

translation invariant: µ(B + x) = µ(B) for every x ∈ R and Borel set B;
µ(A) > 0 and µ restricted to A is σ-finite;
µ on R need not be σ-finite.

Examples
Any set of positive Lebesgue measure is measured by the Lebesgue measure;
Cantor set is measured by the Hausdorff measure of dimension log 2/ log 3.

Nice examples of translation invariant measures:
Hausdorff measuresHs,
generalised HausdorffHg and packing measures Pg with gauge function g.
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Sets which have zero or infinite measure for every translation invariant Borel measure

any infinite countable set;
R.
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A set which is not measured

Theorem (Davies 1971)
There is a non-empty compact set which is not measured.

Sketch of proof.

A = B ∪ (B + B) ∪ (B + B + B) ∪ (B + B + B + B) ∪ . . .

Let B ⊂ [1, 2] be an uncountable compact set for which these unions are all disjoint.

B + B = ∪b∈B(B + b). ← these as well

Lemma: If µ is translation invariant, µ(E) > 0 and F contains uncountably many
disjoint translates of E, then µ is not σ-finite on F.
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Other examples

Theorem (Elekes–Keleti 2006)
The set of Liouville numbers
L = {x ∈ R \Q : for every n there are p, q with |x− p/q| < 1/qn}
is not measured.

Any non-Fσ additive subgroup of R is not measured.

Remark
σ-finite Borel measures on a Borel set A ⊂ R are inner regular.
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Theorem/Observation (Elekes–Keleti)
Let ν be a measure on A. Then ν has a translation invariant extension to R if and only
if

ν(A′ + t) = ν(A′) whenever A′ ⊂ A and A′ + t ⊂ A

Proof.

µ(B) = inf
{ ∞∑

i=1

ν(Ai) : Ai ⊂ A, B ⊂ ∪i(Ai + ti)
}
.

Remark
If A is such that A ∩ (A + t) is at most 1 point for all t ∈ R, then any non-atomic
measure on A is extendable.

Corollary
If A is an uncountable Borel set such that A ∩ (A + t) is at most 1 point for all t ∈ R,
then A is measured.
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Questions (Elekes–Keleti)
1 Is it true that the union of two measured sets is measured?

2 Is it true that every non-empty Borel set is a union of countably many measured
sets?

3 Is it true that every measured set is measured by a Hausdorff measure?

Aim: find a non-empty compact set in R which is not a union of countably many
measured sets.
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András Máthé (A.Mathe@warwick.ac.uk)Measuring sets with translation invariant measures 8 / 18



Questions (Elekes–Keleti)
1 Is it true that the union of two measured sets is measured?
2 Is it true that every non-empty Borel set is a union of countably many measured

sets?
3 Is it true that every measured set is measured by a Hausdorff measure?

Aim: find a non-empty compact set in R which is not a union of countably many
measured sets.
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Polish groups
G is a Polish group if it is topological group homeomorphic to a separable complete
metric space.

Example: Banach spaces; closed subgroups of Banach spaces.

Definition
A Borel set A ⊂ G is measured if there is a (both left and right) translation invariant
Borel measure µ on G which assigns positive and σ-finite measure to A.

Theorem (M)
A non-locally compact Polish group G is not a union of countably many measured
sets.

Beginning of the proof. Assume it is. G = ∪iAi. µi. Choose compact sets Ki ⊂ Ai of
small diameter such that µi(Ki) > 0.
Take K = K1 + K2 + K3 + . . ., and consider the infinite convolution of the normalised
measures

µi|Ki

µi(Ki)
.

. . .
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András Máthé (A.Mathe@warwick.ac.uk)Measuring sets with translation invariant measures 9 / 18



Polish groups
G is a Polish group if it is topological group homeomorphic to a separable complete
metric space.
Example: Banach spaces; closed subgroups of Banach spaces.

Definition
A Borel set A ⊂ G is measured if there is a (both left and right) translation invariant
Borel measure µ on G which assigns positive and σ-finite measure to A.

Theorem (M)
A non-locally compact Polish group G is not a union of countably many measured
sets.

Beginning of the proof. Assume it is. G = ∪iAi. µi. Choose compact sets Ki ⊂ Ai of
small diameter such that µi(Ki) > 0.
Take K = K1 + K2 + K3 + . . ., and consider the infinite convolution of the normalised
measures

µi|Ki

µi(Ki)
.

. . .
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Haar null (shy) sets

Definition (Christensen)
A Borel set A ⊂ G is called Haar null if there is a Borel probability measure µ such
that

µ(g + A + h) = 0 for all g, h ∈ G.

If G is locally compact, Haar null sets are the sets of zero Haar measure.

Haar null sets are closed under countable unions.

→ prevalent sets.
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Theorem (M)
There is a non-empty compact set in R which is not a union of countably many
measured sets.

Let X be a Banach space with a normalised Schauder basis (en).
(Take `p with the standard basis, 1 ≤ p <∞.)
Let

G =

{ ∞∑
n=1

kn

n
en ∈ X : kn ∈ Z

}
.

This is the closure of the subgroup generated by (en/n).

Note: if the sum converges, then kn
n is bounded and ‖ kn

n ‖ ≤ C‖
∑∞

n=1
kn
n en‖.

Define f : G→ R by setting

f

( ∞∑
n=1

kn

n
en

)
=

∞∑
n=1

kn

n!
.

f is a (restriction of a) bounded linear functional.
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Xr = {x ∈ X : ‖x‖ ≤ r}.

f is a bounded linear functional, f (G) is an additive subgroup of R.
f is locally injective (injective on G ∩ Xr for small enough r)
f (G ∩ Xr) is Borel; thus f (G) ⊂ R is Borel.
G is a non-locally compact Polish space: not a union of countably many
measured sets.
By local injectivity, we can “pull back measures on f (G) to measures on G”.
Therefore A = f (G) is not a union of countably many measured sets.
If (en) is boundedly complete, then A = f (G) is σ-compact.
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András Máthé (A.Mathe@warwick.ac.uk)Measuring sets with translation invariant measures 12 / 18



Union of measured sets in R

The Hausdorff measure with gauge function g is

Hg(A) = lim
δ→0+

inf

{ ∞∑
i=1

g(diam Ui) : A ⊂ ∪∞i=1Ui and diam Ui < δ

}

Here g is monotone increasing right continuous function g : [0,∞)→ [0,∞).

Theorem (M)
Let A,B ⊂ R be Borel sets of zero Lebesgue measure and assume that B is of the
second category. Then there are Borel partitions B = B1 ∪ B2, A = A1 ∪ A2 and gauge
functions g1, g2 such that the Hausdorff measures satisfy

Hg1(B1) = 1, Hg1(A1) = 0,
Hg2(B2) = 1, Hg2(A2) = 0.

The theorem holds even if A = B; or when B has Hausdorff dimension zero and A has
Hausdorff dimension 1.
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Theorem (M)
Let A,B ⊂ R be Borel sets of zero Lebesgue measure and assume that B is of the
second category. Then there are Borel partitions B = B1 ∪ B2, A = A1 ∪ A2 and gauge
functions g1, g2 such that the Hausdorff measures satisfy

Hg1(B1) = 1, Hg1(A1) = 0,
Hg2(B2) = 1, Hg2(A2) = 0.

Corollary
Every Lebesgue nullset of the second category is a union of two measured sets.

There are Lebesgue nullsets of the second category which are not measured (e.g. set
of Liouville numbers).

Corollary
The union of two measured sets need not be measured.
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How to divide a set into two

Lemma (M)
Let A ⊂ R be a Borel set. Let g1, g2 be two gauge functions such that

Hmin(g1,g2)(A) = 0.

Then there are disjoint Borel sets A1, A2 such that

A = A1 ∪ A2 and Hg1(A1) = Hg2(A2) = 0.

Proof.
g(x) = min(g1(x), g2(x)).
Cover A with intervals I1, I2, . . . such that

∑∞
j=1 g(Ij) < ε.

Let S ⊂ {1, 2, . . .} be the set of those j for which g(Ij) = g1(Ij).
Then ∑

j∈S

g1(Ij) +
∑
j6∈S

g2(Ij) < ε.

A1 ≈ ∪j∈SIj A2 ≈ ∪j 6∈SIj

(use limsup and liminf sets)
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Technical part of the proof

Proposition (M)
Let B ⊂ R be a Borel set of the second Baire category and let A ⊂ R have Lebesgue
measure zero. Then there are gauge functions g1, g2 such thatHg1(B) > 0,
Hg2(B) > 0, andHmin(g1,g2)(A) = 0.
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Typical compact sets

Non-empty compact subsets of R with the Hausdorff distance form a complete
separable metric space.

A typical compact set in R is measured.

A typical compact set K satisfies that for all t ∈ R, K ∩ (K + t) is at most 1 point.
All such sets are measured.

Theorem (Balka–M)
For a typical compact set K ⊂ R there is a gauge function g withHg(K) = 1.
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A measured set which is not measured by Hausdorff
measures

John von Neumann: there is an algebraically independent non-empty perfect set P in
(2,∞).
Find disjoint perfect sets Pi (i = 1, 2, . . .) in P. Let

A =

∞⋃
n=1

P1P2 · · ·Pn

B = log A =
∞⋃

n=1

(log P1 + log P2 + . . .+ log Pn)

Since P is algebraically independent, the equation x− y = u− v in A only has
trivial solutions. Therefore A is measured.
B is not measured: this is basically Davies’s example.
B is a bi-Lipschitz image of A.
If there was g such thatHg(A) is positive and σ-finite, the same would hold for B.

So A is measured but not by Hausdorff measures.
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