Strong pseudoconvexity in Banach spaces

Sofia Ortega Castillo

CIMAT

June 8, 2015 Relations between Banach space theory and geometric measure theory University of Warwick

Convexity with respect to a class of functions:

Definition

Let U be an open subset of a complex Banach space X. Suppose that \mathcal{F} is a class of upper semicontinuous real-valued functions on U.

The \mathcal{F} -convex hull of a compact set $K \subset U$, denoted $\hat{K}_{\mathcal{F}}$, is the set of all points of U that cannot be separated from K by a function in the class \mathcal{F} .

The open set *U* is called \mathcal{F} -convex if for every compact subset *K* of *U*, the \mathcal{F} -convex hull $\hat{K}_{\mathcal{F}}$ is a compact subset of *U*.

Remark (For open subsets of a complex Banach space)

Geometric convexity:

Convexity with respect to (the real part of) affine linear functions.

Pseudoconvexity:

Convexity with respect to a class of functions:

Definition

Let *U* be an open subset of a complex Banach space *X*. Suppose that \mathcal{F} is a class of upper semicontinuous real-valued functions on *U*.

The \mathcal{F} -convex hull of a compact set $K \subset U$, denoted $\hat{K}_{\mathcal{F}}$, is the set of all points of U that cannot be separated from K by a function in the class \mathcal{F} .

The open set U is called \mathcal{F} -convex if for every compact subset K of U, the \mathcal{F} -convex hull $\hat{K}_{\mathcal{F}}$ is a compact subset of U.

Remark (For open subsets of a complex Banach space)

Geometric convexity:

Convexity with respect to (the real part of) affine linear functions.

Pseudoconvexity:

Convexity with respect to a class of functions:

Definition

Let *U* be an open subset of a complex Banach space *X*. Suppose that \mathcal{F} is a class of upper semicontinuous real-valued functions on *U*.

The \mathcal{F} -convex hull of a compact set $K \subset U$, denoted $\hat{K}_{\mathcal{F}}$, is the set of all points of U that cannot be separated from K by a function in the class \mathcal{F} .

The open set U is called \mathcal{F} -convex if for every compact subset K of U, the \mathcal{F} -convex hull $\hat{K}_{\mathcal{F}}$ is a compact subset of U.

Remark (For open subsets of a complex Banach space)

Geometric convexity:

Convexity with respect to (the real part of) affine linear functions.

Pseudoconvexity:

Convexity with respect to a class of functions:

Definition

Let *U* be an open subset of a complex Banach space *X*. Suppose that \mathcal{F} is a class of upper semicontinuous real-valued functions on *U*.

The \mathcal{F} -convex hull of a compact set $K \subset U$, denoted $\hat{K}_{\mathcal{F}}$, is the set of all points of U that cannot be separated from K by a function in the class \mathcal{F} .

The open set *U* is called \mathcal{F} -convex if for every compact subset *K* of *U*, the \mathcal{F} -convex hull $\hat{K}_{\mathcal{F}}$ is a compact subset of *U*.

Remark (For open subsets of a complex Banach space)

Geometric convexity:

Convexity with respect to (the real part of) affine linear functions.

Pseudoconvexity:

Convexity with respect to a class of functions:

Definition

Let *U* be an open subset of a complex Banach space *X*. Suppose that \mathcal{F} is a class of upper semicontinuous real-valued functions on *U*.

The \mathcal{F} -convex hull of a compact set $K \subset U$, denoted $\hat{K}_{\mathcal{F}}$, is the set of all points of U that cannot be separated from K by a function in the class \mathcal{F} .

The open set *U* is called \mathcal{F} -convex if for every compact subset *K* of *U*, the \mathcal{F} -convex hull $\hat{K}_{\mathcal{F}}$ is a compact subset of *U*.

Remark (For open subsets of a complex Banach space)

Geometric convexity:

Convexity with respect to (the real part of) affine linear functions.

Pseudoconvexity: Convexity with respect to plurisubharmonic functions

Convexity with respect to a class of functions:

Definition

Let *U* be an open subset of a complex Banach space *X*. Suppose that \mathcal{F} is a class of upper semicontinuous real-valued functions on *U*.

The \mathcal{F} -convex hull of a compact set $K \subset U$, denoted $\hat{K}_{\mathcal{F}}$, is the set of all points of U that cannot be separated from K by a function in the class \mathcal{F} .

The open set *U* is called \mathcal{F} -convex if for every compact subset *K* of *U*, the \mathcal{F} -convex hull $\hat{K}_{\mathcal{F}}$ is a compact subset of *U*.

Remark (For open subsets of a complex Banach space)

Geometric convexity:

Convexity with respect to (the real part of) affine linear functions.

Pseudoconvexity:

What is a plurisubharmonic function?

Definition

Let U be an open subset of a complex Banach space *X*. A function $f: U \to [-\infty, \infty)$ is said to be plurisubharmonic if *f* is upper semicontinuous and for each $a \in U$ and $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$,

$$f(a) \leq \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta.$$

Remark

Geometrically convex open subsets of a complex Banach space are pseudoconvex.

What is a plurisubharmonic function?

Definition

Let U be an open subset of a complex Banach space X. A function $f: U \to [-\infty, \infty)$ is said to be plurisubharmonic if f is upper semicontinuous and for each $a \in U$ and $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$,

$$f(a) \leq \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b)d\theta.$$

Remark

Geometrically convex open subsets of a complex Banach space are pseudoconvex.

< ロ > < 同 > < 回 > < 回 >

What is a plurisubharmonic function?

Definition

Let U be an open subset of a complex Banach space X. A function $f: U \to [-\infty, \infty)$ is said to be plurisubharmonic if f is upper semicontinuous and for each $a \in U$ and $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$,

$$f(a) \leq \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b)d\theta.$$

Remark

Geometrically convex open subsets of a complex Banach space are pseudoconvex.

< ロ > < 同 > < 回 > < 回 >

Another characterization of pseudoconvexity (Mujica, '86):

Proposition

An open subset *U* of a complex Banach space *X* is pseudoconvex if and only if the function $-\log d_U$ is plurisubharmonic on *U* (where d_U denotes the distance to the boundary of *U*).

Another characterization of pseudoconvexity (Mujica, '86):

Proposition

An open subset *U* of a complex Banach space *X* is pseudoconvex if and only if the function $-\log d_U$ is plurisubharmonic on *U* (where d_U denotes the distance to the boundary of *U*).

What is strong (or strict) pseudoconvexity?

Definition

Let *U* be an open subset of a complex Banach space *X*, and let $f: U \to \mathbb{R}$ be an \mathbb{R} -differentiable mapping. Let Df(a) denote the real differential of *f* at *a*. Then let D'f(a) and D''f(a) be defined by

$$D'f(a)(t) = 1/2[Df(a)(t) - iDf(a)(it)],$$

D''f(a)(t) = 1/2[Df(a)(t) + iDf(a)(it)],

for every $t \in X$.

What is strong (or strict) pseudoconvexity?

Definition

Let *U* be an open subset of a complex Banach space *X*, and let $f: U \to \mathbb{R}$ be an \mathbb{R} -differentiable mapping. Let Df(a) denote the real differential of *f* at *a*. Then let D'f(a) and D''f(a) be defined by

$$D'f(a)(t) = 1/2[Df(a)(t) - iDf(a)(it)],$$

D''f(a)(t) = 1/2[Df(a)(t) + iDf(a)(it)],

for every $t \in X$.

What is strong (or strict) pseudoconvexity?

Definition

Let *U* be an open subset of a complex Banach space *X*, and let $f: U \to \mathbb{R}$ be an \mathbb{R} -differentiable mapping. Let Df(a) denote the real differential of *f* at *a*. Then let D'f(a) and D''f(a) be defined by

$$D'f(a)(t) = 1/2[Df(a)(t) - iDf(a)(it)],$$

D''f(a)(t) = 1/2[Df(a)(t) + iDf(a)(it)],

for every $t \in X$.

What is strong (or strict) pseudoconvexity?

Definition

Let *U* be an open subset of a complex Banach space *X*, and let $f: U \to \mathbb{R}$ be an \mathbb{R} -differentiable mapping. Let Df(a) denote the real differential of *f* at *a*. Then let D'f(a) and D''f(a) be defined by

$$D'f(a)(t) = 1/2[Df(a)(t) - iDf(a)(it)],$$

D''f(a)(t) = 1/2[Df(a)(t) + iDf(a)(it)]

for every $t \in X$.

What is strong (or strict) pseudoconvexity?

Definition

Let *U* be an open subset of a complex Banach space *X*, and let $f: U \to \mathbb{R}$ be an \mathbb{R} -differentiable mapping. Let Df(a) denote the real differential of *f* at *a*. Then let D'f(a) and D''f(a) be defined by

$$D'f(a)(t) = 1/2[Df(a)(t) - iDf(a)(it)],$$

D'' f(a)(t) = 1/2[Df(a)(t) + iDf(a)(it)],

for every $t \in X$.

Remark

A function $f \in C^2(U, \mathbb{R})$ is plurisubharmonic iff for each $a \in U$ and $b \in X$ we have that $D'D''f(a)(b,b) \ge 0$.

With that in mind, and the 2-homogeneity of $b \mapsto D'D''f(a)(b,b)$, strict plurisubharmonicity is defined as follows (Mujica, '86):

Definition

Let *U* be an open subset of a complex Banach space *X*. A function $f \in C^2(U, \mathbb{R})$ is said to be strictly plurisubharmonic if for each $a \in U$ and $b \in S_X$ we have that D'D''f(a)(b,b) > 0.

Strict pseudoconvexity of an open set U with C^2 boundary is defined as having $-\log d_U$ strictly plurisubharmonic.

< ロ > < 同 > < 回 > < 回 >

Remark

A function $f \in C^2(U, \mathbb{R})$ is plurisubharmonic iff for each $a \in U$ and $b \in X$ we have that $D'D''f(a)(b,b) \ge 0$.

With that in mind, and the 2-homogeneity of $b \mapsto D'D''f(a)(b,b)$, strict plurisubharmonicity is defined as follows (Mujica, '86):

Definition

Let *U* be an open subset of a complex Banach space *X*. A function $f \in C^2(U, \mathbb{R})$ is said to be strictly plurisubharmonic if for each $a \in U$ and $b \in S_X$ we have that D'D''f(a)(b,b) > 0.

Strict pseudoconvexity of an open set U with C^2 boundary is defined as having $-\log d_U$ strictly plurisubharmonic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark

A function $f \in C^2(U, \mathbb{R})$ is plurisubharmonic iff for each $a \in U$ and $b \in X$ we have that $D'D''f(a)(b,b) \ge 0$.

With that in mind, and the 2-homogeneity of $b \mapsto D'D''f(a)(b,b)$, strict plurisubharmonicity is defined as follows (Mujica, '86):

Definition

Let *U* be an open subset of a complex Banach space *X*. A function $f \in C^2(U, \mathbb{R})$ is said to be strictly plurisubharmonic if for each $a \in U$ and $b \in S_X$ we have that D'D''f(a)(b,b) > 0.

Strict pseudoconvexity of an open set U with C^2 boundary is defined as having $-\log d_U$ strictly plurisubharmonic.

イロト 不得 トイヨト イヨト

Remark

A function $f \in C^2(U, \mathbb{R})$ is plurisubharmonic iff for each $a \in U$ and $b \in X$ we have that $D'D''f(a)(b,b) \ge 0$.

With that in mind, and the 2-homogeneity of $b \mapsto D'D''f(a)(b,b)$, strict plurisubharmonicity is defined as follows (Mujica, '86):

Definition

Let *U* be an open subset of a complex Banach space *X*. A function $f \in C^2(U, \mathbb{R})$ is said to be strictly plurisubharmonic if for each $a \in U$ and $b \in S_X$ we have that D'D''f(a)(b,b) > 0.

Strict pseudoconvexity of an open set U with C^2 boundary is defined as having $-\log d_U$ strictly plurisubharmonic.

・ロト ・四ト ・ヨト ・ヨト

Just as local uniform convexity and uniform convexity are special cases of strict convexity, we similarly define local uniform pseudoconvexity and uniform pseudoconvexity:

Definition

Let U be an open subset of a complex Banach space X, with C^2 boundary. U is said to be locally uniformly pseudoconvex at $a \in U$ if $-\log d_U$ is locally uniformly plurisubharmonic at a, i.e $\delta_U(a) := \inf\{D'D''(-\log d_U)(a)(b,b) : b \in S_X\} > 0.$

Definition

Let U be an open subset of a complex Banach space *X*, with C^2 boundary. *U* is said to be uniformly pseudoconvex if $-\log d_U$ is uniformly plurisubharmonic, i.e. $\delta_U := \inf\{D'D''(-\log d_U)(a)(b,b) : a \in U, b \in S_X\} > 0.$

イロト イヨト イヨト イヨト

Just as local uniform convexity and uniform convexity are special cases of strict convexity, we similarly define local uniform pseudoconvexity and uniform pseudoconvexity:

Definition

Let U be an open subset of a complex Banach space X, with C^2 boundary. U is said to be locally uniformly pseudoconvex at $a \in U$ if $-\log d_U$ is locally uniformly plurisubharmonic at a, i.e $\delta_U(a) := \inf\{D'D''(-\log d_U)(a)(b,b) : b \in S_X\} > 0.$

Definition

Let U be an open subset of a complex Banach space *X*, with C^2 boundary. *U* is said to be uniformly pseudoconvex if $-\log d_U$ is uniformly plurisubharmonic, i.e. $\delta_U := \inf\{D'D''(-\log d_U)(a)(b,b) : a \in U, b \in S_X\} > 0.$

Just as local uniform convexity and uniform convexity are special cases of strict convexity, we similarly define local uniform pseudoconvexity and uniform pseudoconvexity:

Definition

Let U be an open subset of a complex Banach space X, with C^2 boundary. U is said to be locally uniformly pseudoconvex at $a \in U$ if $-\log d_U$ is locally uniformly plurisubharmonic at a, i.e $\delta_U(a) := \inf\{D'D''(-\log d_U)(a)(b,b) : b \in S_X\} > 0.$

Definition

Let U be an open subset of a complex Banach space X, with C^2 boundary. U is said to be uniformly pseudoconvex if $-\log d_U$ is uniformly plurisubharmonic, i.e.

 $\delta_U := \inf\{D'D''(-\log d_U)(a)(b,b) : a \in U, \ b \in S_X\} > 0.$

Interesting phenomenon:

Proposition (O.-C., '14)

U open subset of a complex Banach space $X, f \in C^2(U, \mathbb{R})$.

Then *f* is locally uniformly plurisubharmonic at $a \in U$ iff $\exists C(a) > 0$ such that

$$C(a)\|b\|^2/4 \le \frac{1}{2\pi} \int_0^{2\pi} (f(a+e^{i\theta}b) - f(a))d\theta$$
(1)

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Similarly, *f* is uniformly plurisubharmonic iff $\exists C > 0$ such that

$$C\|b\|^2/4 \le \frac{1}{2\pi} \int_0^{2\pi} (f(a+e^{i\theta}b) - f(a))d\theta$$
 (2)

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

< □ > < 同 > < 回 > < 回 > < 回

Interesting phenomenon:

Proposition (O.-C., '14)

U open subset of a complex Banach space $X, f \in C^2(U, \mathbb{R})$.

Then *f* is locally uniformly plurisubharmonic at $a \in U$ iff $\exists C(a) > 0$ such that

$$C(a) \|b\|^2 / 4 \le \frac{1}{2\pi} \int_0^{2\pi} (f(a + e^{i\theta}b) - f(a)) d\theta$$

for each $b
eq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Similarly, *f* is uniformly plurisubharmonic iff $\exists C > 0$ such that

$$C\|b\|^2/4 \le \frac{1}{2\pi} \int_0^{2\pi} (f(a+e^{i\theta}b)-f(a))d\theta$$

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Interesting phenomenon:

Proposition (O.-C., '14)

U open subset of a complex Banach space $X, f \in C^2(U, \mathbb{R})$.

Then *f* is locally uniformly plurisubharmonic at $a \in U$ iff $\exists C(a) > 0$ such that

$$C(a)\|b\|^2/4 \le \frac{1}{2\pi} \int_0^{2\pi} (f(a+e^{i\theta}b) - f(a))d\theta$$
 (1)

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Similarly, f is uniformly plurisubharmonic iff $\exists C > 0$ such that

$$C\|b\|^2/4 \le \frac{1}{2\pi} \int_0^{2\pi} (f(a+e^{i\theta}b)-f(a))d\theta$$

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Interesting phenomenon:

Proposition (O.-C., '14)

U open subset of a complex Banach space $X, f \in C^2(U, \mathbb{R})$.

Then *f* is locally uniformly plurisubharmonic at $a \in U$ iff $\exists C(a) > 0$ such that

$$C(a)\|b\|^2/4 \le \frac{1}{2\pi} \int_0^{2\pi} (f(a+e^{i\theta}b) - f(a))d\theta$$
(1)

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Similarly, *f* is uniformly plurisubharmonic iff $\exists C > 0$ such that

$$C\|b\|^2/4 \le \frac{1}{2\pi} \int_0^{2\pi} (f(a+e^{i\theta}b) - f(a))d\theta$$
(2)

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Definition

Let U be an open subset of a complex Banach space X.

A function $f: U \to [-\infty, \infty)$ is said to be locally uniformly plurisubharmonic at $a \in U$ if f is upper semicontinuous and $\exists C(a) > 0$ such that

$$C(a) \|b\|^2 / 4 + f(a) \le \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta$$

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Similarly, a function $f: U \to [-\infty, \infty)$ is said to be uniformly plurisubharmonic if f is upper semicontinuous and $\exists C > 0$ such that

$$C\|b\|^2/4 + f(a) \le \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b)d\theta$$

for each $a \in U$ and $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Definition

Let U be an open subset of a complex Banach space X.

A function $f: U \to [-\infty, \infty)$ is said to be locally uniformly plurisubharmonic at $a \in U$ if f is upper semicontinuous and $\exists C(a) > 0$ such that

$$C(a) \|b\|^2 / 4 + f(a) \le \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta$$

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Simillarly, a function $f: U \to [-\infty, \infty)$ is said to be uniformly plurisubharmonic if f is upper semicontinuous and $\exists C > 0$ such that

$$C\|b\|^2/4 + f(a) \le \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b)d\theta$$

for each $a \in U$ and $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Definition

Let U be an open subset of a complex Banach space X.

A function $f: U \to [-\infty, \infty)$ is said to be locally uniformly plurisubharmonic at $a \in U$ if f is upper semicontinuous and $\exists C(a) > 0$ such that

$$C(a) \|b\|^2 / 4 + f(a) \le \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta$$

for each $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Similarly, a function $f: U \to [-\infty, \infty)$ is said to be uniformly plurisubharmonic if f is upper semicontinuous and $\exists C > 0$ such that

$$C\|b\|^2/4 + f(a) \le \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b)d\theta$$

for each $a \in U$ and $b \neq 0 \in X$ such that $a + \overline{\Delta}b \subset U$.

Now we can extend (local) uniform pseudoconvexity to any open and bounded set.

Definition

Let *U* open and bounded in *X* complex Banach space. *U* is said to be (locally) uniformly pseudoconvex (at $a \in U$) if $-\log d_U$ is (locally) uniformly plurisubharmonic (at *a*).

We can also extend strict pseudoconvexity to any open and bounded set, using the known fact that, in the finite-dimensional setting, strict plurisubharmonicity coincides with local uniform plurisubharmonicity.

Definition

Now we can extend (local) uniform pseudoconvexity to any open and bounded set.

Definition

Let *U* open and bounded in *X* complex Banach space. *U* is said to be (locally) uniformly pseudoconvex (at $a \in U$) if $-\log d_U$ is (locally) uniformly plurisubharmonic (at *a*).

We can also extend strict pseudoconvexity to any open and bounded set, using the known fact that, in the finite-dimensional setting, strict plurisubharmonicity coincides with local uniform plurisubharmonicity.

Definition

Now we can extend (local) uniform pseudoconvexity to any open and bounded set.

Definition

Let *U* open and bounded in *X* complex Banach space. *U* is said to be (locally) uniformly pseudoconvex (at $a \in U$) if $-\log d_U$ is (locally) uniformly plurisubharmonic (at *a*).

We can also extend strict pseudoconvexity to any open and bounded set, using the known fact that, in the finite-dimensional setting, strict plurisubharmonicity coincides with local uniform plurisubharmonicity.

Definition

Now we can extend (local) uniform pseudoconvexity to any open and bounded set.

Definition

Let *U* open and bounded in *X* complex Banach space. *U* is said to be (locally) uniformly pseudoconvex (at $a \in U$) if $-\log d_U$ is (locally) uniformly plurisubharmonic (at *a*).

We can also extend strict pseudoconvexity to any open and bounded set, using the known fact that, in the finite-dimensional setting, strict plurisubharmonicity coincides with local uniform plurisubharmonicity.

Definition

Let us now exhibit some Banach spaces whose unit ball is uniformly pseudoconvex:

Definition (Davis, Garling, Tomczak-Jaegermann, '84)

If $0 < q < \infty$, a Banach space *X* is 2-uniformly PL-convex if there exists $\lambda > 0$ such that

$$\left(\frac{1}{2\pi}\int_{0}^{2\pi} \|a+e^{i\theta}b\|^{q}d\theta\right)^{1/q} \ge (\|a\|^{2}+\lambda\|b\|^{2})^{1/2}$$

for all a and b in X.

Let us now exhibit some Banach spaces whose unit ball is uniformly pseudoconvex:

Definition (Davis, Garling, Tomczak-Jaegermann, '84)

If $0 < q < \infty$, a Banach space *X* is 2-uniformly PL-convex if there exists $\lambda > 0$ such that

$$(\frac{1}{2\pi}\int_0^{2\pi} \|a+e^{i\theta}b\|^q d\theta)^{1/q} \ge (\|a\|^2 + \lambda \|b\|^2)^{1/2}$$

for all a and b in X.

• • • • • • • • • • • •

Theorem (O.-C., '14)

If X is a 2-uniformly PL-convex Banach space then B_X is uniformly pseudoconvex.

In contrast, the following theorem gives us that, for p > 2, the unit balls of ℓ_p and L_p are not even strictly pseudoconvex.

Theorem (O.-C., '14)

If $n \ge 2$ and p > 2, the unit ball of ℓ_p^n is not strictly pseudoconvex.

Theorem (O.-C., '14)

If X is a 2-uniformly PL-convex Banach space then B_X is uniformly pseudoconvex.

In contrast, the following theorem gives us that, for p > 2, the unit balls of ℓ_p and L_p are not even strictly pseudoconvex.

Theorem (O.-C., '14)

If $n \ge 2$ and p > 2, the unit ball of ℓ_p^n is not strictly pseudoconvex.

(日)

Theorem (O.-C., '14)

If X is a 2-uniformly PL-convex Banach space then B_X is uniformly pseudoconvex.

In contrast, the following theorem gives us that, for p > 2, the unit balls of ℓ_p and L_p are not even strictly pseudoconvex.

Theorem (O.-C., '14)

If $n \ge 2$ and p > 2, the unit ball of ℓ_p^n is not strictly pseudoconvex.

Theorem (O.-C., '14)

If X is a 2-uniformly PL-convex Banach space then B_X is uniformly pseudoconvex.

In contrast, the following theorem gives us that, for p > 2, the unit balls of ℓ_p and L_p are not even strictly pseudoconvex.

Theorem (O.-C., '14)

If $n \ge 2$ and p > 2, the unit ball of ℓ_p^n is not strictly pseudoconvex.

Theorem (O.-C., '14)

If X is a 2-uniformly PL-convex Banach space then B_X is uniformly pseudoconvex.

In contrast, the following theorem gives us that, for p > 2, the unit balls of ℓ_p and L_p are not even strictly pseudoconvex.

Theorem (O.-C., '14)

If $n \ge 2$ and p > 2, the unit ball of ℓ_p^n is not strictly pseudoconvex.

- W. J. Davis, D. J. H. Garling, N. Tomczak-Jaegermann, *The Complex Convexity of Quasi-normed Linear Spaces*, Journal of Functional Analysis 55 (1984), pp. 110-150.
- J. Mujica, *Complex Analysis in Banach Spaces*, vol. 120, North-Holland Mathematics Studies, Amsterdam, 1986.

★ ∃ >

- W. J. Davis, D. J. H. Garling, N. Tomczak-Jaegermann, *The Complex Convexity of Quasi-normed Linear Spaces*, Journal of Functional Analysis 55 (1984), pp. 110-150.
- J. Mujica, *Complex Analysis in Banach Spaces*, vol. 120, North-Holland Mathematics Studies, Amsterdam, 1986.

★ ∃ >