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Some well-known facts and definitions

I The Radon-Nikodým property (RNP, for short) is one of the
most important isomorphic invariants of Banach spaces.

I One of the reasons for the importance of the RNP is the
possibility to characterize the RNP in many different ways.

I Some of them:

I Measure-theoretic definition (it gives the name to this
property) X ∈ RNP⇔ The following analogue of the
Radon-Nikodým theorem holds for X -valued measures.

I Let (Ω,Σ, µ) be a positive finite real-valued measure, and
(Ω,Σ, τ) be an X -valued measure on the same σ-algebra
which is absolutely continuous with respect to µ (this means
µ(A) = 0 ⇒ τ(A) = 0) and satisfies the condition τ(A)/µ(A)
is a uniformly bounded set of vectors over all A ∈ Σ with
µ(A) 6= 0. Then there is an f ∈ L1(µ,X ) such that

∀A ∈ Σ τ(A) =

∫
A

f (ω)dµ(ω).
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Further equivalent definitions of the Radon-Nikodým
property (RNP)

I Definition in terms of differentiability (going back to Clarkson
(1936) and Gelfand (1938)) X ∈ RNP⇔ X -valued Lipschitz
functions on R are differentiable almost everywhere.

I Probabilistic definition (Chatterji (1968)) X ∈ RNP⇔
Bounded X -valued martingales converge.

I In more detail: A Banach space X has the RNP if and only if
each X -valued martingale {fn} on any probability space
(Ω,Σ, µ), for which {||fn(ω)|| : n ∈ N, ω ∈ Ω} is a bounded
set, converges in L1(Ω,Σ, µ,X ).

I And there are numerous others.
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Metric definition of the RNP

I The goal of this talk is to give a metric definition of the RNP,
that is a definition (characterization) of the RNP which refers
only to the metric structure of a Banach space and does not
involve the linear structure.

I An interest to such characterizations is stimulated by the fact
that in some of the works in the theory of embeddings of
metric spaces into Banach spaces (Cheeger, Kleiner, Lee,
Naor, 2006–2009) an important role is played by the class of
Banach spaces with the RNP.

I In 2009 Bill Johnson suggested the problem: Find a purely
metric characterization of the Radon-Nikodým property (that
is, find a characterization of the RNP which does not refer to
the linear structure of the space).

I My answer to this problem is based on the notion of a thick
family of geodesics.
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I Definition. Let u and v be two elements in a metric space
(M, dM). A uv-geodesic is a distance-preserving map
g : [0, dM(u, v)]→ M such that g(0) = u and
g(dM(u, v)) = v (where [0, dM(u, v)] is an interval in R).

I A family T of uv -geodesics is called thick if there is α > 0
such that for every g ∈ T and for every finite collection of
points r1, . . . , rn in the image of g , there is another
uv -geodesic g̃ ∈ T satisfying the conditions:

I (1) The image of g̃ also contains r1, . . . , rn.
I (2) Possibly there are some more common points of g and g̃ .
I (3) We can find a sequence

0 < s1 < q1 < s2 < q2 < · · · < sm < qm < sm+1 < dM(u, v),
such that g(qi ) = g̃(qi ) (i = 1, . . . ,m) are common points
containing r1, . . . , rn, and the images g(si ) and g̃(si ) are such
that the sum of deviations over them is nontrivially large in the
sense that

∑m+1
i=1 dM(g(si ), g̃(si )) ≥ α.

I Furthermore, any geodesic obtained by combining finitely
many pieces of g and g̃ is in T .

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I Definition. Let u and v be two elements in a metric space
(M, dM). A uv-geodesic is a distance-preserving map
g : [0, dM(u, v)]→ M such that g(0) = u and
g(dM(u, v)) = v (where [0, dM(u, v)] is an interval in R).

I A family T of uv -geodesics is called thick if there is α > 0
such that for every g ∈ T and for every finite collection of
points r1, . . . , rn in the image of g , there is another
uv -geodesic g̃ ∈ T satisfying the conditions:

I (1) The image of g̃ also contains r1, . . . , rn.
I (2) Possibly there are some more common points of g and g̃ .
I (3) We can find a sequence

0 < s1 < q1 < s2 < q2 < · · · < sm < qm < sm+1 < dM(u, v),
such that g(qi ) = g̃(qi ) (i = 1, . . . ,m) are common points
containing r1, . . . , rn, and the images g(si ) and g̃(si ) are such
that the sum of deviations over them is nontrivially large in the
sense that

∑m+1
i=1 dM(g(si ), g̃(si )) ≥ α.

I Furthermore, any geodesic obtained by combining finitely
many pieces of g and g̃ is in T .

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I Definition. Let u and v be two elements in a metric space
(M, dM). A uv-geodesic is a distance-preserving map
g : [0, dM(u, v)]→ M such that g(0) = u and
g(dM(u, v)) = v (where [0, dM(u, v)] is an interval in R).

I A family T of uv -geodesics is called thick if there is α > 0
such that for every g ∈ T and for every finite collection of
points r1, . . . , rn in the image of g , there is another
uv -geodesic g̃ ∈ T satisfying the conditions:

I (1) The image of g̃ also contains r1, . . . , rn.

I (2) Possibly there are some more common points of g and g̃ .
I (3) We can find a sequence

0 < s1 < q1 < s2 < q2 < · · · < sm < qm < sm+1 < dM(u, v),
such that g(qi ) = g̃(qi ) (i = 1, . . . ,m) are common points
containing r1, . . . , rn, and the images g(si ) and g̃(si ) are such
that the sum of deviations over them is nontrivially large in the
sense that

∑m+1
i=1 dM(g(si ), g̃(si )) ≥ α.

I Furthermore, any geodesic obtained by combining finitely
many pieces of g and g̃ is in T .

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I Definition. Let u and v be two elements in a metric space
(M, dM). A uv-geodesic is a distance-preserving map
g : [0, dM(u, v)]→ M such that g(0) = u and
g(dM(u, v)) = v (where [0, dM(u, v)] is an interval in R).

I A family T of uv -geodesics is called thick if there is α > 0
such that for every g ∈ T and for every finite collection of
points r1, . . . , rn in the image of g , there is another
uv -geodesic g̃ ∈ T satisfying the conditions:

I (1) The image of g̃ also contains r1, . . . , rn.
I (2) Possibly there are some more common points of g and g̃ .

I (3) We can find a sequence
0 < s1 < q1 < s2 < q2 < · · · < sm < qm < sm+1 < dM(u, v),
such that g(qi ) = g̃(qi ) (i = 1, . . . ,m) are common points
containing r1, . . . , rn, and the images g(si ) and g̃(si ) are such
that the sum of deviations over them is nontrivially large in the
sense that

∑m+1
i=1 dM(g(si ), g̃(si )) ≥ α.

I Furthermore, any geodesic obtained by combining finitely
many pieces of g and g̃ is in T .

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I Definition. Let u and v be two elements in a metric space
(M, dM). A uv-geodesic is a distance-preserving map
g : [0, dM(u, v)]→ M such that g(0) = u and
g(dM(u, v)) = v (where [0, dM(u, v)] is an interval in R).

I A family T of uv -geodesics is called thick if there is α > 0
such that for every g ∈ T and for every finite collection of
points r1, . . . , rn in the image of g , there is another
uv -geodesic g̃ ∈ T satisfying the conditions:

I (1) The image of g̃ also contains r1, . . . , rn.
I (2) Possibly there are some more common points of g and g̃ .
I (3) We can find a sequence

0 < s1 < q1 < s2 < q2 < · · · < sm < qm < sm+1 < dM(u, v),
such that g(qi ) = g̃(qi ) (i = 1, . . . ,m) are common points
containing r1, . . . , rn, and the images g(si ) and g̃(si ) are such
that the sum of deviations over them is nontrivially large in the
sense that

∑m+1
i=1 dM(g(si ), g̃(si )) ≥ α.

I Furthermore, any geodesic obtained by combining finitely
many pieces of g and g̃ is in T .

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I Definition. Let u and v be two elements in a metric space
(M, dM). A uv-geodesic is a distance-preserving map
g : [0, dM(u, v)]→ M such that g(0) = u and
g(dM(u, v)) = v (where [0, dM(u, v)] is an interval in R).

I A family T of uv -geodesics is called thick if there is α > 0
such that for every g ∈ T and for every finite collection of
points r1, . . . , rn in the image of g , there is another
uv -geodesic g̃ ∈ T satisfying the conditions:

I (1) The image of g̃ also contains r1, . . . , rn.
I (2) Possibly there are some more common points of g and g̃ .
I (3) We can find a sequence

0 < s1 < q1 < s2 < q2 < · · · < sm < qm < sm+1 < dM(u, v),
such that g(qi ) = g̃(qi ) (i = 1, . . . ,m) are common points
containing r1, . . . , rn, and the images g(si ) and g̃(si ) are such
that the sum of deviations over them is nontrivially large in the
sense that

∑m+1
i=1 dM(g(si ), g̃(si )) ≥ α.

I Furthermore, any geodesic obtained by combining finitely
many pieces of g and g̃ is in T .

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



Examples

I Infinite diamond; Laakso space.
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We also need the following definitions

I Let 0 ≤ C <∞. A map f : (A, dA)→ (Y , dY ) between two
metric spaces is called C -Lipschitz if

∀u, v ∈ A dY (f (u), f (v)) ≤ CdA(u, v).

A map f is called Lipschitz if it is C -Lipschitz for some
0 ≤ C <∞.

I Let 1 ≤ C <∞. A map f : A→ Y is called a C-bilipschitz
embedding if there exists r > 0 such that

∀u, v ∈ A rdA(u, v) ≤ dY (f (u), f (v)) ≤ rCdA(u, v). (1)

A bilipschitz embedding is an embedding which is
C -bilipschitz for some 1 ≤ C <∞. The smallest constant C
for which there exist r > 0 such that (1) is satisfied is called
the distortion of f .
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RNP and thick family of geodesics

I Theorem 1 (M.O. (2014)). A Banach space X does not have
the RNP if and only if there exists a metric space MX

containing a thick family TX of geodesics which admits a
bilipschitz embedding into X .

I At the same time, it turns out that the metric space MX

cannot be chosen independently of X because the following
result holds.

I Theorem 2 (M.O. (2014)). For each thick family T of
geodesics there exists a Banach space X which does not have
the RNP and does not admit a bilipschitz embedding of T
into X .

I The main goal of the rest of my talk is to describe the proof
of Theorem 1.
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I We start with the implication
(X /∈ RNP) ⇒ (Embeddability of a thick family into X )

I Remark: It is not true that each Banach space without RNP
contains thick families of geodesics.

I In fact, it is well-known that Banach spaces without RNP can
be such that their unit spheres do not contain line segments
(for example, one can consider on C (0, 1) with the norm
|||x ||| = ||x ||C(0,1) + ||x ||L2(0,1)).

I On the other hand, it is easy to check that such spaces have
uniqueness of geodesics property (each pair of points is joined
by only one geodesic), and therefore there are no thick
families of geodesics in such space (and the words “bilipschitz
embedding” in the statement of the Theorem 1 cannot be
replaces by “isometric embedding”).
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I We are going to show that for any non-RNP space X there is
an equivalent norm ||| · ||| on X such that (X , ||| · |||) contains
a thick family of geodesics. The new norm is very easy to
construct: we pick any subspace Z of codimension one in X ,
pick a vector x ∈ X , x /∈ Z and let the unit ball of the new
norm be the closure of convex hull of (x + BZ ) ∪ (−x + BZ ).
It is clear that the new norm is equivalent to the original norm
(choosing x and Z in a suitable way we can make it
2-equivalent to the original norm).

I An important observation is that all vectors of the sets
(x + BZ ) and (−x + BZ ) have norm 1 in the new norm ||| · |||.

I Remark: It is easy to check that line segments on the unit
sphere of a Banach space imply the existence of infinite
families of geodesics between some pairs of points in the
space. Our goal is to show that the assumption X /∈ RNP
(and so also Z /∈ RNP) implies that in the present case we
can find a thick family of geodesics.
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I To find such family we need the fact (Chatterji-James) that
Z /∈ RNP is equivalent to BZ contains a δ-bush in the
following sense:

I Definition: Let Z be a Banach space and let δ > 0. A set of
vectors {xn,j} ∞ mn

n=0,j=1 in Z is called a δ-bush if m0 = 1 and for

every n ≥ 1 there is a partition {An
k}

mn−1

k=1 of {1, . . . ,mn} such
that

||xn,j − xn−1,k || ≥ δ (2)

for every n ≥ 1 and for every j ∈ An
k , and

xn−1,k =
∑
j∈An

k

λn,jxn,j (3)

for some λn,j ≥ 0,
∑

j∈An
k
λn,j = 1.
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I It is clear that in our situation we may assume that the bush
{xn,j} ∞ mn

n=0,j=1 is contained in x + BZ and so that all elements
of the bush satisfy |||xn,j ||| = 1. For simplicity of notation
from now on we shall use || · || to denote the new norm.

I We are going to use this δ-bush to construct a thick family
TX of geodesics in X joining 0 and x0,1. First we construct a
subset of the desired set of geodesics, this subset will be
constructed as the set of limits of certain broken lines in X
joining 0 and x0,1. The constructed broken lines are also
geodesics (but they do not necessarily belong to the family
TX ).
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I The mentioned above broken lines will be constructed using
representations of the form x0,1 =

∑m
i=1 zi , where zi are such

that ||x0,1|| =
∑m

i=1 ||zi ||. The broken line represented by such
finite sequence z1, . . . , zm is obtained by letting z0 = 0 and
joining

∑k
i=0 zi with

∑k+1
i=0 zi with a line segment for

k = 0, 1, . . . ,m − 1. Vectors
∑k

i=0 zi , k = 0, 1, . . . ,m will be
called vertices of the broken line.

I The infinite set of broken lines which we construct is labelled
by vertices of the infinite binary tree T∞ in which each vertex
is represented by a finite (possibly empty) sequence of 0 and 1.
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I The broken line corresponding to the empty sequence ∅ is
represented by the one-element sequence x0,1, so it is just a
line segment joining 0 and x0,1.

I We have
x0,1 = λ1,1x1,1 + · · ·+ λ1,m1x1,m1 ,

where ||x1,j − x0,1|| ≥ δ. We introduce the vectors

y1,j =
1

2
(x1,j + x0,1).

I For these vectors we have

x0,1 = λ1,1y1,1 + · · ·+ λ1,m1y1,m1 ,

||y1,j − x1,j || = ||y1,j − x0,1|| ≥ δ
2 , and ||y1,j || = 1.

I We consider these auxiliary vectors y1,j because they help us
to find a pair of geodesics with many intersections and many
‘distant’ pairs (like in the definition of the thick family).
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I As a preliminary step to the construction of the broken lines
corresponding to one-element sequences (0) and (1) we form
a broken line represented by the points

λ1,1y1,1, . . . , λ1,m1y1,m1 . (4)

We label the broken line represented by (4) by ∅.

I The broken line corresponding to the one-element sequence
(0) is represented by the sequence obtained from (4) if we
replace each term λ1,jy1,j by a two-element sequence

λ1,j
2

x0,1,
λ1,j

2
x1,j . (5)

I The broken line corresponding to the one-element sequence
(1) is represented by the sequence obtained from (4) if we
replace each term λ1,jy1,j by a two-element sequence

λ1,j
2

x1,j ,
λ1,j

2
x0,1. (6)
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I At this point one can see where are we going to get the
thickness property from.

I In fact, one of the inequalities above is ||x1,j − x0,1|| ≥ δ.
Therefore ∥∥∥∥λ1,j2

x1,j −
λ1,j

2
x0,1

∥∥∥∥ ≥ λ1,j
2
δ.

Summing over all j , we get that the total sum of deviations is
≥ δ

2 .

I We need a refinement of this inequality which I describe as
“the sum of deviations on subintervals corresponding to
vertices is ≥ δ

2×(the length of the subinterval).”

I In the obtained broken lines each line segment corresponds
either to a multiple of x0,1 or to a multiple of some x1,j . In
the next step we replace each such line segment by a broken
line. Now we describe how we do this.
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I Broken lines corresponding to 2-element sequences are also
formed in two steps. To get the broken lines labelled by (0, 0)
and (0, 1) we apply the described procedure to the geodesic
labelled (0), to get the broken lines labelled by (1, 0) and (1, 1)
we apply the described procedure to the geodesic labelled (1).

I In the preliminary step we replace each term of the form
λ1,k
2 x0,1 by a multiplied by

λ1,k
2 sequence

λ1,1y1,1, . . . , λ1,m1y1,m1 , and we replace a term of the form
λ1,k
2 x1,k by the multiplied by

λ1,k
2 sequence

{λ2,jy2,j}j∈A2
k
, (7)

ordered arbitrarily, where y2,j =
x1,k+x2,j

2 and λ2,j , x2,j , and A2
k

are as in the definition of the δ-bush (it is easy to check that
in the new norm we have ||y2,j || = 1). We label the obtained

broken lines by (0) and (1), respectively.
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I To get the sequence representing the broken line labelled by
(0, 0) we do the following operation with the preliminary
sequence labelled (0).

I Replace each multiple λy1,j present in the sequence by the
two-element sequence

λ
x0,1

2
, λ

x1,j
2
. (8)

I Replace each multiple λy2,j , with j ∈ A2
k , present in the

sequence by the two-element sequence

λ
x1,k

2
, λ

x2,j
2
. (9)

I To get the sequence representing the broken line labelled by
(0, 1) we do the same but changing the order of terms in (8)
and (9). To get the sequences representing the broken lines
labelled by (1, 0) and (1, 1), we apply the same procedure to
the broken line labelled (1).
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I We continue in an “obvious” way and get broken lines for all
vertices of the infinite binary tree T∞. It is not difficult to see
that vertices of a broken line corresponding to some vertex
(θ1, . . . , θn) are contained in the broken line corresponding to
any extension (θ1, . . . , θm) of (θ1, . . . , θn) (m > n)

I This implies that the sequence of broken lines corresponding
to any ray (that is, a path which starts at the vertex
corresponding to ∅ and is infinite in one direction) in T∞ has a
limit (which is not necessarily a broken line, but is a geodesic),
and limits corresponding to two different rays have as common
points at least vertices of the broken line corresponding to the
common beginning (θ1, . . . , θn) of their labels.

I The desired thick family of geodesics is obtained by pasting
pieces of these geodesics in all “reasonable” ways. More
precisely, it contains all geodesics which are obtained by
pasting together finite number of geodesics corresponding to
infinite rays of T∞. (It is clear that this set is nonempty.)

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I We continue in an “obvious” way and get broken lines for all
vertices of the infinite binary tree T∞. It is not difficult to see
that vertices of a broken line corresponding to some vertex
(θ1, . . . , θn) are contained in the broken line corresponding to
any extension (θ1, . . . , θm) of (θ1, . . . , θn) (m > n)

I This implies that the sequence of broken lines corresponding
to any ray (that is, a path which starts at the vertex
corresponding to ∅ and is infinite in one direction) in T∞ has a
limit (which is not necessarily a broken line, but is a geodesic),
and limits corresponding to two different rays have as common
points at least vertices of the broken line corresponding to the
common beginning (θ1, . . . , θn) of their labels.

I The desired thick family of geodesics is obtained by pasting
pieces of these geodesics in all “reasonable” ways. More
precisely, it contains all geodesics which are obtained by
pasting together finite number of geodesics corresponding to
infinite rays of T∞. (It is clear that this set is nonempty.)

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I We continue in an “obvious” way and get broken lines for all
vertices of the infinite binary tree T∞. It is not difficult to see
that vertices of a broken line corresponding to some vertex
(θ1, . . . , θn) are contained in the broken line corresponding to
any extension (θ1, . . . , θm) of (θ1, . . . , θn) (m > n)

I This implies that the sequence of broken lines corresponding
to any ray (that is, a path which starts at the vertex
corresponding to ∅ and is infinite in one direction) in T∞ has a
limit (which is not necessarily a broken line, but is a geodesic),
and limits corresponding to two different rays have as common
points at least vertices of the broken line corresponding to the
common beginning (θ1, . . . , θn) of their labels.

I The desired thick family of geodesics is obtained by pasting
pieces of these geodesics in all “reasonable” ways. More
precisely, it contains all geodesics which are obtained by
pasting together finite number of geodesics corresponding to
infinite rays of T∞. (It is clear that this set is nonempty.)
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I It remains only to show that it is a thick family of geodesics.
So let g be one of such geodesics and let {ri} be a finite
collection of points on it. We may assume that {ri} contains
all points where pieces are pasted together. The geodesic g
consists of finitely many pieces, consider one of them.
Suppose that it corresponds to an infinite sequence (θi )

∞
i=1

I We can find a finite piece (θ1, θ2, . . . , θn(ε)) of the sequence
(θ1, θ2, . . . , θn, . . . ) such that some of the vertices of the
corresponding broken line are very close to those {ri} which
are inside the piece which we consider (and are in the piece).

I Now we change the pieces on intervals which do not contain
{ri} (sketch a figure). Instead of geodesic corresponding to
(θ1, θ2, . . . , θn, . . . ) we put there the geodesic for which
θn(ε)+1 has the opposite sign (further signs will play no role
and we can pick them arbitrarily).

I The proof is completed by using the inequality which was
described in the words “the sum of deviations on subintervals
corresponding to vertices is ≥ δ

2×(the length of the
subinterval).”
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I Now we prove the second part of Theorem 1:
(Embeddability of a thick family into X ) ⇒ (X /∈ RNP)

I We prove this by showing
(Embeddability of a thick family into X ) ⇒ (∃ bounded (in
L∞) divergent (in L1) martingale in X )

I I hope that you will agree with me that this construction of a
divergent martingale is very simple and natural.
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I We start by considering

I A 1-Lipschitz map f from [0, 1] into X .
I A sequence of finite partitions of [0, 1] into subintervals, such

that each next partition refines the previous one.
I Let {xk,i}nki=0 be an increasing sequence in [0, 1] defining the

k-th partition; xk,0 = 0, xk,nk = 1. So {xk,i}nki=0 is a
subsequence of {xk+1,i}nk+1

i=0 .
I Martingale Mk : ([0, 1],Fk)→ X given by

Mk(t) =
f (xk,i+1)− f (xk,i )

xk,i+1 − xk,i
for t ∈ [xk,i+1, xk,i ),

where Fk is the (finite) σ-algebra defined by the k-th partition.

I This martingale is bounded because f is Lipschitz. So it
remains to use the assumption on X in order to find a
divergent martingale of this type.
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Some useful observations

I We do not have to use the same map f for all partitions. We
may use different maps {fk} for partitions {xk,i}nki=0;
k = 1, . . . , provided

I Lip(fk) are uniformly bounded (we shall use Lip(fk) ≤ 1)
I The maps fk+1 and fk have the same restriction to {xk,i}nki=0.

I This observation does not give anything new, we may consider
the limit of fk (which exists under natural assumptions) and
use it as f ; but in our work with thick family of geodesics it is
convenient that we do not have to choose the limiting
function ahead of time.
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I We get the maps fk and partitions {xk,i}nki=0 in a very natural
way from the thick family of geodesics.

I So let M be a metric space containing a thick family of
geodesics which admits a bilipschitz embedding F : M → X
satisfying

δdM(x , y) ≤ ||F (x)− F (y)|| ≤ dM(x , y).

We assume that all of the geodesics join points u and v , and
that all of them have length 1. So each of them is an
isometric image of [0, 1].

I All of the maps fk will be compositions of the form
F ◦ g : [0, 1]→ X , where g is a parametrization of one of the
geodesics of the thick family.
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I We start by picking any geodesic g1 of the family and letting
f1 = F ◦ g1, n1 = 1, x1,0 = 0 and x1,1 = 1.

I We observe that in order to achieve our goal (construction of
a divergent martingale) it sufficient to start with an arbitrary
partition {xk,i}nki=0 and the map fk = F ◦ gk (where gk is one
of the geodesics of the thick family) and to find geodesics
gk+1 and gk+2 and partitions {xk+1,i}

nk+1

i=0 and {xk+2,i}
nk+2

i=0

such that

I gk+1 and gk+2 coincide with gk on {xk,i}nki=0.
I gk+2 coincides with gk+1 on {xk+1,i}nk+1

i=0 .
I ||Mk+2 −Mk+1||L1 > ω > 0, where ω depends only on the

thick family of geodesics and the distortion of F .

I Note: We do not need to have a similar estimate for
||Mk+1 −Mk ||L1 .

I It turns out that the definition of a thick family of geodesics
provides a natural way of getting geodesics gk+1, gk+2 and
partitions {xk+1,i}

nk+1

i=0 , {xk+2,i}
nk+2

i=0

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I We start by picking any geodesic g1 of the family and letting
f1 = F ◦ g1, n1 = 1, x1,0 = 0 and x1,1 = 1.

I We observe that in order to achieve our goal (construction of
a divergent martingale) it sufficient to start with an arbitrary
partition {xk,i}nki=0 and the map fk = F ◦ gk (where gk is one
of the geodesics of the thick family) and to find geodesics
gk+1 and gk+2 and partitions {xk+1,i}

nk+1

i=0 and {xk+2,i}
nk+2

i=0

such that

I gk+1 and gk+2 coincide with gk on {xk,i}nki=0.
I gk+2 coincides with gk+1 on {xk+1,i}nk+1

i=0 .
I ||Mk+2 −Mk+1||L1 > ω > 0, where ω depends only on the

thick family of geodesics and the distortion of F .

I Note: We do not need to have a similar estimate for
||Mk+1 −Mk ||L1 .

I It turns out that the definition of a thick family of geodesics
provides a natural way of getting geodesics gk+1, gk+2 and
partitions {xk+1,i}

nk+1

i=0 , {xk+2,i}
nk+2

i=0

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I We start by picking any geodesic g1 of the family and letting
f1 = F ◦ g1, n1 = 1, x1,0 = 0 and x1,1 = 1.

I We observe that in order to achieve our goal (construction of
a divergent martingale) it sufficient to start with an arbitrary
partition {xk,i}nki=0 and the map fk = F ◦ gk (where gk is one
of the geodesics of the thick family) and to find geodesics
gk+1 and gk+2 and partitions {xk+1,i}

nk+1

i=0 and {xk+2,i}
nk+2

i=0

such that

I gk+1 and gk+2 coincide with gk on {xk,i}nki=0.

I gk+2 coincides with gk+1 on {xk+1,i}nk+1

i=0 .
I ||Mk+2 −Mk+1||L1 > ω > 0, where ω depends only on the

thick family of geodesics and the distortion of F .

I Note: We do not need to have a similar estimate for
||Mk+1 −Mk ||L1 .

I It turns out that the definition of a thick family of geodesics
provides a natural way of getting geodesics gk+1, gk+2 and
partitions {xk+1,i}

nk+1

i=0 , {xk+2,i}
nk+2

i=0

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I We start by picking any geodesic g1 of the family and letting
f1 = F ◦ g1, n1 = 1, x1,0 = 0 and x1,1 = 1.

I We observe that in order to achieve our goal (construction of
a divergent martingale) it sufficient to start with an arbitrary
partition {xk,i}nki=0 and the map fk = F ◦ gk (where gk is one
of the geodesics of the thick family) and to find geodesics
gk+1 and gk+2 and partitions {xk+1,i}

nk+1

i=0 and {xk+2,i}
nk+2

i=0

such that

I gk+1 and gk+2 coincide with gk on {xk,i}nki=0.
I gk+2 coincides with gk+1 on {xk+1,i}nk+1

i=0 .

I ||Mk+2 −Mk+1||L1 > ω > 0, where ω depends only on the
thick family of geodesics and the distortion of F .

I Note: We do not need to have a similar estimate for
||Mk+1 −Mk ||L1 .

I It turns out that the definition of a thick family of geodesics
provides a natural way of getting geodesics gk+1, gk+2 and
partitions {xk+1,i}

nk+1

i=0 , {xk+2,i}
nk+2

i=0

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I We start by picking any geodesic g1 of the family and letting
f1 = F ◦ g1, n1 = 1, x1,0 = 0 and x1,1 = 1.

I We observe that in order to achieve our goal (construction of
a divergent martingale) it sufficient to start with an arbitrary
partition {xk,i}nki=0 and the map fk = F ◦ gk (where gk is one
of the geodesics of the thick family) and to find geodesics
gk+1 and gk+2 and partitions {xk+1,i}

nk+1

i=0 and {xk+2,i}
nk+2

i=0

such that

I gk+1 and gk+2 coincide with gk on {xk,i}nki=0.
I gk+2 coincides with gk+1 on {xk+1,i}nk+1

i=0 .
I ||Mk+2 −Mk+1||L1 > ω > 0, where ω depends only on the

thick family of geodesics and the distortion of F .

I Note: We do not need to have a similar estimate for
||Mk+1 −Mk ||L1 .

I It turns out that the definition of a thick family of geodesics
provides a natural way of getting geodesics gk+1, gk+2 and
partitions {xk+1,i}

nk+1

i=0 , {xk+2,i}
nk+2

i=0

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I We start by picking any geodesic g1 of the family and letting
f1 = F ◦ g1, n1 = 1, x1,0 = 0 and x1,1 = 1.

I We observe that in order to achieve our goal (construction of
a divergent martingale) it sufficient to start with an arbitrary
partition {xk,i}nki=0 and the map fk = F ◦ gk (where gk is one
of the geodesics of the thick family) and to find geodesics
gk+1 and gk+2 and partitions {xk+1,i}

nk+1

i=0 and {xk+2,i}
nk+2

i=0

such that

I gk+1 and gk+2 coincide with gk on {xk,i}nki=0.
I gk+2 coincides with gk+1 on {xk+1,i}nk+1

i=0 .
I ||Mk+2 −Mk+1||L1 > ω > 0, where ω depends only on the

thick family of geodesics and the distortion of F .

I Note: We do not need to have a similar estimate for
||Mk+1 −Mk ||L1 .

I It turns out that the definition of a thick family of geodesics
provides a natural way of getting geodesics gk+1, gk+2 and
partitions {xk+1,i}

nk+1

i=0 , {xk+2,i}
nk+2

i=0

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



I We start by picking any geodesic g1 of the family and letting
f1 = F ◦ g1, n1 = 1, x1,0 = 0 and x1,1 = 1.

I We observe that in order to achieve our goal (construction of
a divergent martingale) it sufficient to start with an arbitrary
partition {xk,i}nki=0 and the map fk = F ◦ gk (where gk is one
of the geodesics of the thick family) and to find geodesics
gk+1 and gk+2 and partitions {xk+1,i}

nk+1

i=0 and {xk+2,i}
nk+2

i=0

such that

I gk+1 and gk+2 coincide with gk on {xk,i}nki=0.
I gk+2 coincides with gk+1 on {xk+1,i}nk+1

i=0 .
I ||Mk+2 −Mk+1||L1 > ω > 0, where ω depends only on the

thick family of geodesics and the distortion of F .

I Note: We do not need to have a similar estimate for
||Mk+1 −Mk ||L1 .

I It turns out that the definition of a thick family of geodesics
provides a natural way of getting geodesics gk+1, gk+2 and
partitions {xk+1,i}

nk+1

i=0 , {xk+2,i}
nk+2

i=0

Mikhail Ostrovskii, St. John’s University Metric characterization of the Radon-Nikodým property



Recall the definition of a thick family

I A family T of uv -geodesics is called thick if there is α > 0
such that for every g ∈ T and for every finite collection of
points r1, . . . , rn in the image of g , there is another
uv -geodesic g̃ satisfying the conditions:

I (1) The image of g̃ also contains r1, . . . , rn.
I (2) Possibly there are some more common points of g and g̃ .
I (3) We can find a sequence

0 < s1 < q1 < s2 < q2 < · · · < sm < qm < sm+1 < dM(u, v),
such that g(qi ) = g̃(qi ) (i = 1, . . . ,m) are common points
containing r1, . . . , rn, and the images g(si ) and g̃(si ) are such
that the sum of deviations over them is nontrivially large in the
sense that

∑m+1
i=1 dM(g(si ), g̃(si )) ≥ α.

I Furthermore, any geodesic obtained by combining finitely
many pieces of g and g̃ is in T .
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Construction

I We use the definition of a thick family of geodesics for gk and
{ri} = {gk(xk,i )}nki=0 and get a geodesic g̃ and a collection
0 < s1 < q1 < s2 < q2 < · · · < sm < qm < sm+1 < 1 such
that gk(qi ) = g̃(qi ) (i = 1, . . . ,m) are common points
containing {gk(xk,i )}nki=0, and the images gk(si ) and g̃(si ) are
such that the sum of deviations over them is nontrivially large
in the sense that

∑m+1
i=1 dM(gk(si ), g̃(si )) ≥ α.

I We let gk+1 = gk and let {xk+1,i}
nk+1

i=0 = {0, q1, . . . , qm, 1}
and {xk+2,i}

nk+2

i=0 = {0, s1, q1, s2, . . . , qm, sm+1, 1}
I The geodesic gk+2 will be picked to be the same as gk on

some of the intervals [qi , qi+1), and to be equal to g̃ on the
remaining intervals [qi , qi+1). The choice will be made
according to our goal: to make ||Mk+2 −Mk+1||L1 nontrivially
large. Observe that according to the definition the obtained
geodesic will also be in the thick family, and so we can
continue the induction.
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About the choice of geodesic on [qi , qi+1)

I The function Mk+1 is constant on this interval. The function
Mk+2 (usually) has two values: one on the interval [qi , si+1),
and one on [si+1, qi+1)

I Important observation is that by choosing either gk or g̃ , the
difference between Mk+1 and Mk+2 restricted to the interval
[qi , qi+1] can be made comparable with the deviation
dM(gk(si ), g̃(si )).

I Therefore, making the corresponding choices for all intervals
[qi , qi+1], we get that ||Mk+2 −Mk+1|| is comparable with∑m+1

i=1 dM(gk(si ), g̃(si )) ≥ α, and so does not depend on k .

I This leads to a construction of a bounded (in L∞) divergent
(in L1) martingale. Q. E. D.
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