Low distortion embeddings of uniformly discrete spaces

Tony Procházka
Université de Franche-Comté

Warwick, June 2015

Definition $((M, d)$ metric, X Banach, $D \geq 1)$

- $M \underset{D}{\hookrightarrow} X$ means $\exists f: M \rightarrow X$ such that

$$
d(x, y) \leq\|f(x)-f(y)\| \leq \operatorname{Dd}(x, y)
$$

Definition $((M, d)$ metric, X Banach, $D \geq 1)$

- $M \underset{D}{\hookrightarrow} X$ means $\exists f: M \rightarrow X$ such that

$$
d(x, y) \leq\|f(x)-f(y)\| \leq D d(x, y)
$$

- if moreover M is Banach and f is linear, write $M \subseteq X$.

Definition $((M, d)$ metric, X Banach, $D \geq 1)$

- $M \underset{D}{\hookrightarrow} X$ means $\exists f: M \rightarrow X$ such that

$$
d(x, y) \leq\|f(x)-f(y)\| \leq \operatorname{Dd}(x, y)
$$

- if moreover M is Banach and f is linear, write $M \subseteq \frac{\subseteq}{D} X$.

Theorem (P., Sánchez-González, 2014)
There exists a countable metric graph M such that $M \underset{D}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$ whenever $D<2$.

Definition $((M, d)$ metric, X Banach, $D \geq 1)$

- $M \underset{D}{\hookrightarrow} X$ means $\exists f: M \rightarrow X$ such that

$$
d(x, y) \leq\|f(x)-f(y)\| \leq \operatorname{Dd}(x, y)
$$

- if moreover M is Banach and f is linear, write $M \subseteq \frac{\subseteq}{D} X$.

Theorem (P., Sánchez-González, 2014)
There exists a countable metric graph M such that $M \underset{D}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$ whenever $D<2$.

The constant 2 is optimal as every separable metric space $\underset{2}{\hookrightarrow} c_{0}$ (Kalton-Lancien).

Theorem (P., Sánchez-González, 2014)
There exists a countable metric graph M such that $M \underset{D}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$ whenever $D<2$.

Theorem (P., Sánchez-González, 2014)
There exists a countable metric graph M such that $M \underset{D}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$ whenever $D<2$.

Other non-linear sufficient conditions for $\ell_{1} \subseteq X$

- $\ell_{1} \hookrightarrow X$ and X has the RNP (Aronszajn, Christensen, Mankiewicz)

Theorem (P., Sánchez-González, 2014)
There exists a countable metric graph M such that $M \underset{D}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$ whenever $D<2$.

Other non-linear sufficient conditions for $\ell_{1} \subseteq X$

- $\ell_{1} \hookrightarrow X$ and X has the RNP (Aronszajn, Christensen, Mankiewicz)
- $\ell_{1} \hookrightarrow X$ and X is a dual (Heinrich, Mankiewicz)

Theorem (P., Sánchez-González, 2014)
There exists a countable metric graph M such that $M \underset{D}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$ whenever $D<2$.

Other non-linear sufficient conditions for $\ell_{1} \subseteq X$

- $\ell_{1} \hookrightarrow X$ and X has the RNP (Aronszajn, Christensen, Mankiewicz)
- $\ell_{1} \hookrightarrow X$ and X is a dual (Heinrich, Mankiewicz)
- $f: \ell_{1} \hookrightarrow X$ and f surjective

Theorem (P., Sánchez-González, 2014)
There exists a countable metric graph M such that $M \underset{D}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$ whenever $D<2$.

Other non-linear sufficient conditions for $\ell_{1} \subseteq X$

- $\ell_{1} \hookrightarrow X$ and X has the RNP (Aronszajn, Christensen, Mankiewicz)
- $\ell_{1} \hookrightarrow X$ and X is a dual (Heinrich, Mankiewicz)
- $f: \ell_{1} \hookrightarrow X$ and f surjective
- $\ell_{1} \underset{1}{\hookrightarrow} X$ (Godefroy, Kalton)

It is not known

- whether $\ell_{1} \underset{D<2}{\longrightarrow} X$ implies $\ell_{1} \subseteq X$.

It is not known

- whether $\ell_{1} \underset{D<2}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$.
- whether $\forall Y$ separable Banach $\exists C>1$ such that $Y \underset{D}{\hookrightarrow} X$ implies $Y \subseteq X$ whenever $D<C$.

It is not known

- whether $\ell_{1} \underset{D<2}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$.
- whether $\forall Y$ separable Banach $\exists C>1$ such that $Y \underset{D}{\hookrightarrow} X$ implies $Y \subseteq X$ whenever $D<C$.

Our space M does not answer any of the above questions because

- $M \underset{D}{\hookrightarrow} \ell_{1} \Longrightarrow D \geq 2$.

It is not known

- whether $\ell_{1} \underset{D<2}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$.
- whether $\forall Y$ separable Banach $\exists C>1$ such that $Y \underset{D}{\hookrightarrow} X$ implies $Y \subseteq X$ whenever $D<C$.

Our space M does not answer any of the above questions because

- $M \underset{D}{\hookrightarrow} \ell_{1} \Longrightarrow D \geq 2$.
- $M \underset{1}{\hookrightarrow} \mathcal{F}(M) \simeq \ell_{1}$.

It is not known

- whether $\ell_{1} \underset{D<2}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$.
- whether $\forall Y$ separable Banach $\exists C>1$ such that $Y \underset{D}{\hookrightarrow} X$ implies $Y \subseteq X$ whenever $D<C$.

Our space M does not answer any of the above questions because

- $M \underset{D}{\hookrightarrow} \ell_{1} \Longrightarrow D \geq 2$.
- $M \underset{1}{\hookrightarrow} \mathcal{F}(M) \simeq \ell_{1}$.

Remark

- The Hamming cube $C_{1}^{\infty}=\{0,1\}^{<\omega}$ equipped with the distance $d(x, y)=\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|$ does not help either as $C_{1}^{\infty} \underset{1+\varepsilon}{\hookrightarrow} C\left(\left[0, \omega^{\omega}\right]\right)$ (Baudier, Freeman, Schlumprecht, Zsak, 2014).

It is not known

- whether $\ell_{1} \underset{D<2}{\hookrightarrow} X$ implies $\ell_{1} \subseteq X$.
- whether $\forall Y$ separable Banach $\exists C>1$ such that $Y \underset{D}{\hookrightarrow} X$ implies $Y \subseteq X$ whenever $D<C$.

Our space M does not answer any of the above questions because

- $M \underset{D}{\hookrightarrow} \ell_{1} \Longrightarrow D \geq 2$.
- $M \underset{1}{\hookrightarrow} \mathcal{F}(M) \simeq \ell_{1}$.

Remark

- The Hamming cube $C_{1}^{\infty}=\{0,1\}^{<\omega}$ equipped with the distance $d(x, y)=\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|$ does not help either as $C_{1}^{\infty} \underset{1+\varepsilon}{\hookrightarrow} C\left(\left[0, \omega^{\omega}\right]\right)$ (Baudier, Freeman, Schlumprecht, Zsak, 2014).
- On the other hand $C_{1}^{\infty} \underset{1}{\hookrightarrow} X \Longrightarrow \ell_{1} \frac{\subseteq}{1} X$.

Consequences of the Theorem

- Given a separable metric space N, we know that $N \underset{2}{\hookrightarrow} c_{0}$ but does there exist an equivalent norm $|\cdot|$ on c_{0} such that $N \underset{D}{\hookrightarrow}\left(c_{0},|\cdot|\right)$ for some $D<2$?

Consequences of the Theorem

- Given a separable metric space N, we know that $N \underset{2}{\hookrightarrow} c_{0}$ but does there exist an equivalent norm $|\cdot|$ on c_{0} such that $N \underset{D}{\hookrightarrow}\left(c_{0},|\cdot|\right)$ for some $D<2$?

No!

Consequences of the Theorem

- Given a separable metric space N, we know that $N \underset{2}{\hookrightarrow} c_{0}$ but does there exist an equivalent norm $|\cdot|$ on c_{0} such that $N \underset{D}{\longrightarrow}\left(c_{0},|\cdot|\right)$ for some $D<2$?

No!

- Let K be a Hausdorff compact. Then $C(K)$ is universal (for separable metric spaces and Lipschitz embeddings with distortion <2) iff $C(K)$ is linearly isometrically universal.

Consequences of the Theorem

- Given a separable metric space N, we know that $N \underset{2}{\hookrightarrow} c_{0}$ but does there exist an equivalent norm $|\cdot|$ on c_{0} such that $N \underset{D}{\hookrightarrow}\left(c_{0},|\cdot|\right)$ for some $D<2$?

No!

- Let K be a Hausdorff compact. Then $C(K)$ is universal (for separable metric spaces and Lipschitz embeddings with distortion <2) iff $C(K)$ is linearly isometrically universal.

Observation
Let $M=\uparrow \bigcup M_{k}$ for some finite sets $\left(M_{k}\right)$. Then $\forall D \in[1,2)$,
$\varepsilon>0$ and $n \in M \exists k \in \mathbb{N}$ such that $M_{k} \underset{D}{\hookrightarrow} X$ implies $\ell_{1}^{n} \underset{1+\varepsilon}{\subseteq} X$.

Consequences of the Theorem

- Given a separable metric space N, we know that $N \underset{2}{\hookrightarrow} c_{0}$ but does there exist an equivalent norm $|\cdot|$ on c_{0} such that $N \underset{D}{\hookrightarrow}\left(c_{0},|\cdot|\right)$ for some $D<2$?

No!

- Let K be a Hausdorff compact. Then $C(K)$ is universal (for separable metric spaces and Lipschitz embeddings with distortion <2) iff $C(K)$ is linearly isometrically universal.

Observation
Let $M=\uparrow \bigcup M_{k}$ for some finite sets $\left(M_{k}\right)$. Then $\forall D \in[1,2)$,
$\varepsilon>0$ and $n \in M \exists k \in \mathbb{N}$ such that $M_{k} \underset{D}{\hookrightarrow} X$ implies $\ell_{1}^{n} \underset{1+\varepsilon}{\subseteq} X$.
We are going to give a direct proof with estimates of the constants for a particular choice of $\left(M_{n}\right)$.

The spaces M_{n}

- $M_{n}=\{\mathbf{0}\} \cup \llbracket 1, n \rrbracket \cup F_{n}$ where $F_{n}=2^{\llbracket 1, n \rrbracket} \backslash\{\emptyset\}$

The spaces M_{n}

- $M_{n}=\{\mathbf{0}\} \cup \llbracket 1, n \rrbracket \cup F_{n}$ where $F_{n}=2^{\llbracket 1, n \rrbracket} \backslash\{\emptyset\}$

A pair $\{a, b\}$ is an edge $\Leftrightarrow\left\{\begin{array}{l}a=\mathbf{0} \text { and } b \in \llbracket 1, n \rrbracket \\ \text { or } \\ a \in \llbracket 1, n \rrbracket, b \in F_{n} \text { and } a \in b .\end{array}\right.$

The spaces M_{n}

- $M_{n}=\{\mathbf{0}\} \cup \llbracket 1, n \rrbracket \cup F_{n}$ where $F_{n}=2^{\llbracket 1, n \rrbracket} \backslash\{\emptyset\}$

A pair $\{a, b\}$ is an edge $\Leftrightarrow\left\{\begin{array}{l}a=\mathbf{0} \text { and } b \in \llbracket 1, n \rrbracket \\ \text { or } \\ a \in \llbracket 1, n \rrbracket, b \in F_{n} \text { and } a \in b .\end{array}\right.$

- Finally, we equip M_{n} with the shortest path metric.

Theorem (A)
Let $D \in\left[1, \frac{4}{3}\right)$ and $n \in \mathbb{N}$. Then $M_{n} \underset{D}{\hookrightarrow} X$ implies that $\ell_{1}^{n} \underset{D^{\prime}}{\subset} X$ where $D^{\prime}=\frac{D}{4-3 D}$.

Theorem (A)
Let $D \in\left[1, \frac{4}{3}\right)$ and $n \in \mathbb{N}$. Then $M_{n} \stackrel{\hookrightarrow}{D} X$ implies that $\ell_{1}^{n} \underset{D^{\prime}}{\subseteq} X$ where $D^{\prime}=\frac{D}{4-3 D}$.

- Reduce D^{\prime} at the cost of augmenting the n of M_{n} using

Finite version of James's ℓ_{1}-distortion theorem If $\ell_{1}^{m^{2}} \subseteq X$, then $\ell_{1}^{m} \subseteq x$.

Theorem (A)
Let $D \in\left[1, \frac{4}{3}\right)$ and $n \in \mathbb{N}$. Then $M_{n} \underset{D}{\hookrightarrow} X$ implies that $\ell_{1}^{n} \underset{\overline{D^{\prime}}}{\subseteq} X$ where $D^{\prime}=\frac{D}{4-3 D}$.

- Reduce D^{\prime} at the cost of augmenting the n of M_{n} using

Finite version of James's ℓ_{1}-distortion theorem If $\ell_{1}^{m^{2}} \subseteq X$, then $\ell_{1}^{m} \subseteq x$.

We get
If $D<\frac{4}{3}, \varepsilon>0$ and $w \geq-\log _{2}\left(\frac{\log (1+\varepsilon)}{\log \left(\frac{D}{4-3 D}\right)}\right)$,
then $M_{n^{2}} \underset{D}{\hookrightarrow} X$ implies that $\ell_{1}^{n} \underset{1+\varepsilon}{\subseteq} X$.

Theorem (B)

Let $D \in[1,2) . \forall \alpha \in(0,1) \exists \eta=\eta(\alpha, D) \in(0,1)$ such that $M_{k} \underset{D}{\hookrightarrow} X$ implies that $\ell_{1}^{\eta k} \underset{D^{\prime}}{\subseteq} X$ (with $D^{\prime}=\frac{2 D}{2-D}$) whenever $k>\frac{\log _{2}\left(\frac{2 D}{2-D}\right)+1}{1-\alpha}$.

Theorem (B)

Let $D \in[1,2) . \forall \alpha \in(0,1) \exists \eta=\eta(\alpha, D) \in(0,1)$ such that $M_{k} \underset{D}{\hookrightarrow} X$ implies that $\ell_{1}^{\eta k} \underset{D^{\prime}}{\subseteq} X$ (with $D^{\prime}=\frac{2 D}{2-D}$) whenever
$k>\frac{\log _{2}\left(\frac{2 D}{2-D}\right)+1}{1-\alpha}$. Any η such that $2^{\alpha} \geq\left(\frac{e}{\eta}\right)^{\eta}$ will do.

Theorem (B)

Let $D \in[1,2) . \forall \alpha \in(0,1) \exists \eta=\eta(\alpha, D) \in(0,1)$ such that $M_{k} \underset{D}{\hookrightarrow} X$ implies that $\ell_{1}^{\eta k} \underset{D^{\prime}}{\subseteq} X$ (with $D^{\prime}=\frac{2 D}{2-D}$) whenever
$k>\frac{\log _{2}\left(\frac{2 D}{2-D}\right)+1}{1-\alpha}$. Any η such that $2^{\alpha} \geq\left(\frac{e}{\eta}\right)^{\eta}$ will do.
Proof.

- Assume $f: M_{k} \underset{D}{\hookrightarrow} X, f(\mathbf{0})=0$.

Theorem (B)

Let $D \in[1,2) . \forall \alpha \in(0,1) \exists \eta=\eta(\alpha, D) \in(0,1)$ such that $M_{k} \underset{D}{\hookrightarrow} X$ implies that $\ell_{1}^{\eta k} \underset{D^{\prime}}{\subseteq} X$ (with $D^{\prime}=\frac{2 D}{2-D}$) whenever
$k>\frac{\log _{2}\left(\frac{2 D}{2-D}\right)+1}{1-\alpha}$. Any η such that $2^{\alpha} \geq\left(\frac{e}{\eta}\right)^{\eta}$ will do.
Proof.

- Assume $f: M_{k} \underset{D}{\hookrightarrow} X, f(\mathbf{0})=0$.
- For every $A \in F_{k} \Longrightarrow \exists x_{A}^{*} \in B_{X^{*}}$ s.t.

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq 4-2 D+\left\langle x_{A}^{*}, f(b)\right\rangle \forall a \in A, b \in \llbracket 1, k \rrbracket \backslash A .
$$

Theorem (B)

Let $D \in[1,2) . \forall \alpha \in(0,1) \exists \eta=\eta(\alpha, D) \in(0,1)$ such that $M_{k} \underset{D}{\hookrightarrow} X$ implies that $\ell_{1}^{\eta k} \underset{D^{\prime}}{\subseteq} X$ (with $D^{\prime}=\frac{2 D}{2-D}$) whenever
$k>\frac{\log _{2}\left(\frac{2 D}{2-D}\right)+1}{1-\alpha}$. Any η such that $2^{\alpha} \geq\left(\frac{e}{\eta}\right)^{\eta}$ will do.
Proof.

- Assume $f: M_{k} \underset{D}{\hookrightarrow} X, f(\mathbf{0})=0$.
- For every $A \in F_{k} \Longrightarrow \exists x_{A}^{*} \in B_{X^{*}}$ s.t.

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq 4-2 D+\left\langle x_{A}^{*}, f(b)\right\rangle \forall a \in A, b \in \llbracket 1, k \rrbracket \backslash A .
$$

- Lemma. Let Γ be a set, $\left(f_{i}\right)_{i=1}^{n} \subset K B_{\ell_{\infty}(\Gamma)}$. If $\exists r \in \mathbb{R}, \delta>0$ s.t. $\forall A \subset \llbracket 1, n \rrbracket, \exists \gamma \in \Gamma$

$$
f_{i}(\gamma) \geq r+\delta>r \geq f_{j}(\gamma), \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A,
$$

then $\left(f_{i}\right)$ is $\frac{2 K}{\delta}$-equivalent to the u.v.b. of ℓ_{1}^{n}.

Theorem (B)

Let $D \in[1,2) . \forall \alpha \in(0,1) \exists \eta=\eta(\alpha, D) \in(0,1)$ such that $M_{k} \underset{D}{\hookrightarrow} X$ implies that $\ell_{1}^{\eta k} \underset{D^{\prime}}{\subseteq} X$ (with $D^{\prime}=\frac{2 D}{2-D}$) whenever
$k>\frac{\log _{2}\left(\frac{2 D}{2-D}\right)+1}{1-\alpha}$. Any η such that $2^{\alpha} \geq\left(\frac{e}{\eta}\right)^{\eta}$ will do.
Proof.

- Assume $f: M_{k} \underset{D}{\hookrightarrow} X, f(\mathbf{0})=0$.
- For every $A \in F_{k} \Longrightarrow \exists x_{A}^{*} \in B_{X^{*}}$ s.t.

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq 4-2 D+\left\langle x_{A}^{*}, f(b)\right\rangle \forall a \in A, b \in \llbracket 1, k \rrbracket \backslash A .
$$

- Lemma. Let Γ be a set, $\left(f_{i}\right)_{i=1}^{n} \subset K B_{\ell_{\infty}(\Gamma)}$. If $\exists r \in \mathbb{R}, \delta>0$ s.t. $\forall A \subset \llbracket 1, n \rrbracket, \exists \gamma \in \Gamma$

$$
f_{i}(\gamma) \geq r+\delta>r \geq f_{j}(\gamma), \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A,
$$

then $\left(f_{i}\right)$ is $\frac{2 K}{\delta}$-equivalent to the u.v.b. of ℓ_{1}^{n}.

- Find r and $\delta ?$!
- $\forall A \in F_{k} \exists j_{A} \in \llbracket 1, c \rrbracket$ such that

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq r_{j_{A}}+(2-D)>r_{j_{A}} \geq\left\langle x_{A}^{*}, f(b)\right\rangle, \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A .
$$

- $\forall A \in F_{k} \exists j_{A} \in \llbracket 1, c \rrbracket$ such that

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq r_{j_{A}}+(2-D)>r_{j_{A}} \geq\left\langle x_{A}^{*}, f(b)\right\rangle, \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A .
$$

- $\exists j \in \llbracket 1, c \rrbracket$ such that $|\mathcal{S}| \geq \frac{2^{k}-1}{c}$ for $\mathcal{S}=\left\{A \in F_{k}: j_{A}=j\right\}$.
- $\forall A \in F_{k} \exists j_{A} \in \llbracket 1, c \rrbracket$ such that

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq r_{j_{A}}+(2-D)>r_{j_{A}} \geq\left\langle x_{A}^{*}, f(b)\right\rangle, \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A .
$$

- $\exists j \in \llbracket 1, c \rrbracket$ such that $|\mathcal{S}| \geq \frac{2^{k}-1}{c}$ for $\mathcal{S}=\left\{A \in F_{k}: j_{A}=j\right\}$.
- Lemma (Sauer, Shelah, and Vapnik and Červonenkis) Let $\mathcal{S} \subset 2^{\llbracket 1, k \rrbracket}$ such that $|\mathcal{S}|>\sum_{i=0}^{m-1}\binom{k}{i}$ for some $m \leq k$. Then there is $H \in\binom{\llbracket 1, k \rrbracket}{m}$ such that $\{A \cap H: A \in \mathcal{S}\}=2^{H}$.
- $\forall A \in F_{k} \exists j_{A} \in \llbracket 1, c \rrbracket$ such that

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq r_{j_{A}}+(2-D)>r_{j_{A}} \geq\left\langle x_{A}^{*}, f(b)\right\rangle, \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A .
$$

- $\exists j \in \llbracket 1, c \rrbracket$ such that $|\mathcal{S}| \geq \frac{2^{k}-1}{c}$ for $\mathcal{S}=\left\{A \in F_{k}: j_{A}=j\right\}$.
- Lemma (Sauer, Shelah, and Vapnik and Červonenkis) Let $\mathcal{S} \subset 2^{\llbracket 1, k \rrbracket}$ such that $|\mathcal{S}|>\sum_{i=0}^{m-1}\binom{k}{i}$ for some $m \leq k$. Then there is $H \in\binom{\llbracket 1, k \rrbracket}{m}$ such that $\{A \cap H: A \in \mathcal{S}\}=2^{H}$.

$$
|\mathcal{S}| \geq \frac{2^{k}-1}{c}
$$

- $\forall A \in F_{k} \exists j_{A} \in \llbracket 1, c \rrbracket$ such that

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq r_{j_{A}}+(2-D)>r_{j_{A}} \geq\left\langle x_{A}^{*}, f(b)\right\rangle, \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A .
$$

- $\exists j \in \llbracket 1, c \rrbracket$ such that $|\mathcal{S}| \geq \frac{2^{k}-1}{c}$ for $\mathcal{S}=\left\{A \in F_{k}: j_{A}=j\right\}$.
- Lemma (Sauer, Shelah, and Vapnik and Červonenkis) Let $\mathcal{S} \subset 2^{\llbracket 1, k \rrbracket}$ such that $|\mathcal{S}|>\sum_{i=0}^{m-1}\binom{k}{i}$ for some $m \leq k$. Then there is $H \in\binom{\llbracket 1, k \rrbracket}{m}$ such that $\{A \cap H: A \in \mathcal{S}\}=2^{H}$.

$$
|\mathcal{S}| \geq \frac{2^{k}-1}{c}>2^{\alpha k}
$$

- $\forall A \in F_{k} \exists j_{A} \in \llbracket 1, c \rrbracket$ such that

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq r_{j_{A}}+(2-D)>r_{j_{A}} \geq\left\langle x_{A}^{*}, f(b)\right\rangle, \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A .
$$

- $\exists j \in \llbracket 1, c \rrbracket$ such that $|\mathcal{S}| \geq \frac{2^{k}-1}{c}$ for $\mathcal{S}=\left\{A \in F_{k}: j_{A}=j\right\}$.
- Lemma (Sauer, Shelah, and Vapnik and Červonenkis) Let $\mathcal{S} \subset 2^{\llbracket 1, k \rrbracket}$ such that $|\mathcal{S}|>\sum_{i=0}^{m-1}\binom{k}{i}$ for some $m \leq k$. Then there is $H \in\binom{\llbracket 1, k \rrbracket}{m}$ such that $\{A \cap H: A \in \mathcal{S}\}=2^{H}$.

$$
|\mathcal{S}| \geq \frac{2^{k}-1}{c}>2^{\alpha k} \geq\left(\frac{e}{\eta}\right)^{\eta k}
$$

- $\forall A \in F_{k} \exists j_{A} \in \llbracket 1, c \rrbracket$ such that

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq r_{j_{A}}+(2-D)>r_{j_{A}} \geq\left\langle x_{A}^{*}, f(b)\right\rangle, \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A .
$$

- $\exists j \in \llbracket 1, c \rrbracket$ such that $|\mathcal{S}| \geq \frac{2^{k}-1}{c}$ for $\mathcal{S}=\left\{A \in F_{k}: j_{A}=j\right\}$.
- Lemma (Sauer, Shelah, and Vapnik and Červonenkis) Let $\mathcal{S} \subset 2^{\llbracket 1, k \rrbracket}$ such that $|\mathcal{S}|>\sum_{i=0}^{m-1}\binom{k}{i}$ for some $m \leq k$. Then there is $H \in\binom{\llbracket 1, k \rrbracket}{m}$ such that $\{A \cap H: A \in \mathcal{S}\}=2^{H}$.

$$
|\mathcal{S}| \geq \frac{2^{k}-1}{c}>2^{\alpha k} \geq\left(\frac{e k}{\eta k}\right)^{\eta k}
$$

- $\forall A \in F_{k} \exists j_{A} \in \llbracket 1, c \rrbracket$ such that

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq r_{j_{A}}+(2-D)>r_{j_{A}} \geq\left\langle x_{A}^{*}, f(b)\right\rangle, \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A .
$$

- $\exists j \in \llbracket 1, c \rrbracket$ such that $|\mathcal{S}| \geq \frac{2^{k}-1}{c}$ for $\mathcal{S}=\left\{A \in F_{k}: j_{A}=j\right\}$.
- Lemma (Sauer, Shelah, and Vapnik and Červonenkis) Let $\mathcal{S} \subset 2^{\llbracket 1, k \rrbracket}$ such that $|\mathcal{S}|>\sum_{i=0}^{m-1}\binom{k}{i}$ for some $m \leq k$. Then there is $H \in\binom{\llbracket 1, k \rrbracket}{m}$ such that $\{A \cap H: A \in \mathcal{S}\}=2^{H}$.

$$
|\mathcal{S}| \geq \frac{2^{k}-1}{c}>2^{\alpha k} \geq\left(\frac{e k}{\eta k}\right)^{\eta k}>\sum_{i=0}^{\lceil\eta k\rceil-1}\binom{k}{i}
$$

- $\forall A \in F_{k} \exists j_{A} \in \llbracket 1, c \rrbracket$ such that

$$
\left\langle x_{A}^{*}, f(a)\right\rangle \geq r_{j_{A}}+(2-D)>r_{j_{A}} \geq\left\langle x_{A}^{*}, f(b)\right\rangle, \quad \forall i \in A, j \in \llbracket 1, n \rrbracket \backslash A .
$$

- $\exists j \in \llbracket 1, c \rrbracket$ such that $|\mathcal{S}| \geq \frac{2^{k}-1}{c}$ for $\mathcal{S}=\left\{A \in F_{k}: j_{A}=j\right\}$.
- Lemma (Sauer, Shelah, and Vapnik and Červonenkis) Let $\mathcal{S} \subset 2^{\llbracket 1, k \rrbracket}$ such that $|\mathcal{S}|>\sum_{i=0}^{m-1}\binom{k}{i}$ for some $m \leq k$. Then there is $H \in\binom{\llbracket 1, k \rrbracket}{m}$ such that $\{A \cap H: A \in \mathcal{S}\}=2^{H}$.

$$
|\mathcal{S}| \geq \frac{2^{k}-1}{c}>2^{\alpha k} \geq\left(\frac{e k}{\eta k}\right)^{\eta k}>\sum_{i=0}^{\lceil\eta k\rceil-1}\binom{k}{i}
$$

- $\Longrightarrow \exists H$ of cardinality $\lceil\eta k\rceil$ such that $(f(i))_{i \in H}$ is $\frac{2 D}{2-D}$-equivalent to the u.v.b. of $\ell_{1}^{\lceil\eta k\rceil}$ Q.E.D.

Final remarks

- $\forall D \geq 1, \varepsilon>0, Y, \operatorname{dim} Y<\infty, \exists F \subset Y$ finite s.t. $F \underset{D}{\hookrightarrow} X \Longrightarrow Y \underset{D+\varepsilon}{\subseteq} X$.

Final remarks

- $\forall D \geq 1, \varepsilon>0, Y, \operatorname{dim} Y<\infty, \exists F \subset Y$ finite s.t. $F \underset{D}{\hookrightarrow} X \Longrightarrow Y \underset{D+\varepsilon}{\subseteq} X$.
- Which F????

Final remarks

- $\forall D \geq 1, \varepsilon>0, Y, \operatorname{dim} Y<\infty, \exists F \subset Y$ finite s.t. $F \underset{D}{\hookrightarrow} X \Longrightarrow Y \underset{D+\varepsilon}{\subseteq} X$.
- Which F????
- Denote $C_{p}^{n}=\{-1,1\}^{n}$ equipped with the metric

$$
d\left(\varepsilon, \varepsilon^{\prime}\right)=\left(\sum\left|\varepsilon_{i}-\varepsilon_{i}^{\prime}\right|^{p}\right)^{\frac{1}{p}} .
$$

Final remarks

- $\forall D \geq 1, \varepsilon>0, Y, \operatorname{dim} Y<\infty, \exists F \subset Y$ finite s.t. $F \underset{D}{\hookrightarrow} X \Longrightarrow Y \underset{D+\varepsilon}{\subseteq} X$.
- Which F????
- Denote $C_{p}^{n}=\{-1,1\}^{n}$ equipped with the metric $d\left(\varepsilon, \varepsilon^{\prime}\right)=\left(\sum\left|\varepsilon_{i}-\varepsilon_{i}^{\prime}\right|^{p}\right)^{\frac{1}{p}}$.
- Let $1 \leq p \leq 2$. Then $\forall n \in \mathbb{N}, \varepsilon>0, D \geq 1 \exists k \in \mathbb{N}$ such that $C_{p}^{k} \underset{D}{\hookrightarrow} X \Longrightarrow \ell_{p}^{n} \underset{1+\varepsilon}{\subseteq} X$.

Final remarks

- $\forall D \geq 1, \varepsilon>0, Y, \operatorname{dim} Y<\infty, \exists F \subset Y$ finite s.t. $F \underset{D}{\hookrightarrow} X \Longrightarrow Y \underset{D+\varepsilon}{\subseteq} X$.
- Which F????
- Denote $C_{p}^{n}=\{-1,1\}^{n}$ equipped with the metric $d\left(\varepsilon, \varepsilon^{\prime}\right)=\left(\sum\left|\varepsilon_{i}-\varepsilon_{i}^{\prime}\right|^{p}\right)^{\frac{1}{p}}$.
- Let $1 \leq p \leq 2$. Then $\forall n \in \mathbb{N}, \varepsilon>0, D \geq 1 \exists k \in \mathbb{N}$ such that $C_{p}^{k} \underset{D}{\hookrightarrow} X \Longrightarrow \ell_{p}^{n} \underset{1+\varepsilon}{\subseteq} X$.
- How does k depend on (n, D, ε) ?

Final remarks

- $\forall D \geq 1, \varepsilon>0, Y, \operatorname{dim} Y<\infty, \exists F \subset Y$ finite s.t. $F \underset{D}{\hookrightarrow} X \Longrightarrow Y \underset{D+\varepsilon}{\subseteq} X$.
- Which F????
- Denote $C_{p}^{n}=\{-1,1\}^{n}$ equipped with the metric $d\left(\varepsilon, \varepsilon^{\prime}\right)=\left(\sum\left|\varepsilon_{i}-\varepsilon_{i}^{\prime}\right|^{p}\right)^{\frac{1}{p}}$.
- Let $1 \leq p \leq 2$. Then $\forall n \in \mathbb{N}, \varepsilon>0, D \geq 1 \exists k \in \mathbb{N}$ such that $C_{p}^{k} \underset{D}{\hookrightarrow} X \Longrightarrow \ell_{p}^{n} \underset{1+\varepsilon}{\subseteq} X$.
- How does k depend on (n, D, ε) ?

Thank you for your attention!

