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Theorem (P., Sanchez-Gonzalez, 2014)

There exists a countable metric graph M such that M‘B)X
implies (1 C X whenever D < 2.

Other non-linear sufficient conditions for ¢; C X

» (1 — X and X has the RNP (Aronszajn, Christensen,
Mankiewicz)

» (1= X and X is a dual (Heinrich, Mankiewicz)
> f:/¢;— X and f surjective

> / cT)X (Godefroy, Kalton)
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» The Hamming cube C§° = {0,1} equipped with the
distance d(z,y) = "2, |x; — yi| does not help either as
Cee° h C([0,w*]) (Baudier, Freeman, Schlumprecht, Zsak,
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2014).
» On the other hand C}° ?X = /1 CX.
1
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Consequences of the Theorem

» Given a separable metric space N, we know that NV ? co

but does there exist an equivalent norm |-| on ¢y such that
N?(Co, |-|) for some D < 27

No!
» Let K be a Hausdorff compact. Then C(K) is universal

(for separable metric spaces and Lipschitz embeddings with
distortion < 2) iff C(K) is linearly isometrically universal.

Observation

Let M =1 |J My, for some finite sets (My). Then ¥ D € [1,2),

e>0andn e M Ik € N such thath?X implies {7 C X.
1+e

We are going to give a direct proof with estimates of the
constants for a particular choice of (My,).
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The spaces M,

> Mn = {0} U [[1777’]] U Fn where Fn = 2[[1,71]] \ {@}

>

a=0and b€ [1,n]
A pair {a,b} is an edge < or

a € [1,n],b € F, and a € b.

» Finally, we equip M,, with the shortest path metric.
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Theorem (A)
Let D € [1,%) and n € N. Then M, = X implies that ({ C X
DI

/ _ D
where D' = =5

» Reduce D’ at the cost of augmenting the n of M, using

Finite version of James’s ¢;-distortion theorem

If o C X, then aee.

We get

If D < %, e>0 and w > —logﬂ%)’
4—3D
then M, »w — X implies that {7 C X.
= 1+
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Theorem (B)

Let D € [1,2). Va € (0, l)EIn—n(a D) e (O 1) such that

My, <—>X implies that E" C X (with D' = D whenever
k > 10g2(12__£)+
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Proof.
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» Find r and 47!



» VYA€ F, 3ja € [1,c] such that

(%, f(a)) > T’jA+(2—D) > 71, > (%, (b)), vieajen,nna.



» VYA€ F, 3ja € [1,c] such that
(@, fla)) > rj,+(2=D) > rj, > (z%, f(b)), vicajemnha.

> 3j € [1,] such that S| > Z=L for S = {A € Fy : ja = j}-



» VYA€ F, 3ja € [1,c] such that
(@, fla)) > rj,+(2=D) > rj, > (z%, f(b)), vicajemnha.

> 3j € [1,] such that S| > Z=L for S = {A € Fy : ja = j}-

» Lemma (Sauer, Shelah, and Vapnik and Cervonenkis) Let
m—1
k
S c 2K such that |S| > Z <> for some m < k. Then
i
i=0
there is H € ([[1”’5]]) such that {ANH : Ae S} =21,



v

v

v

VA€ F,3ja€[l,c] such that
(@, fla)) > rj,+(2=D) > rj, > (z%, f(b)), vicajemnha.

3j € [1,¢] such that |S| > 2= for S = {A € Fy : ja = j}.
Lemma (Sauer, Shelah, and Vapnik and Cervonenkis) Let

m—1
k
S c 2K such that |S| > Z <> for some m < k. Then
i
i=0
there is H € ([[1”’5]]) such that {ANH : Ae S} =21,

2k _ 1

S| >



v

v

v

VA€ F,3ja€[l,c] such that
(@, fla)) > rj,+(2=D) > rj, > (z%, f(b)), vicajemnha.

35 € [1, ] such that |S| > Lc_l for S={A € F,:ja=j}
Lemma (Sauer, Shelah, and Vapnik and Cervonenkis) Let
m—1
k
S c 2K such that |S| > Z <> for some m < k. Then
i
=0
there is H € ([[1”’5]]) such that {ANH : Ae S} =21,

k

> o0k

S| >



v

v

v

VA€ F,3ja€[l,c] such that
(@, fla)) > rj,+(2=D) > rj, > (z%, f(b)), vicajemnha.

3j € [1,¢] such that |S| > 2= for S = {A € Fy : ja = j}.
Lemma (Sauer, Shelah, and Vapnik and Cervonenkis) Let

m—1
k
S c 2K such that |S| > Z <> for some m < k. Then
i
i=0
there is H € ([[1”’5]]) such that {ANH : Ae S} =21,

k_ nk
c n




v

v

v

VA€ F,3ja€[l,c] such that
(@, fla)) > rj,+(2=D) > rj, > (z%, f(b)), vicajemnha.

3j € [1,¢] such that |S| > 2= for S = {A € Fy : ja = j}.
Lemma (Sauer, Shelah, and Vapnik and Cervonenkis) Let

m—1
k
S c 2K such that |S| > Z <> for some m < k. Then
i
i=0
there is H € ([[1”’5]]) such that {ANH : Ae S} =21,

kE_ k nk
c nk




v

v

v

VA€ F,3ja€[l,c] such that
(@, fla)) > rj,+(2=D) > rj, > (z%, f(b)), vicajemnha.

3j € [1,¢] such that |S| > 2= for S = {A € Fy : ja = j}.
Lemma (Sauer, Shelah, and Vapnik and Cervonenkis) Let

m—1
k
S c 2K such that |S| > Z <> for some m < k. Then
i
i=0
there is H € ([[1”’5]]) such that {ANH : Ae S} =21,

2k _ 1 e\ T g
> 20k > (2
et (2 )

1=0




VA€ F,3ja€[l,c] such that
(@, fla)) > rj,+(2=D) > rj, > (z%, f(b)), vicajemnha.

. k_ . .
3j € [1,¢] such that |S| > 2= for S = {A € F : ja = j}.
Lemma (Sauer, Shelah, and Vapnik and Cervonenkis) Let

m—1
k
S c 2K such that |S| > Z <> for some m < k. Then
i
i=0
there is H € ([[1”’5]]) such that {ANH : Ae S} =21,

-1 e\ T g
sz 5= () 5 ()

= JH of cardinality [nk] such that (f(2))ienm is
;—D—equwalent to the u.v.b. of £; ki Q.E.D.




Final remarks

» VD >1,6>0,Y,dimY < oo, 3F CY finite s.t.

FX—=—Y C X.
D D+-e¢



Final remarks

» VD >1,6>0,Y,dimY < oo, 3F CY finite s.t.

FX—=—Y C X.
D D+-e¢

» Which F7777



Final remarks

» VD >1,6>0,Y,dimY < oo, 3F CY finite s.t.

FX—=—Y C X.
D D+-e¢

» Which F7777
» Denote C)) = {—1,1}" equipped with the metric

d(e, &) = (X |ei — §P)7.



Final remarks

» VD >1,>0,Y,dimY < oo, 3F CY finite s.t.

F<—>X:>Y Cc X.
D+-e¢

» Which F7777

» Denote C)) = {—1,1}" equipped with the metric
d(e.2) = (Slei — ).

> Let 1 <p<2. ThenVneNje>0,D>13k e Nsuch

that C’f<—>X:>€” C X.
1+5



Final remarks

» VD >1,>0,Y,dimY < oo, 3F CY finite s.t.

F<—>X:>Y Cc X.
D+-e¢

» Which F7777

» Denote C)) = {—1,1}" equipped with the metric
d(e.2) = (Slei — ).

> Let 1 <p<2. ThenVneNje>0,D>13k e Nsuch

that C’f<—>X:>€” C X.
1+5

» How does k depend on (n, D, e)?



Final remarks

» VD >1,>0,Y,dimY < oo, 3F CY finite s.t.

F<—>X:>Y Cc X.
D+-e¢

» Which F7777

» Denote C)) = {—1,1}" equipped with the metric
d(e.2) = (Slei — ).

> Let 1 <p<2. ThenVneNje>0,D>13k e Nsuch

that C’f<—>X:>€” C X.
1+5

» How does k depend on (n, D, e)?



Thank you for your attention!



