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The Calkin algebra

Let us start with some well known notion

As usual, for a Banach space X, we denote by

L(X) the space of all bounded linear operators defined on X

K(X) the spaces of all compact operators defined on X.
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Definition

Let X be an infinitely dimensional Banach space. We define the
Calkin algebra of X to be the quotient space

Cal(X) = L(X)/K(X)

It is named after J. W. Calkin,

J. W. Calkin,
Two-sided ideals and congruences in the ring of bounded
operators in Hilbert space.
Ann. of Math. 42 (1941), no. 2, 839–873.

who proved that the only non-trivial closed ideal of the bounded
linear operators on `2 is the one of the compact operators.
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Since, by a classical Gelfand-Naimark theorem, every C∗-algebra is
a C∗-subalgebra of L(H), for some Hilbert space H, it comes quite
natural the following

Question

Given a Banach algebra A, does there exist a Banach space X
such that the Calkin algebra of X is isomorphic, as a Banach
algebra, to A.

A = L(X)/K(X) (= Cal(X)).
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To start, one can think easy the case A = R .

Actually, it is not so easy.
Indeed, the answer comes out by

S. A. Argyros and R. Haydon
A hereditarily indecomposable L∞-space that solves the
scalar-plus-compact problem.
Acta Math. 206 (2011) 1-54.

Indeed, the Argyros-Hydon space XAH is such that

Cal(XAH) = L(XAH)/K(XAH) = R.
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Similarly, for every k ∈ N, one can carefully take X1, . . . ,Xk

versions of the Argyros-Haydon space to obtain

Cal((X1 ⊕ · · · ⊕ Xk)∞) = Rk.

In

M. Tarbard,
Operators on Banach Spaces of Bourgain-Delbaen Type.
arXiv:1309.7469v1 (2013).

exending the finite dimensional case, it was constructed a Banach
space XT such that

Cal(XT ) = `1.
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Since the space `1 occurs as a Calkin algebra, one may ask
whether the same is true for c0.

Or more generally, one may ask for what topological spaces K, the
algebra C(K) is isomorphic to the Calkin algebra of some Banach
space.
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Theorem (P. Motakis - D.P. - D. Zisimopoulou)

Let T be a well founded tree with a unique root such that every
non maximal node of T has infinitely countable immediate
successors.

Then there exists a L∞-space XT with the following properties:

(i) The dual of XT is isomorphic to `1.

(ii) There exists a family of norm-one projections (Is)s∈T such
that every operator defined on the space is approximated by a
sequence of operators, each one of which is a linear
combination of these projections plus a compact operator.

(iii) There exists a bounded, one-to-one and onto algebra
isomorphism Φ : Cal(XT ) −→ C(T ), where C(T ) denotes
the algebra of all continuous functions defined on the compact
topological space T .

In other words, the Calkin of XT is isomorphic, as a Banach
algebra, to C(T ).
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The main result

As consequence, we get

Theorem (P. Motakis - D.P. - D. Zisimopoulou)

For every countable compact metric space K there exists a
L∞-space X, with X∗ isomorphic to `1, so that its Calkin algebra
is isomorphic, as a Banach algebra, to C(K).
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The construction

The main ingredients

The Argyros-Hydon space XAH .

The construction is based on two fixed strictly increasing sequences
of natural numbers (mj , nj)j∈N (which satisfy certain growth
conditions) and it is a generalization of the Bourgain-Delbaen
method for parameters a = 1 and using instead of b the sequence
( 1
mj

)j∈N.

We denote by XAH(L) the space constructed using the sequence
(mj , nj)j∈L.
One has

If L ∩M is finite, then every T : XAH(L)→ XAH(M) must be
compact.
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The Argyros-Haydon sum

The Argyros-Haydon sum of a sequence of separable Banach
spaces (Xn)n was introduced in

D. Zisimopoulou
Bourgain-Delbaen L∞-sums of Banach spaces.
arXiv:1402.6564 (2014).
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The Argyros-Haydon sum

Given a sequence of separable Banach spaces (Xn)n, the space
(
∑⊕Xn)AH is defined as a subspace of((∑

⊕Xn

)
∞
⊕ `∞(Γ)

)
∞
, where Γ = ∪n∆n.

We define increasing spaces Yk =
∑

n≤k⊕Zn which are the image

of
(∑

n≤k⊕Xk

)
∞
⊕ `∞(Γk) through a bounded linear extension

operator

in :
(∑

k≤n
⊕Xk

)
∞
⊕ `∞(Γk)→

((∑
⊕Xn

)
∞
⊕ `∞(Γ)

)
∞

where Γk = ∪n≤k∆n.
The space (

∑⊕Xn)AH is defined to be the closure of ∪kYk.
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The Argyros-Haydon sum

In a similar manner, as the Argyros-Haydon space, a sequence
(mj , nj)j is used for constructing the Argyros-Haydon sum of a
sequence of separable Banach spaces (Xn)n.

Using an infinite subset of the natural numbers L and as
parameters the sequence (mj , nj)j∈L we define the space
(
∑⊕Xn)AH(L)
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The space XT

Let T be well founded tree having unique root and for every
non-maximal node t the set succ(t) will be assumed to be infinitely
countable. T is equiped with the compact Hausdorff topology
having the sets Tt = {s ∈ T : s ≥ t}, t ∈ T , as a subbase.

For infinite subset of the natural numbers L using the
Argyros-Hydon sum we define X(T ,L).
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The space XT

For T is a singleton and L ⊂ N we define X(T ,L) to be the space
XAH(L).

XAH(L)

Tree of rank zero:
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The space XT

For a tree of order one we define X(T ,L) =
(∑⊕X(Tn,Ln)

)
AH(L0)

.

X(T ,L)

XAH(L1) XAH(L2) XAH(L3)

Tree of rank 1:
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The space XT

For a tree of order two we define X(T ,L) =
(∑⊕X(Tn,Ln)

)
AH(L0)

etc...

X(T ,L)

X(Ts1 ,Ls1
) X(Ts2 ,Ls2

) X(Ts3 ,Ls3
)

X(T
s1
1
,L

s1
1
)X(T

s2
1
,L

s2
1
)X(T

s3
1
,L

s3
1
) X(T

s1
2
,L

s1
2
)X(T

s2
2
,L

s2
2
)X(T

s3
2
,L

s3
2
) X(T

s1
3
,L

s1
3
)X(T

s2
3
,L

s2
3
)X(T

s3
3
,L

s3
3
)

Tree of rank 2:
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The space XT

More precisely, by transfinite recursion on the order o(T ) of a tree
T , we define the spaces X(T ,L) for every L infinite subset of the
natural numbers.

(i) Let T be a tree with o(T ) = 0. For a choice of L′ an infinite
subset of L we define X(T ,L) = XAH(L′).

(ii) Let T be a tree with o(T ) = α > 0. Assume that for every
tree S with o(S) < α, for every infinite subset of the natural
numbers M , the space X(S,M) has been defined. Choose
{sn : n ∈ N} an enumeration of the set succ(∅T ). For a
choice of L′ an infinite subset of L and a partition of L′ into
infinite sets (Ln)∞n=0.
Then define

X(T ,L) =

( ∞∑
n=1

⊕X(Tsn ,Ln)

)
AH(L0)

.
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The space XT

The space X(T ,L) is accompanied by a set of norm-one projections
Is, s ∈ T .

X(T ,L)

X(Ts1 ,Ls1
) X(Ts2 ,Ls2

) X(Ts3 ,Ls3
)

X(T
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Is1 Is3Is2

Is11 Is21 Is31 Is12 Is22 Is32 Is13 Is23 Is33
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Theorem

Let T be a bounded linear operator defined on X(T ,L). Then there
exist a unique continuous function f : T → R an increasing
sequence (Sn)n of finite downwards closed subtrees of T with
T = ∪nSn and a sequence of compact operators (Cn)n such that
the following holds:

lim
n

∥∥∥∥∥T −∑
s∈Sn

(
f(s)− f(s−)

)
Is − Cn

∥∥∥∥∥ = 0

i.e. T is approximated by compact perturbations of linear
combinations of the Is, which are determined by the function f .
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Thus, we can define the operator

Φ(T ,L) : L(X(T ,L)) −→ C(T ),

which assigns each T to the corresponding unique function f
defined by the previous theorem.

Then Φ(T ,L) is a norm-one algebra homomorphism with dense
range and

kerΦ(T ,L) = K(X(T ,L)).
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Hence, the operator Φ(T ,L) induces an operator

Φ(T ,L) : L(X(T ,L))/K(X(T ,L)) −→ C(T )

which is a 1-1 algebra homomorphism with dense range and
‖Φ(T ,L)‖ = 1.

Actually, one can observe that

linear span of {[Is] : s ∈ T } is dense in Cal(X(T ,L)),

Φ(T ,L) is bounded below on span{[Is] : s ∈ T }.
Therefore,

Φ(T ,L) : Cal(X(T ,L)) −→ C(T )

is an algebra isomorphism.
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The Main Theorem

Let K be a countable compact metric space. Then there exists a
L∞-space X, with X∗ isomorphic to `1, and a norm-one algebra
isomorphism Φ : Cal(X) −→ C(K) that is one-to-one and onto.
Even more, for every ε > 0 the space X can be chosen so that
‖Φ‖‖Φ−1‖ ≤ 1 + ε.
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Remarks and Open Questions

Remark

In an earlier version we were able to prove the main Theorem only
in the case of countable compact spaces with finite
Cantor-Bendixson index.

To avoid this, essentially we needed

(i) to modify slightly the construction of Argyros-Haydon sum of
a sequence of separable Banach spaces defined by D.
Zisimopoulou.

(ii) to estimate, in the sum (
∑⊕Xn)AH , the following

‖
n∑

k=1

⊕Tk + λP(n, +∞)‖ ≤ (1 + ε) max{max
k≤n
‖Tk‖, |λ|},

where P(n, +∞) is a projection with respect to the Schauder
decomposition Zk of Argyros-Haydon sum (

∑⊕Xn)AH , and
Tk is a bounded linear operator on Zk.
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Recall

Theorem (N.J. Kalton (1974))

Let X be a Banach space with an unconditional finite dimensional
expansion of the identity. If Y is any infinite-dimensional Banach
space, the following are equivalent:

(i) K(X,Y ) is complemented in L(X,Y );

(iii) K(X,Y ) contains no copy of c0;

Question (M. Feder (1982))

Do Banach spaces X and Y exist such that K(X,Y ) is
uncomplemented in L(X,Y ) and such that c0 does not embed in
K(X,Y )?
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The following hold:

If o(T ) > 0 then

(i) K(X(T ,L)) is not complemented in L(X(T ,L)).

(ii) K(X(T ,L)) does not contain c0.

as far as we know, X(T ,L) is the first of such an example.
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Open Questions

1 Does there exists a Banach space whose Calkin algebra is
isomorphic, as a Banach algebra, to C(K) for an uncountable
compact space K?

2 Does there exists a Banach space whose Calkin algebra is
reflexive and infinite dimensional?
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Thank you for your attention.
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