< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Calkin algebra of Banach spaces.

Daniele Puglisi (joint work with P. Motakis and D. Zisimopoulou)

University of Catania (Italy)

Relations Between Banach Space Theory and Geometric Measure Theory 08 - 12 June 2015, Warwick

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Calkin algebra

Let us start with some well known notion As usual, for a Banach space X, we denote by $\mathcal{L}(X)$ the space of all bounded linear operators defined on X $\mathcal{K}(X)$ the spaces of all compact operators defined on X.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

Let X be an infinitely dimensional Banach space. We define the Calkin algebra of X to be the quotient space

 $Cal(X) = \mathcal{L}(X) / \mathcal{K}(X)$

Definition

Let X be an infinitely dimensional Banach space. We define the Calkin algebra of X to be the quotient space

$$Cal(X) = \mathcal{L}(X) / \mathcal{K}(X)$$

It is named after J. W. Calkin,

J. W. Calkin,

Two-sided ideals and congruences in the ring of bounded operators in Hilbert space.

Ann. of Math. 42 (1941), no. 2, 839-873.

who proved that the only non-trivial closed ideal of the bounded linear operators on ℓ_2 is the one of the compact operators.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since, by a classical Gelfand-Naimark theorem, every C*-algebra is a C*-subalgebra of $\mathcal{L}(H)$, for some Hilbert space H, it comes quite natural the following

Since, by a classical Gelfand-Naimark theorem, every C*-algebra is a C*-subalgebra of $\mathcal{L}(H)$, for some Hilbert space H, it comes quite natural the following

Question

Given a Banach algebra A, does there exist a Banach space X such that the Calkin algebra of X is isomorphic, as a Banach algebra, to A.

$$A = \mathcal{L}(X) / \mathcal{K}(X) \quad (= Cal(X)).$$

To start, one can think easy the case $A = \mathbb{R}$.

To start, one can think easy the case $A = \mathbb{R}$. Actually, it is not so easy.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

To start, one can think easy the case $A=\mathbb{R}$.

Actually, it is not so easy.

Indeed, the answer comes out by

S. A. Argyros and R. Haydon
A hereditarily indecomposable L[∞]-space that solves the scalar-plus-compact problem.
Acta Math. 206 (2011) 1-54.

To start, one can think easy the case $A=\mathbb{R}$.

Actually, it is not so easy.

Indeed, the answer comes out by

S. A. Argyros and R. Haydon

A hereditarily indecomposable \mathcal{L}^{∞} -space that solves the scalar-plus-compact problem.

Acta Math. 206 (2011) 1-54.

Indeed, the Argyros-Hydon space \mathfrak{X}_{AH} is such that

$$Cal(\mathfrak{X}_{AH}) = \mathcal{L}(\mathfrak{X}_{AH}) / \mathcal{K}(\mathfrak{X}_{AH}) = \mathbb{R}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Similarly, for every $k \in \mathbb{N}$, one can carefully take $\mathfrak{X}_1, \ldots, \mathfrak{X}_k$ versions of the Argyros-Haydon space to obtain

$$Cal((\mathfrak{X}_1\oplus\cdots\oplus\mathfrak{X}_k)_\infty)=\mathbb{R}^k.$$

Similarly, for every $k \in \mathbb{N}$, one can carefully take $\mathfrak{X}_1, \ldots, \mathfrak{X}_k$ versions of the Argyros-Haydon space to obtain

$$Cal((\mathfrak{X}_1 \oplus \cdots \oplus \mathfrak{X}_k)_\infty) = \mathbb{R}^k.$$

In

Operators on Banach Spaces of Bourgain-Delbaen Type. arXiv:1309.7469v1 (2013).

exending the finite dimensional case, it was constructed a Banach space \mathfrak{X}_T such that

$$Cal(\mathfrak{X}_T) = \ell_1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Since the space ℓ_1 occurs as a Calkin algebra, one may ask whether the same is true for c_0 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since the space ℓ_1 occurs as a Calkin algebra, one may ask whether the same is true for c_0 .

Or more generally, one may ask for what topological spaces K, the algebra C(K) is isomorphic to the Calkin algebra of some Banach space.

Let T be a well founded tree with a unique root such that every non maximal node of T has infinitely countable immediate successors.

Then there exists a \mathcal{L}_{∞} -space $X_{\mathcal{T}}$ with the following properties:

Let \mathcal{T} be a well founded tree with a unique root such that every non maximal node of \mathcal{T} has infinitely countable immediate successors.

Then there exists a \mathcal{L}_{∞} -space $X_{\mathcal{T}}$ with the following properties:

(i) The dual of $X_{\mathcal{T}}$ is isomorphic to ℓ_1 .

Let \mathcal{T} be a well founded tree with a unique root such that every non maximal node of \mathcal{T} has infinitely countable immediate successors.

Then there exists a \mathcal{L}_{∞} -space $X_{\mathcal{T}}$ with the following properties:

- (i) The dual of $X_{\mathcal{T}}$ is isomorphic to ℓ_1 .
- (ii) There exists a family of norm-one projections $(I_s)_{s\in\mathcal{T}}$ such that every operator defined on the space is approximated by a sequence of operators, each one of which is a linear combination of these projections plus a compact operator.

Let \mathcal{T} be a well founded tree with a unique root such that every non maximal node of \mathcal{T} has infinitely countable immediate successors.

Then there exists a \mathcal{L}_{∞} -space $X_{\mathcal{T}}$ with the following properties:

- (i) The dual of $X_{\mathcal{T}}$ is isomorphic to ℓ_1 .
- (ii) There exists a family of norm-one projections (I_s)_{s∈T} such that every operator defined on the space is approximated by a sequence of operators, each one of which is a linear combination of these projections plus a compact operator.
- (iii) There exists a bounded, one-to-one and onto algebra isomorphism $\Phi: Cal(X_T) \longrightarrow C(T)$, where C(T) denotes the algebra of all continuous functions defined on the compact topological space T.

Let \mathcal{T} be a well founded tree with a unique root such that every non maximal node of \mathcal{T} has infinitely countable immediate successors.

Then there exists a \mathcal{L}_{∞} -space $X_{\mathcal{T}}$ with the following properties:

- (i) The dual of $X_{\mathcal{T}}$ is isomorphic to ℓ_1 .
- (ii) There exists a family of norm-one projections (I_s)_{s∈T} such that every operator defined on the space is approximated by a sequence of operators, each one of which is a linear combination of these projections plus a compact operator.

(iii) There exists a bounded, one-to-one and onto algebra isomorphism $\Phi: Cal(X_T) \longrightarrow C(T)$, where C(T) denotes the algebra of all continuous functions defined on the compact topological space T.

In other words, the Calkin of $X_{\mathcal{T}}$ is isomorphic, as a Banach algebra, to $C(\mathcal{T})$.

Remarks and Open Questions

The main result

As consequence, we get

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The main result

As consequence, we get

Theorem (P. Motakis - D.P. - D. Zisimopoulou)

For every countable compact metric space K there exists a \mathcal{L}_{∞} -space X, with X^* isomorphic to ℓ_1 , so that its Calkin algebra is isomorphic, as a Banach algebra, to C(K).

The construction

The main ingredients

The Argyros-Hydon space \mathfrak{X}_{AH} .

The construction

The main ingredients

The Argyros-Hydon space \mathfrak{X}_{AH} .

The construction is based on two fixed strictly increasing sequences of natural numbers $(m_j, n_j)_{j \in \mathbb{N}}$ (which satisfy certain growth conditions) and it is a generalization of the Bourgain-Delbaen method for parameters a = 1 and using instead of b the sequence $(\frac{1}{m_j})_{j \in \mathbb{N}}$.

The construction

The main ingredients

The Argyros-Hydon space \mathfrak{X}_{AH} .

The construction is based on two fixed strictly increasing sequences of natural numbers $(m_j, n_j)_{j \in \mathbb{N}}$ (which satisfy certain growth conditions) and it is a generalization of the Bourgain-Delbaen method for parameters a = 1 and using instead of b the sequence $(\frac{1}{m_j})_{j \in \mathbb{N}}$.

We denote by $\mathfrak{X}_{AH}(L)$ the space constructed using the sequence $(m_j, n_j)_{j \in L}$.

The construction

The main ingredients

The Argyros-Hydon space \mathfrak{X}_{AH} .

The construction is based on two fixed strictly increasing sequences of natural numbers $(m_j, n_j)_{j \in \mathbb{N}}$ (which satisfy certain growth conditions) and it is a generalization of the Bourgain-Delbaen method for parameters a = 1 and using instead of b the sequence $(\frac{1}{m_j})_{j \in \mathbb{N}}$.

We denote by $\mathfrak{X}_{AH}(L)$ the space constructed using the sequence $(m_j,n_j)_{j\in L}.$ One has

If $L\cap M$ is finite, then every $T:X_{AH}(L)\to X_{AH}(M)$ must be compact.

The Argyros-Haydon sum

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Argyros-Haydon sum

The Argyros-Haydon sum of a sequence of separable Banach spaces $({\cal X}_n)_n$ was introduced in

D. Zisimopoulou Bourgain-Delbaen \mathcal{L}_{∞} -sums of Banach spaces. arXiv:1402.6564 (2014).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Argyros-Haydon sum

Given a sequence of separable Banach spaces $(X_n)_n$, the space $(\sum \oplus X_n)_{AH}$ is defined as a subspace of

$$\left(\left(\sum \oplus X_n\right)_\infty \oplus \ell_\infty(\Gamma)\right)_\infty$$
, where $\Gamma = \cup_n \Delta_n$.

The Argyros-Haydon sum

Given a sequence of separable Banach spaces $(X_n)_n$, the space $(\sum \oplus X_n)_{AH}$ is defined as a subspace of

$$\left(\left(\sum \oplus X_n\right)_{\infty} \oplus \ell_{\infty}(\Gamma)\right)_{\infty}, \text{ where } \Gamma = \cup_n \Delta_n.$$

We define increasing spaces $Y_k = \sum_{n \leq k} \oplus Z_n$ which are the image of $\left(\sum_{n \leq k} \oplus X_k\right)_{\infty} \oplus \ell_{\infty}(\Gamma_k)$ through a bounded linear extension operator

$$i_n: \Big(\sum_{k \le n} \oplus X_k\Big)_\infty \oplus \ell_\infty(\Gamma_k) \to \Big(\Big(\sum \oplus X_n\Big)_\infty \oplus \ell_\infty(\Gamma)\Big)_\infty$$

where $\Gamma_k = \bigcup_{n \leq k} \Delta_n$.

The Argyros-Haydon sum

Given a sequence of separable Banach spaces $(X_n)_n$, the space $(\sum \oplus X_n)_{AH}$ is defined as a subspace of

$$\left(\left(\sum \oplus X_n\right)_{\infty} \oplus \ell_{\infty}(\Gamma)\right)_{\infty}, \text{ where } \Gamma = \cup_n \Delta_n.$$

We define increasing spaces $Y_k = \sum_{n \leq k} \oplus Z_n$ which are the image of $\left(\sum_{n \leq k} \oplus X_k\right)_{\infty} \oplus \ell_{\infty}(\Gamma_k)$ through a bounded linear extension operator

$$i_n: \Big(\sum_{k \le n} \oplus X_k\Big)_{\infty} \oplus \ell_{\infty}(\Gamma_k) \to \Big(\Big(\sum \oplus X_n\Big)_{\infty} \oplus \ell_{\infty}(\Gamma)\Big)_{\infty}$$

where $\Gamma_k = \bigcup_{n \leq k} \Delta_n$. The space $(\sum \oplus X_n)_{AH}$ is defined to be the closure of $\bigcup_k Y_k$.

The Argyros-Haydon sum

In a similar manner, as the Argyros-Haydon space, a sequence $(m_j, n_j)_j$ is used for constructing the Argyros-Haydon sum of a sequence of separable Banach spaces $(X_n)_n$.

The Argyros-Haydon sum

In a similar manner, as the Argyros-Haydon space, a sequence $(m_j, n_j)_j$ is used for constructing the Argyros-Haydon sum of a sequence of separable Banach spaces $(X_n)_n$. Using an infinite subset of the natural numbers L and as parameters the sequence $(m_j, n_j)_{j \in L}$ we define the space $(\sum \oplus X_n)_{AH(L)}$

The space $X_{\mathcal{T}}$

Let \mathcal{T} be well founded tree having unique root and for every non-maximal node t the set succ(t) will be assumed to be infinitely countable. \mathcal{T} is equiped with the compact Hausdorff topology having the sets $\mathcal{T}_t = \{s \in \mathcal{T} : s \ge t\}, t \in \mathcal{T}$, as a subbase.

The space $X_{\mathcal{T}}$

Let \mathcal{T} be well founded tree having unique root and for every non-maximal node t the set succ(t) will be assumed to be infinitely countable. \mathcal{T} is equiped with the compact Hausdorff topology having the sets $\mathcal{T}_t = \{s \in \mathcal{T} : s \ge t\}, t \in \mathcal{T}$, as a subbase. For infinite subset of the natural numbers L using the Argyros-Hydon sum we define $X_{(\mathcal{T},L)}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The space $X_{\mathcal{T}}$

For \mathcal{T} is a singleton and $L \subset \mathbb{N}$ we define $X_{(\mathcal{T},L)}$ to be the space $X_{AH}(L)$. Tree of rank zero:

$\mathbf{O} \\ X_{AH(L)}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The space $X_{\mathcal{T}}$

For a tree of order one we define $X_{(\mathcal{T},L)} = \left(\sum \bigoplus X_{(\mathcal{T}_n,L_n)}\right)_{AH(L_0)}$. Tree of rank 1:

$$X_{(\mathcal{T},L)}$$

The space $X_{\mathcal{T}}$

For a tree of order two we define $X_{(\mathcal{T},L)} = \left(\sum \oplus X_{(\mathcal{T}_n,L_n)}\right)_{AH(L_0)}$ etc...

Tree of rank 2:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The space $X_{\mathcal{T}}$

More precisely, by transfinite recursion on the order $o(\mathcal{T})$ of a tree \mathcal{T} , we define the spaces $X_{(\mathcal{T},L)}$ for every L infinite subset of the natural numbers.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The space $X_{\mathcal{T}}$

More precisely, by transfinite recursion on the order $o(\mathcal{T})$ of a tree \mathcal{T} , we define the spaces $X_{(\mathcal{T},L)}$ for every L infinite subset of the natural numbers.

(i) Let \mathcal{T} be a tree with $o(\mathcal{T}) = 0$. For a choice of L' an infinite subset of L we define $X_{(\mathcal{T},L)} = X_{AH(L')}$.

The space $X_{\mathcal{T}}$

More precisely, by transfinite recursion on the order $o(\mathcal{T})$ of a tree \mathcal{T} , we define the spaces $X_{(\mathcal{T},L)}$ for every L infinite subset of the natural numbers.

- (i) Let \mathcal{T} be a tree with $o(\mathcal{T}) = 0$. For a choice of L' an infinite subset of L we define $X_{(\mathcal{T},L)} = X_{AH(L')}$.
- (ii) Let \mathcal{T} be a tree with $o(\mathcal{T}) = \alpha > 0$. Assume that for every tree \mathcal{S} with $o(\mathcal{S}) < \alpha$, for every infinite subset of the natural numbers M, the space $X_{(\mathcal{S},M)}$ has been defined. Choose $\{s_n : n \in \mathbb{N}\}$ an enumeration of the set $succ(\emptyset_{\mathcal{T}})$. For a choice of L' an infinite subset of L and a partition of L' into infinite sets $(L_n)_{n=0}^{\infty}$.

The space $X_{\mathcal{T}}$

More precisely, by transfinite recursion on the order $o(\mathcal{T})$ of a tree \mathcal{T} , we define the spaces $X_{(\mathcal{T},L)}$ for every L infinite subset of the natural numbers.

- (i) Let \mathcal{T} be a tree with $o(\mathcal{T}) = 0$. For a choice of L' an infinite subset of L we define $X_{(\mathcal{T},L)} = X_{AH(L')}$.
- (ii) Let \mathcal{T} be a tree with $o(\mathcal{T}) = \alpha > 0$. Assume that for every tree \mathcal{S} with $o(\mathcal{S}) < \alpha$, for every infinite subset of the natural numbers M, the space $X_{(\mathcal{S},M)}$ has been defined. Choose $\{s_n : n \in \mathbb{N}\}$ an enumeration of the set $succ(\emptyset_{\mathcal{T}})$. For a choice of L' an infinite subset of L and a partition of L' into infinite sets $(L_n)_{n=0}^{\infty}$. Then define

$$X_{(\mathcal{T},L)} = \left(\sum_{n=1}^{\infty} \oplus X_{(\mathcal{T}_{s_n},L_n)}\right)_{AH(L_0)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The space $X_{\mathcal{T}}$

The space $X_{(\mathcal{T},L)}$ is accompanied by a set of norm-one projections $I_s, s \in \mathcal{T}$.

Theorem

Let T be a bounded linear operator defined on $X_{(\mathcal{T},L)}$. Then there exist a unique continuous function $f : \mathcal{T} \to \mathbb{R}$ an increasing sequence $(S_n)_n$ of finite downwards closed subtrees of \mathcal{T} with $\mathcal{T} = \bigcup_n S_n$ and a sequence of compact operators $(C_n)_n$ such that the following holds:

$$\lim_{n} \left\| T - \sum_{s \in \mathcal{S}_n} \left(f(s) - f(s^-) \right) I_s - C_n \right\| = 0$$

i.e. T is approximated by compact perturbations of linear combinations of the I_s , which are determined by the function f.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thus, we can define the operator

$$\Phi_{(\mathcal{T},L)}: \mathcal{L}(X_{(\mathcal{T},L)}) \longrightarrow C(\mathcal{T}),$$

which assigns each T to the corresponding unique function f defined by the previous theorem.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus, we can define the operator

$$\Phi_{(\mathcal{T},L)}: \mathcal{L}(X_{(\mathcal{T},L)}) \longrightarrow C(\mathcal{T}),$$

which assigns each ${\cal T}$ to the corresponding unique function f defined by the previous theorem.

Then $\Phi_{(\mathcal{T},L)}$ is a norm-one algebra homomorphism with dense range and

$$\ker \Phi_{(\mathcal{T},L)} = \mathcal{K}(X_{(\mathcal{T},L)}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hence, the operator $\Phi_{(\mathcal{T},L)}$ induces an operator

$$\Phi_{(\mathcal{T},L)}: \mathcal{L}(X_{(\mathcal{T},L)})/\mathcal{K}(X_{(\mathcal{T},L)}) \longrightarrow C(\mathcal{T})$$

which is a 1-1 algebra homomorphism with dense range and $\|\Phi_{(\mathcal{T},L)}\|=1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hence, the operator $\Phi_{(\mathcal{T},L)}$ induces an operator

$$\Phi_{(\mathcal{T},L)}: \mathcal{L}(X_{(\mathcal{T},L)})/\mathcal{K}(X_{(\mathcal{T},L)}) \longrightarrow C(\mathcal{T})$$

which is a 1-1 algebra homomorphism with dense range and $\|\Phi_{(\mathcal{T},L)}\|=1.$

Actually, one can observe that

linear span of $\{[I_s]: s \in \mathcal{T}\}$ is dense in $Cal(X_{(\mathcal{T},L)})$,

Hence, the operator $\Phi_{(\mathcal{T},L)}$ induces an operator

$$\Phi_{(\mathcal{T},L)}: \mathcal{L}(X_{(\mathcal{T},L)})/\mathcal{K}(X_{(\mathcal{T},L)}) \longrightarrow C(\mathcal{T})$$

which is a 1-1 algebra homomorphism with dense range and $\|\Phi_{(\mathcal{T},L)}\|=1.$

Actually, one can observe that

linear span of $\{[I_s]: s \in \mathcal{T}\}$ is dense in $Cal(X_{(\mathcal{T},L)})$, $\Phi_{(\mathcal{T},L)}$ is bounded below on span $\{[I_s]: s \in \mathcal{T}\}$.

Hence, the operator $\Phi_{(\mathcal{T},L)}$ induces an operator

$$\Phi_{(\mathcal{T},L)}: \mathcal{L}(X_{(\mathcal{T},L)})/\mathcal{K}(X_{(\mathcal{T},L)}) \longrightarrow C(\mathcal{T})$$

which is a 1-1 algebra homomorphism with dense range and $\|\Phi_{(\mathcal{T},L)}\|=1.$

Actually, one can observe that

linear span of $\{[I_s]: s \in \mathcal{T}\}$ is dense in $Cal(X_{(\mathcal{T},L)})$, $\Phi_{(\mathcal{T},L)}$ is bounded below on span $\{[I_s]: s \in \mathcal{T}\}$. Therefore,

$$\Phi_{(\mathcal{T},L)}: Cal(X_{(\mathcal{T},L)}) \longrightarrow C(\mathcal{T})$$

is an algebra isomorphism.

The Main Theorem

Let K be a countable compact metric space. Then there exists a \mathcal{L}_{∞} -space X, with X^* isomorphic to ℓ_1 , and a norm-one algebra isomorphism $\Phi : Cal(X) \longrightarrow C(K)$ that is one-to-one and onto. Even more, for every $\varepsilon > 0$ the space X can be chosen so that $\|\Phi\| \|\Phi^{-1}\| \leq 1 + \varepsilon$.

Remarks and Open Questions

Remark

In an earlier version we were able to prove the main Theorem only in the case of countable compact spaces with finite Cantor-Bendixson index.

Remarks and Open Questions

Remark

In an earlier version we were able to prove the main Theorem only in the case of countable compact spaces with finite Cantor-Bendixson index.

To avoid this, essentially we needed

Remarks and Open Questions

Remark

In an earlier version we were able to prove the main Theorem only in the case of countable compact spaces with finite Cantor-Bendixson index.

To avoid this, essentially we needed

 (i) to modify slightly the construction of Argyros-Haydon sum of a sequence of separable Banach spaces defined by D. Zisimopoulou.

Remarks and Open Questions

Remark

In an earlier version we were able to prove the main Theorem only in the case of countable compact spaces with finite Cantor-Bendixson index.

To avoid this, essentially we needed

- (i) to modify slightly the construction of Argyros-Haydon sum of a sequence of separable Banach spaces defined by D. Zisimopoulou.
- (ii) to estimate, in the sum $(\sum \oplus X_n)_{AH}$, the following

$$\left\|\sum_{k=1}^{n} \oplus T_k + \lambda P_{(n, +\infty)}\right\| \le (1+\varepsilon) \max\{\max_{k\le n} \|T_k\|, |\lambda|\},\$$

where $P_{(n, +\infty)}$ is a projection with respect to the Schauder decomposition Z_k of Argyros-Haydon sum $(\sum \oplus X_n)_{AH}$, and T_k is a bounded linear operator on Z_k .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Recall

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall

Theorem (N.J. Kalton (1974))

Let X be a Banach space with an unconditional finite dimensional expansion of the identity. If Y is any infinite-dimensional Banach space, the following are equivalent:

Recall

Theorem (N.J. Kalton (1974))

Let X be a Banach space with an unconditional finite dimensional expansion of the identity. If Y is any infinite-dimensional Banach space, the following are equivalent:

(i) $\mathcal{K}(X,Y)$ is complemented in $\mathcal{L}(X,Y)$;

Recall

Theorem (N.J. Kalton (1974))

Let X be a Banach space with an unconditional finite dimensional expansion of the identity. If Y is any infinite-dimensional Banach space, the following are equivalent:

(i) $\mathcal{K}(X,Y)$ is complemented in $\mathcal{L}(X,Y)$;

(iii) $\mathcal{K}(X,Y)$ contains no copy of c_0 ;

Recall

Theorem (N.J. Kalton (1974))

Let X be a Banach space with an unconditional finite dimensional expansion of the identity. If Y is any infinite-dimensional Banach space, the following are equivalent:

(i)
$$\mathcal{K}(X,Y)$$
 is complemented in $\mathcal{L}(X,Y)$;

(iii) $\mathcal{K}(X,Y)$ contains no copy of c_0 ;

Question (M. Feder (1982))

Do Banach spaces X and Y exist such that $\mathcal{K}(X,Y)$ is uncomplemented in $\mathcal{L}(X,Y)$ and such that c_0 does not embed in $\mathcal{K}(X,Y)$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The following hold:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The following hold: If $o(\mathcal{T}) > 0$ then (i) $\mathcal{K}(X_{(\mathcal{T},L)})$ is not complemented in $\mathcal{L}(X_{(\mathcal{T},L)})$. (ii) $\mathcal{K}(X_{(\mathcal{T},L)})$ does not contain c_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The following hold: If $o(\mathcal{T}) > 0$ then (i) $\mathcal{K}(X_{(\mathcal{T},L)})$ is not complemented in $\mathcal{L}(X_{(\mathcal{T},L)})$. (ii) $\mathcal{K}(X_{(\mathcal{T},L)})$ does not contain c_0 .

as far as we know, $X_{(\mathcal{T},L)}$ is the first of such an example.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Open Questions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Open Questions

1 Does there exists a Banach space whose Calkin algebra is isomorphic, as a Banach algebra, to C(K) for an uncountable compact space K?

Open Questions

- 1 Does there exists a Banach space whose Calkin algebra is isomorphic, as a Banach algebra, to C(K) for an uncountable compact space K?
- 2 Does there exists a Banach space whose Calkin algebra is reflexive and infinite dimensional?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for your attention.