On products of nuclear operators

Oleg Reinov
Saint Petersburg State University

An operator $T: X \rightarrow Y$ is nuclear if it is of the form

$$
T x=\sum_{k=1}^{\infty}\left\langle x_{k}^{\prime}, x\right\rangle y_{k}
$$

for all $x \in X$, where $\left(x_{k}^{\prime}\right) \subset X^{*},\left(y_{k}\right) \subset Y, \sum_{k}\left\|x_{k}^{\prime}\right\|\left\|y_{k}\right\|<\infty$. We use the notation $N(X, Y)$
If T is nuclear, then

$$
T: X \rightarrow c_{0} \rightarrow I_{1} \rightarrow Y
$$

(R) A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 + 140.

Let A be a compact operator in H. Then A has the norm convergent expansion

$$
A=\sum_{n=1}^{N} \mu_{n}(A)\left(f_{n}, \cdot\right) h_{n}
$$

where $\left(f_{n}\right),\left(h_{n}\right)$ are ONS's, $\left.\mu_{1}(A) \geq \mu_{2}(A) \geq \cdots>0\right)$
The $\mu_{n}(A)$ are called the singular values of A. Notation $s_{n}(A)$ or just s_{n}.

目 Simon B., Trace ideals and their applications, London Math. Soc. Lecture Notes 35, Cambridge University Press, 1979.
$-$

$$
A \in S_{p}(H): \sum s_{n}^{p}(A)<\infty, p>0
$$

$$
S_{p} \circ S_{q} \subset S_{r}, 1 / r=1 / p+1 / q
$$

$$
N(H)=S_{1}(H) .
$$

$$
A \in S_{p}(H): \sum s_{n}^{p}(A)<\infty, p>0
$$

$$
\begin{aligned}
& p, q \in(0, \infty) \\
& S_{p} \circ S_{q} \subset S_{r}, 1 / r=1 / p+1 / q ;
\end{aligned}
$$

$$
N(H)=S_{1}(H)
$$

- An operator $T: X \rightarrow Y$ is s-nuclear $(0<s \leq 1)$ if it is of the form

$$
T x=\sum_{k=1}^{\infty}\left\langle x_{k}^{\prime}, x\right\rangle y_{k}
$$

for all $x \in X$, where
$\left(x_{k}^{\prime}\right) \subset X^{*},\left(y_{k}\right) \subset Y, \sum_{k}\left\|x_{k}^{\prime}\right\|^{s}\left\|y_{k}\right\|^{s}<\infty$. We use the notation $N_{s}(X, Y)$.

$$
N_{p}(H)=S_{p}(H), 0<p \leq 1 .
$$

目R. Oloff, p-normierte Operatorenideale, Beiträge Anal. 4 105-108 (1972)

- An operator $T: X \rightarrow Y$ is s-nuclear $(0<s \leq 1)$ if it is of the form

$$
T x=\sum_{k=1}^{\infty}\left\langle x_{k}^{\prime}, x\right\rangle y_{k}
$$

for all $x \in X$, where

$\left(x_{k}^{\prime}\right) \subset X^{*},\left(y_{k}\right) \subset Y, \sum_{k}\left\|x_{k}^{\prime}\right\|^{s}\left\|y_{k}\right\|^{s}<\infty$. We use the notation $N_{s}(X, Y)$.

$$
N_{p}(H)=S_{p}(H), 0<p \leq 1 .
$$

- R. Oloff, p-normierte Operatorenideale, Beiträge Anal. 4, 105-108 (1972).

A natural question (due to Boris Mitjagin):

- Is it true that a product of two nuclear operators in Banach spaces can be factored through a trace class (i.e., $S_{1^{-}}$) operator in a Hilbert space?
- By using an example from

围 Carleman T., Über die Fourierkoeffizienten einer stetigen
Funktion, A. M., 41 (1918), 377-384.
it can be shown that

- The answer is negative.

A natural question (due to Boris Mitjagin):

- Is it true that a product of two nuclear operators in Banach spaces can be factored through a trace class (i.e., $S_{1^{-}}$) operator in a Hilbert space?
- By using an example from

围 Carleman T., Über die Fourierkoeffizienten einer stetigen Funktion, A. M., 41 (1918), 377-384.
it can be shown that

- The answer is negative.
f is Carleman's continuous function:
$\hat{f} \in I_{2} \backslash \cup_{p<2} I_{p}$.

T is nuclear.

Consider the product TT. Note that eigenvalues $\left(\lambda_{k}(T T)\right) \in I_{1}$
and not better.

f is Carleman's continuous function:
$\hat{f} \in I_{2} \backslash \cup_{p<2} I_{p}$.

$$
T: C \xrightarrow{* f} C .
$$

T is nuclear.
Consider the product TT. Note that eigenvalues $\left(\lambda_{k}(T T)\right) \in I_{1}$
and not better.
Suppose, there is an S_{1}-operator $U \in S_{1}(H)$ so that

f is Carleman's continuous function:
$\hat{f} \in I_{2} \backslash \cup_{p<2} I_{p}$.

$$
T: C \xrightarrow{* f} C .
$$

T is nuclear.
Consider the product $T T$. Note that eigenvalues $\left(\lambda_{k}(T T)\right) \in I_{1}$ and not better.
Suppose, there is an S_{1}-operator $U \in S_{1}(H)$ so that

f is Carleman's continuous function:
$\hat{f} \in I_{2} \backslash \cup_{p<2} I_{p}$.

$$
T: C \xrightarrow{* f} C .
$$

T is nuclear.
Consider the product $T T$. Note that eigenvalues $\left(\lambda_{k}(T T)\right) \in I_{1}$ and not better.

Suppose, there is an S_{1}-operator $U \in S_{1}(H)$ so that

$$
T T: C \xrightarrow{A} H \xrightarrow{U} H \xrightarrow{B} C .
$$

Consider

$$
H \xrightarrow{B} C \xrightarrow{A} H \xrightarrow{U} H \xrightarrow{B} C .
$$

Eigenvalues of $U A B=$ eigenvalues of $T T=B U A$ (and, so, in I_{1}).

$$
A \in \Pi_{2} ; \text { so, } \quad A B \in S_{2} ; U \in S_{1} .
$$

Hence,

Contradiction.
 - Remark. Sharp fact is that if $V \in N N$, then it factors through an operator $U \in S_{2}$.

Consider

$$
H \xrightarrow{B} C \xrightarrow{A} H \xrightarrow{U} H \xrightarrow{B} C .
$$

Eigenvalues of $U A B=$ eigenvalues of $T T=B U A$ (and, so, in I_{1}). BUT:

$$
A \in \Pi_{2} ; \quad \text { so, } \quad A B \in S_{2} ; U \in S_{1}
$$

Hence,
$U A B \in S_{2 / 3}$.

Contradiction
 - Remark. Sharp fact is that if $V \in N N$, then it factors through an operator $U \in S_{2}$.

Consider

$$
H \xrightarrow{B} C \xrightarrow{A} H \xrightarrow{U} H \xrightarrow{B} C .
$$

Eigenvalues of $U A B=$ eigenvalues of $T T=B U A$ (and, so, in I_{1}). BUT:

$$
A \in \Pi_{2} ; \quad \text { so, } \quad A B \in S_{2} ; \quad U \in S_{1}
$$

Hence,

$$
U A B \in S_{2 / 3} .
$$

Contradiction.

- Remark. Sharp fact is that if $V \in N N$, then it factors through an operator $U \in S_{2}$.

Consider

$$
H \xrightarrow{B} C \xrightarrow{A} H \xrightarrow{U} H \xrightarrow{B} C .
$$

Eigenvalues of $U A B=$ eigenvalues of $T T=B U A$ (and, so, in l_{1}). BUT:

$$
A \in \Pi_{2} ; \quad \text { so, } \quad A B \in S_{2} ; U \in S_{1}
$$

Hence,

$$
U A B \in S_{2 / 3} .
$$

Contradiction.

- Remark. Sharp fact is that if $V \in N N$, then it factors through an operator $U \in S_{2}$.
- Let $\alpha, \beta \in(0,1]$. If $T \in N_{\alpha} \circ N_{\beta}$, then it factors through an S_{r}-operator, where

$$
\frac{1}{r}=\frac{1}{\alpha}+\frac{1}{\beta}-\frac{3}{2}
$$

- Particular cases:
- Let $\alpha, \beta \in(0,1]$. If $T \in N_{\alpha} \circ N_{\beta}$, then it factors through an S_{r}-operator, where

$$
\frac{1}{r}=\frac{1}{\alpha}+\frac{1}{\beta}-\frac{3}{2}
$$

- Particular cases:

$$
\begin{aligned}
& \alpha=1, \beta=\frac{2}{3} \Longrightarrow r=1 \\
& \alpha=1, \beta=1 \Longrightarrow r=2 .
\end{aligned}
$$

To formulate the theorem, we need a definition:

- The spectrum of A is central-symmetric, if together with any eigenvalue $\lambda \neq 0$ it has the eigenvalue $-\lambda$ of the same multiplicity.
It was proved in a paper by M. I. Zelikin
\square Zelikin, A criterion for the symmetry of a spectrum", Dokl. Akad. Nauk 418 (2008), no. 6, 737-740
- Theorem. The spectrum of a nuclear operator A acting on a separable Hilbert space is central-symmetric iff trace $A^{2 n-1}=0, n \in \mathbf{N}$.

To formulate the theorem, we need a definition:

- The spectrum of A is central-symmetric, if together with any eigenvalue $\lambda \neq 0$ it has the eigenvalue $-\lambda$ of the same multiplicity.
It was proved in a paper by M. I. Zelikin
(M. I. Zelikin, A criterion for the symmetry of a spectrum", Dokl. Akad. Nauk 418 (2008), no. 6, 737-740
- Theorem. The spectrum of a nuclear operator A acting on a separable Hilbert space is central-symmetric iff trace $A^{2 n-1}=0, n \in \mathbf{N}$.

We can proof:

- Theorem. Let Y be a subspace of a quotient (or a quotient of a subspace) of an L_{p}-space, $1 \leq p \leq \infty$ and $T \in N_{s}(Y, Y)$ (s-nuclear), where $1 / s=1+|1 / 2-1 / p|$, The spectrum of T is central-symmetric iff trace $T^{2 n-1}=0, n=1,2, \ldots$.
- Remark: In the theorem "trace" is well defined. The result is sharp.
- 銞 Boris S. Mityagin, Criterion for Z_{d}-symmetry of a Spectrum of a Compact Operator, arXiv: 1504.05242

We can proof:

- Theorem. Let Y be a subspace of a quotient (or a quotient of a subspace) of an L_{p}-space, $1 \leq p \leq \infty$ and $T \in N_{s}(Y, Y)$ (s-nuclear), where $1 / s=1+|1 / 2-1 / p|$, The spectrum of T is central-symmetric iff trace $T^{2 n-1}=0, n=1,2, \ldots$.
- Remark: In the theorem "trace" is well defined. The result is sharp.
- ${ }^{3}$

Boris S. Mityagin, Criterion for Z_{d}-symmetry of a
Spectrum of a Compact Operator, arXiv: 1504.05242 [math.FA]

We can proof:

- Theorem. Let Y be a subspace of a quotient (or a quotient of a subspace) of an L_{p}-space, $1 \leq p \leq \infty$ and $T \in N_{s}(Y, Y)$ (s-nuclear), where $1 / s=1+|1 / 2-1 / p|$, The spectrum of T is central-symmetric iff trace $T^{2 n-1}=0, n=1,2, \ldots$.
- Remark: In the theorem "trace" is well defined. The result is sharp.
- Boris S. Mityagin, Criterion for Z_{d}-symmetry of a Spectrum of a Compact Operator, arXiv: 1504.05242 [math.FA].

Thank you for your attention!

