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Elastic Banach space

[Johnson-Odell, ’05] A Banach space X is K-elastic if every
isomorph of X K-embeds into X;

X ′ ≈ X =⇒ X ′
K
↪−→X.

Equivalently,

Y ↪→X =⇒ Y
K
↪−→X.

Say X is elastic if it is K-elastic for some K <∞.

Example. C[0, 1] is 1-elastic. So if C[0, 1] ↪→X, then X is elastic.

Conjecture [JO] If X is (separable, ∞-dim) elastic, then C[0, 1] ↪→X.

Theorem [Alspach, S.] If X is separable elastic infinite dimensional,
then C[0, 1] ↪→X.
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The context this notion arises

Given X, the diameter of the isomorphism class

D(X) = sup{d(X1, X2) : X1 ≈ X ≈ X2}

where d is the Banach-Mazur distance.

Theorem [JO] For separable infinite dimensional X, D(X) = +∞.

Observe: D(X) <∞ =⇒ X ′ is D(X)-elastic for all X ′ ≈ X.
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The context this notion arises
So sufficient to prove
Theorem [JO] If X is separable and X ′ is K-elastic for all X ′ ≈ X,
then X is finite dimensional.

Steps of the proof

1. X separable elastic =⇒ c0 ↪→X.
(A tricky Bourgain index argument, separability needed here.)

2. For every C <∞ construct weakly null normalized (xn) ∈ X and
equivalent norm |.|C on X so that every subsequence has length
n = n(C) blocks (yi)

n
1 which are badly (≥ C) unconditional.

(Start with c0-sequence, construct a family of bad renormings and
embed back using elastic, and use [AOST] to construct a
dominating one away from c0 and `1 and do Maurey-Rosenthal.)

3. But every X with a normalized basis can be renormed |.|n so that
all blocks of length n are 3 unconditional while the basis is still
normalized in | · |n.
(Easy.)
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The new proof of the diameter theorem

Once we prove

X separable elastic =⇒ C[0, 1] ↪→X,

the proof of [JO] becomes an easy observation:

Let (ei) be a monotone normalized basis in C[0, 1]. Let n ∈ N, and let
| · |n be a renorming of C[0, 1] so that every normalized block sequence
(xi)

n
1 of (ei) of length n is 3-unconditional in | · |n (The easy Step 3

above). By assumption, C[0, 1] K-embeds into (C[0, 1], | · |n). Since the
basis (ei) is reproducible, there exists a block sequence (ui) of the basis
in (C[0, 1], | · |n) that is K + ε equivalent to (ei). So then (ei) must be
block n unconditional with constant 3(K + ε). Since n is arbitrary and
(ei) is not unconditional, this is a contradiction.



Embedding C[0, 1]

The Main Theorem. Let X be a separable elastic Banach space. If a
sequence of C0(αn) spaces embed into X where each αn < ω1, then(∑∞

n=1C0(αn)
)
c0

embeds into X.

This shows C[0, 1] ↪→X since

C0(ωω
α
) ≈ C0(ωω

αn) for all n, and(∑n
n=1C0(ωω

αn)
)
c0
≈ C0(ωω

α+1
). Similar for limit ordinals α.

So the Main theorem yields C(α) ↪→X for all α < ω1.

Bourgain. C(α) ↪→X for all α < ω1 =⇒ C[0, 1] ↪→X.
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Embedding C[0, 1]

The proof requires

a ‘higher dimensional’ Bourgain index argument,

and effective (algorithmic) versions of

the weak injectivity of C(α) (Pelczynski)

the reproducibility property of their canonical bases
(Lindesntrauss-Pelczynski)
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An ordinal index for direct sums

(
∑
Yn)Z-trees T on X with constants C,D.

Let Z be a space with a 1-unconditional basis (zn), (
∑
Yn)Z be the

direct sum of spaces Yn with norm ‖ · ‖n with respect to (zn). Consider
a tree T of tuples consisting of pairs of subspaces and isomorphisms

((X1, T1), (X2, T2), . . . , (Xk, Tk)),

where Xn ⊆ X and Tn : Xn → Yn such that ‖Tn‖ ≤ C, ‖T−1
n ‖ ≤ 1, and

for all xn ∈ Xn, we have∥∥∥∥∥
k∑

n=1

xn

∥∥∥∥∥ ≤ ‖(Tnxn)‖Z ≤ D

∥∥∥∥∥
k∑

n=1

xn

∥∥∥∥∥ , 1 ≤ n ≤ k.

Partially order T by extension.



An ordinal index for direct sums

(
∑
Yn)Z-trees T on X with constants C,D.

Let Z be a space with a 1-unconditional basis (zn), (
∑
Yn)Z be the

direct sum of spaces Yn with norm ‖ · ‖n with respect to (zn). Consider
a tree T of tuples consisting of pairs of subspaces and isomorphisms

((X1, T1), (X2, T2), . . . , (Xk, Tk)),

where Xn ⊆ X and Tn : Xn → Yn such that ‖Tn‖ ≤ C, ‖T−1
n ‖ ≤ 1, and

for all xn ∈ Xn, we have∥∥∥∥∥
k∑

n=1

xn

∥∥∥∥∥ ≤ ‖(Tnxn)‖Z ≤ D

∥∥∥∥∥
k∑

n=1

xn

∥∥∥∥∥ , 1 ≤ n ≤ k.

Partially order T by extension.



An ordinal index for direct sums

Theorem. Let Z be a Banach space with a normalized 1-unconditional
basis (zn), and let X and Yn, n ∈ N be separable Banach spaces. If T is
a (
∑
Yn)Z-tree in X with index ω1 and constants C,D, then X

contains a subspace which is D-isomorphic to (
∑
Yn)Z .



A glimpse into the proof

Want to show for all ε > 0 and limit α < ω1, X contains a(∑∞
n=1 Yn

)
c0

-tree of order at least α with both constants K(1 + ε).

For this construct Banach spaces V α, α < ω1 which are isomorphic to
subspaces of X and contain

(∑∞
n=N Yn

)
c0

-trees of order α for each
N ≥ 1.

We will show each Yn has a good basis (complementably reproducible)
(yn,k)

∞
k=1. This means that for every embeddings Tn : Yn → X with

‖Tn‖ ≤ K and ‖T−1
n ‖ ≤ 1, we can find subsequences (yn,k)k∈Kn such

that

(yn,k)k∈Kn ≈ (yn,k)k∈N, for all n ∈ N,
(Tnyn,k)k∈Kn,n∈N is (equivalent to) a block basis,

for each m there is a projection ‖Pm‖ . K from
V = [Tnyn,k : k ∈ Kn, n ∈ N] onto [Tmym,k : k ∈ Km] with Pmy ≈ 0
for all y ∈ [Tnyn,k : k ∈ Kn, n ∈ N, n 6= m].
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A glimpse into the proof

Construction of V ω

For each i ∈ N define a norm ‖ · ‖i on V = [Tnyn,k : k ∈ Kn, n ∈ N] by
(reseting constants)

‖y‖i = sup
{
‖RmT−1

m Pmy‖ : m ∈ N
}
∨ ‖y‖
iC

,

where C is good basis constant, Rn be the basis equivalence from
(yn,k)k∈Kn to (yn,k)

∞
k=1.

This is an equivalent norm on V .
For each i, let V i = (V, ‖.‖i). V i’s have good bases. Embed back into
X using K-elastic, reset the constants to get V ω.
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Bases in C(α)

The standard bases (xαn)∞n=0 of C(ωα) are described inductively.

For C(ω), let x1
0 = 1(0,ω] and x1

n = 1{n} for all n < ω.

If the basis (xγ−1
n )n for C(ωγ−1) is defined for each k < ω let xγ−1

k,n

have support in (ωγ(k − 1), ωγk] and satisfy

xγ−1
k,n (ρ) = xγ−1

n (ρ− ωγ−1(k − 1)) for ωγ−1(k − 1) < ρ ≤ ωγ−1k.

If γ is a limit fix (γk)↗ γ, and let xγk,n have support in
(ωγk−1 , ωγk ] and satisfy

xk,n(ρ) = xγkn (ρ− ωγk−1), for ωγk−1 < ρ ≤ ωγk
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Put xγ0 = 1(0,ωγ ] and let (xγj )j≥1 be the collection defined.

Then the
order of the basis is such that whenever the support of one function
is contained in another, the top function precedes in the order.

For each α < ω1

(xαn)αn=1 is a standard basis for C0(ωα).

(xαn)αn=1 is a shrinking basis.

It has many subsequences 1-equivalent to the basis. In fact,

Proposition. The basis (xαn)∞n=1 is two-player subsequentially
1-reproducible.

This means that for all εk > 0 and embedding T : C0(ωα)→ Y , there is
a winning strategy for the second player in a two-player game in Y for
picking a subsequence (Txnk)∞k=1 and blocks (wk)

∞
k=1 of the basis (yn)

of Y such that

1 ‖Txnk − wk‖ < εk for each k ∈ N,
2 (xnk) is 1-equivalent to (xn).
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Pelczynski’s weak injectivity

Let T : C0(ωα)→ X be an isomorphic embedding, and for ρ ≤ ωα let δρ
Dirac functional. Let (y∗ρ)ρ≤ωα ⊂ 2‖(T ∗)−1‖BX∗ satisfy T ∗y∗ρ = δρ for
all ρ ≤ ωα. Then there is a compact subset Γ of [1, ωα] homeomorphic
to [1, ωα] and a (weak∗) compact subset (w∗ρ)ρ∈Γ of Y ∗ such that

S∗w∗ρ = δρ for all ρ ∈ Γ, the map ρ→ w∗ρ is a homeomorphism,

there is a subsequence of (xαm)m∈M equivalent to (xαn), with
contractively complemented closed linear span such that the
restriction to Γ induces an isomorphism R from the span of the
subsequence onto C0(Γ) and R∗δρ = S∗w∗ρ for all ρ ∈ Γ.
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Pelczynski’s weak injectivity

The mapping S : [xm : m ∈M ]→ C0(Γ) where Γ = {γ(m) : m ∈M}
satisfying (Sxm)(γ(k)) = xm(γ(k)) is a surjective isometry,

and the projection P is of the form TEV where V : X → C0(Γ) is
defined by (V z)(γ(m)) = w∗m(z) for all z ∈ X, E is the extension
operator which maps C0(Γ) into C0(ωα) with range in [xm : m ∈M ]
with SE = I.

Explicitly

Ef (β) =


f(β) if β ∈ Γ,

f(γ(m)) if xm(β) = 1, xm′(β) = 0 for all m′ > m,

0 else.

The norm of the projection P is at most ‖T‖ supm∈M ‖w∗m‖.
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Effective version
Proposition. Let α be a countable ordinal. A standard basis (xαn)∞n=1

of C0(ωα) is two-player 2-complementably subsequentially
1-reproducible.

This means (roughly) if the second player has a winning strategy in the
following two-player game. Let ε > 0, T be an isomorphic embedding
of X into Y with a basis (yi), and (uj) be a block basis of (yi)
satisfying certain conditions.

On kth turn, the first player chooses a tail subspace [yi]i≥tk and a block
ujk with min suppujk > lk−1 and the second player chooses a block wk
in [yi]i≥tk and an integer lk > max suppujk (put l0 = 0).

The second player wins if
(i)
∑∞

k=1 ‖Txnk − wk‖ < ε for some (nk);

(ii) (xnk) is 1-equivalent to (xn); and

(iii) there is a projection P from Y onto [wk] with ‖P‖ ≤ 2‖T‖‖T−1‖,
and ‖Pz‖ < ε‖z‖ for all z ∈ [ujk ].
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