Separable elastic Banach spaces are universal

Bünyamin Sarı, University of North Texas joint with Dale Alspach

Warwick, 2015

1 / 16

・ロト ・四ト ・ヨト ・ヨト

[Johnson-Odell, '05] A Banach space X is *K*-elastic if every isomorph of X *K*-embeds into X;

$$X' \approx X \implies X' \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

[Johnson-Odell, '05] A Banach space X is K-elastic if every isomorph of X K-embeds into X;

$$X' \approx X \implies X' \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

Equivalently,

$$Y \, \hookrightarrow \, X \implies Y \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

[Johnson-Odell, '05] A Banach space X is K-elastic if every isomorph of X K-embeds into X;

$$X' \approx X \implies X' \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

Equivalently,

$$Y \hookrightarrow X \implies Y \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Say X is *elastic* if it is K-elastic for some $K < \infty$.

[Johnson-Odell, '05] A Banach space X is *K*-elastic if every isomorph of X *K*-embeds into X;

$$X' \approx X \implies X' \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

Equivalently,

$$Y \, \hookrightarrow \, X \implies Y \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Say X is *elastic* if it is K-elastic for some $K < \infty$.

Example. C[0,1] is 1-elastic.

[Johnson-Odell, '05] A Banach space X is K-elastic if every isomorph of X K-embeds into X;

$$X' \approx X \implies X' \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

Equivalently,

$$Y \, \hookrightarrow \, X \implies Y \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Say X is *elastic* if it is K-elastic for some $K < \infty$.

Example. C[0,1] is 1-elastic. So if $C[0,1] \hookrightarrow X$, then X is elastic.

[Johnson-Odell, '05] A Banach space X is K-elastic if every isomorph of X K-embeds into X;

$$X' \approx X \implies X' \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

Equivalently,

$$Y \, \hookrightarrow \, X \implies Y \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

Say X is *elastic* if it is K-elastic for some $K < \infty$.

Example. C[0,1] is 1-elastic. So if $C[0,1] \hookrightarrow X$, then X is elastic.

Conjecture [JO] If X is (separable, ∞ -dim) elastic, then $C[0, 1] \hookrightarrow X$.

[Johnson-Odell, '05] A Banach space X is K-elastic if every isomorph of X K-embeds into X;

$$X' \approx X \implies X' \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

Equivalently,

$$Y \, \hookrightarrow \, X \implies Y \stackrel{\mathrm{K}}{\hookrightarrow} X.$$

Say X is *elastic* if it is K-elastic for some $K < \infty$.

Example. C[0,1] is 1-elastic. So if $C[0,1] \hookrightarrow X$, then X is elastic.

Conjecture [JO] If X is (separable, ∞ -dim) elastic, then $C[0, 1] \hookrightarrow X$.

Theorem [Alspach, S.] If X is separable elastic infinite dimensional, then $C[0,1] \hookrightarrow X$.

Given X, the diameter of the isomorphism class

$$D(X) = \sup\{d(X_1, X_2) : X_1 \approx X \approx X_2\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where d is the Banach-Mazur distance.

Given X, the diameter of the isomorphism class

$$D(X) = \sup\{d(X_1, X_2) : X_1 \approx X \approx X_2\}$$

where d is the Banach-Mazur distance.

Theorem [JO] For separable infinite dimensional $X, D(X) = +\infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given X, the diameter of the isomorphism class

$$D(X) = \sup\{d(X_1, X_2) : X_1 \approx X \approx X_2\}$$

where d is the Banach-Mazur distance.

Theorem [JO] For separable infinite dimensional $X, D(X) = +\infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Observe: $D(X) < \infty \implies X'$ is D(X)-elastic for all $X' \approx X$.

So sufficient to prove **Theorem** [JO] If X is separable and X' is K-elastic for all $X' \approx X$, then X is finite dimensional.

So sufficient to prove **Theorem [JO]** If X is separable and X' is K-elastic for all $X' \approx X$, then X is finite dimensional.

Steps of the proof

1. X separable elastic $\implies c_0 \hookrightarrow X$.

(A tricky Bourgain index argument, separability needed here.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

So sufficient to prove **Theorem** [JO] If X is separable and X' is K-elastic for all $X' \approx X$, then X is finite dimensional.

Steps of the proof

1. X separable elastic $\implies c_0 \hookrightarrow X$.

(A tricky Bourgain index argument, separability needed here.)

2. For every $C < \infty$ construct weakly null normalized $(x_n) \in X$ and equivalent norm $|.|_C$ on X so that every subsequence has length n = n(C) blocks $(y_i)_1^n$ which are badly $(\geq C)$ unconditional. (Start with c_0 -sequence, construct a family of bad renormings and embed back using elastic, and use [AOST] to construct a dominating one away from c_0 and ℓ_1 and do Maurey-Rosenthal.)

So sufficient to prove **Theorem [JO]** If X is separable and X' is K-elastic for all $X' \approx X$,

then X is finite dimensional.

Steps of the proof

1. X separable elastic $\implies c_0 \hookrightarrow X$.

(A tricky Bourgain index argument, separability needed here.)

- 2. For every $C < \infty$ construct weakly null normalized $(x_n) \in X$ and equivalent norm $|.|_C$ on X so that every subsequence has length n = n(C) blocks $(y_i)_1^n$ which are badly $(\geq C)$ unconditional. (Start with c_0 -sequence, construct a family of bad renormings and embed back using elastic, and use [AOST] to construct a dominating one away from c_0 and ℓ_1 and do Maurey-Rosenthal.)
- 3. But every X with a normalized basis can be renormed $|.|_n$ so that all blocks of length n are 3 unconditional while the basis is still normalized in $|\cdot|_n$. (*Easy.*)

The new proof of the diameter theorem

Once we prove

$$X$$
 separable elastic $\implies C[0,1] \hookrightarrow X$,

the proof of [JO] becomes an easy observation:

Let (e_i) be a monotone normalized basis in C[0,1]. Let $n \in \mathbb{N}$, and let $|\cdot|_n$ be a renorming of C[0,1] so that every normalized block sequence $(x_i)_1^n$ of (e_i) of length n is 3-unconditional in $|\cdot|_n$ (The easy Step 3 above). By assumption, C[0,1] K-embeds into $(C[0,1], |\cdot|_n)$. Since the basis (e_i) is reproducible, there exists a block sequence (u_i) of the basis in $(C[0,1], |\cdot|_n)$ that is $K + \varepsilon$ equivalent to (e_i) . So then (e_i) must be block n unconditional with constant $3(K + \varepsilon)$. Since n is arbitrary and (e_i) is not unconditional, this is a contradiction.

The Main Theorem. Let X be a separable elastic Banach space. If a sequence of $C_0(\alpha_n)$ spaces embed into X where each $\alpha_n < \omega_1$, then $\left(\sum_{n=1}^{\infty} C_0(\alpha_n)\right)_{c_0}$ embeds into X.

The Main Theorem. Let X be a separable elastic Banach space. If a sequence of $C_0(\alpha_n)$ spaces embed into X where each $\alpha_n < \omega_1$, then $\left(\sum_{n=1}^{\infty} C_0(\alpha_n)\right)_{c_0}$ embeds into X.

This shows $C[0,1] \hookrightarrow X$ since

The Main Theorem. Let X be a separable elastic Banach space. If a sequence of $C_0(\alpha_n)$ spaces embed into X where each $\alpha_n < \omega_1$, then $\left(\sum_{n=1}^{\infty} C_0(\alpha_n)\right)_{c_0}$ embeds into X.

This shows $C[0,1] \hookrightarrow X$ since

•
$$C_0(\omega^{\omega^{\alpha}}) \approx C_0(\omega^{\omega^{\alpha}n})$$
 for all n , and
 $\left(\sum_{n=1}^n C_0(\omega^{\omega^{\alpha}n})\right)_{c_0} \approx C_0(\omega^{\omega^{\alpha+1}}).$ Similar for limit ordinals α .

The Main Theorem. Let X be a separable elastic Banach space. If a sequence of $C_0(\alpha_n)$ spaces embed into X where each $\alpha_n < \omega_1$, then $\left(\sum_{n=1}^{\infty} C_0(\alpha_n)\right)_{c_0}$ embeds into X.

This shows $C[0,1] \hookrightarrow X$ since

•
$$C_0(\omega^{\omega^{\alpha}}) \approx C_0(\omega^{\omega^{\alpha}n})$$
 for all n , and
 $\left(\sum_{n=1}^n C_0(\omega^{\omega^{\alpha}n})\right)_{c_0} \approx C_0(\omega^{\omega^{\alpha+1}})$. Similar for limit ordinals α .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• So the Main theorem yields $C(\alpha) \hookrightarrow X$ for all $\alpha < \omega_1$.

The Main Theorem. Let X be a separable elastic Banach space. If a sequence of $C_0(\alpha_n)$ spaces embed into X where each $\alpha_n < \omega_1$, then $\left(\sum_{n=1}^{\infty} C_0(\alpha_n)\right)_{c_0}$ embeds into X.

This shows $C[0,1] \hookrightarrow X$ since

•
$$C_0(\omega^{\omega^{\alpha}}) \approx C_0(\omega^{\omega^{\alpha}n})$$
 for all n , and
 $\left(\sum_{n=1}^n C_0(\omega^{\omega^{\alpha}n})\right)_{c_0} \approx C_0(\omega^{\omega^{\alpha+1}})$. Similar for limit ordinals α .

- So the Main theorem yields $C(\alpha) \hookrightarrow X$ for all $\alpha < \omega_1$.
- Bourgain. $C(\alpha) \hookrightarrow X$ for all $\alpha < \omega_1 \implies C[0,1] \hookrightarrow X$.

The proof requires

The proof requires

• a 'higher dimensional' Bourgain index argument,

The proof requires

• a 'higher dimensional' Bourgain index argument,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and effective (algorithmic) versions of

The proof requires

• a 'higher dimensional' Bourgain index argument,

and effective (algorithmic) versions of

• the weak injectivity of $C(\alpha)$ (**Pelczynski**)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The proof requires

• a 'higher dimensional' Bourgain index argument,

and effective (algorithmic) versions of

• the weak injectivity of $C(\alpha)$ (**Pelczynski**)

• the reproducibility property of their canonical bases (Lindesntrauss-Pelczynski)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

An ordinal index for direct sums

 $(\sum Y_n)_Z$ -trees \mathcal{T} on X with constants C, D.

An ordinal index for direct sums

 $(\sum Y_n)_Z$ -trees \mathcal{T} on X with constants C, D.

Let Z be a space with a 1-unconditional basis (z_n) , $(\sum Y_n)_Z$ be the direct sum of spaces Y_n with norm $\|\cdot\|_n$ with respect to (z_n) . Consider a tree \mathcal{T} of tuples consisting of pairs of subspaces and isomorphisms

$$((X_1, T_1), (X_2, T_2), \dots, (X_k, T_k)),$$

where $X_n \subseteq X$ and $T_n : X_n \to Y_n$ such that $||T_n|| \leq C$, $||T_n^{-1}|| \leq 1$, and for all $x_n \in X_n$, we have

$$\left\|\sum_{n=1}^{k} x_{n}\right\| \leq \|(T_{n}x_{n})\|_{Z} \leq D\left\|\sum_{n=1}^{k} x_{n}\right\|, \ 1 \leq n \leq k.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Partially order \mathcal{T} by extension.

An ordinal index for direct sums

Theorem. Let Z be a Banach space with a normalized 1-unconditional basis (z_n) , and let X and $Y_n, n \in \mathbb{N}$ be separable Banach spaces. If \mathcal{T} is a $(\sum Y_n)_Z$ -tree in X with index ω_1 and constants C, D, then X contains a subspace which is D-isomorphic to $(\sum Y_n)_Z$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Want to show for all $\epsilon > 0$ and limit $\alpha < \omega_1$, X contains a $\left(\sum_{n=1}^{\infty} Y_n\right)_{c_0}$ -tree of order at least α with both constants $K(1 + \epsilon)$.

Want to show for all $\epsilon > 0$ and limit $\alpha < \omega_1$, X contains a $\left(\sum_{n=1}^{\infty} Y_n\right)_{c_0}$ -tree of order at least α with both constants $K(1 + \epsilon)$.

For this construct Banach spaces V^{α} , $\alpha < \omega_1$ which are isomorphic to subspaces of X and contain $\left(\sum_{n=N}^{\infty} Y_n\right)_{c_0}$ -trees of order α for each $N \geq 1$.

Want to show for all $\epsilon > 0$ and limit $\alpha < \omega_1$, X contains a $\left(\sum_{n=1}^{\infty} Y_n\right)_{c_0}$ -tree of order at least α with both constants $K(1 + \epsilon)$.

For this construct Banach spaces V^{α} , $\alpha < \omega_1$ which are isomorphic to subspaces of X and contain $\left(\sum_{n=N}^{\infty} Y_n\right)_{c_0}$ -trees of order α for each $N \ge 1$.

We will show each Y_n has a **good basis** (complementably reproducible) $(y_{n,k})_{k=1}^{\infty}$. This means that for every embeddings $T_n: Y_n \to X$ with $||T_n|| \leq K$ and $||T_n^{-1}|| \leq 1$, we can find subsequences $(y_{n,k})_{k \in K_n}$ such that

•
$$(y_{n,k})_{k \in K_n} \approx (y_{n,k})_{k \in \mathbb{N}}$$
, for all $n \in \mathbb{N}$,

Want to show for all $\epsilon > 0$ and limit $\alpha < \omega_1$, X contains a $\left(\sum_{n=1}^{\infty} Y_n\right)_{c_0}$ -tree of order at least α with both constants $K(1 + \epsilon)$.

For this construct Banach spaces V^{α} , $\alpha < \omega_1$ which are isomorphic to subspaces of X and contain $\left(\sum_{n=N}^{\infty} Y_n\right)_{c_0}$ -trees of order α for each $N \ge 1$.

We will show each Y_n has a **good basis** (complementably reproducible) $(y_{n,k})_{k=1}^{\infty}$. This means that for every embeddings $T_n: Y_n \to X$ with $||T_n|| \leq K$ and $||T_n^{-1}|| \leq 1$, we can find subsequences $(y_{n,k})_{k \in K_n}$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $(y_{n,k})_{k \in K_n} \approx (y_{n,k})_{k \in \mathbb{N}}$, for all $n \in \mathbb{N}$,
- $(T_n y_{n,k})_{k \in K_n, n \in \mathbb{N}}$ is (equivalent to) a block basis,

Want to show for all $\epsilon > 0$ and limit $\alpha < \omega_1$, X contains a $\left(\sum_{n=1}^{\infty} Y_n\right)_{c_0}$ -tree of order at least α with both constants $K(1 + \epsilon)$.

For this construct Banach spaces V^{α} , $\alpha < \omega_1$ which are isomorphic to subspaces of X and contain $\left(\sum_{n=N}^{\infty} Y_n\right)_{c_0}$ -trees of order α for each $N \ge 1$.

We will show each Y_n has a **good basis** (complementably reproducible) $(y_{n,k})_{k=1}^{\infty}$. This means that for every embeddings $T_n: Y_n \to X$ with $||T_n|| \leq K$ and $||T_n^{-1}|| \leq 1$, we can find subsequences $(y_{n,k})_{k \in K_n}$ such that

- $(y_{n,k})_{k \in K_n} \approx (y_{n,k})_{k \in \mathbb{N}}$, for all $n \in \mathbb{N}$,
- $(T_n y_{n,k})_{k \in K_n, n \in \mathbb{N}}$ is (equivalent to) a block basis,
- for each *m* there is a projection $||P_m|| \leq K$ from $V = [T_n y_{n,k} : k \in K_n, n \in \mathbb{N}]$ onto $[T_m y_{m,k} : k \in K_m]$ with $P_m y \approx 0$ for all $y \in [T_n y_{n,k} : k \in K_n, n \in \mathbb{N}, n \neq m]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Construction of V^ω

Construction of V^ω

For each $i \in \mathbb{N}$ define a norm $\|\cdot\|_i$ on $V = [T_n y_{n,k} : k \in K_n, n \in \mathbb{N}]$ by (reseting constants)

$$\|y\|_{i} = \sup\left\{\|R_{m}T_{m}^{-1}P_{m}y\| : m \in \mathbb{N}\right\} \vee \frac{\|y\|}{iC},$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where C is good basis constant, R_n be the basis equivalence from $(y_{n,k})_{k \in K_n}$ to $(y_{n,k})_{k=1}^{\infty}$.

A glimpse into the proof

Construction of V^ω

For each $i \in \mathbb{N}$ define a norm $\|\cdot\|_i$ on $V = [T_n y_{n,k} : k \in K_n, n \in \mathbb{N}]$ by (reseting constants)

$$\|y\|_{i} = \sup\left\{\|R_{m}T_{m}^{-1}P_{m}y\| : m \in \mathbb{N}\right\} \vee \frac{\|y\|}{iC},$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where C is good basis constant, R_n be the basis equivalence from $(y_{n,k})_{k \in K_n}$ to $(y_{n,k})_{k=1}^{\infty}$. This is an equivalent norm on V. A glimpse into the proof

Construction of V^{ω}

For each $i \in \mathbb{N}$ define a norm $\|\cdot\|_i$ on $V = [T_n y_{n,k} : k \in K_n, n \in \mathbb{N}]$ by (reseting constants)

$$\|y\|_{i} = \sup\left\{\|R_{m}T_{m}^{-1}P_{m}y\| : m \in \mathbb{N}\right\} \vee \frac{\|y\|}{iC},$$

where C is good basis constant, R_n be the basis equivalence from $(y_{n,k})_{k \in K_n}$ to $(y_{n,k})_{k=1}^{\infty}$. This is an equivalent norm on V. For each *i*, let $V^i = (V, \|.\|_i)$. V^i 's have good bases. Embed back into X using K-elastic, reset the constants to get V^{ω} .

The standard bases $(x_n^{\alpha})_{n=0}^{\infty}$ of $C(\omega^{\alpha})$ are described inductively.

The standard bases $(x_n^{\alpha})_{n=0}^{\infty}$ of $C(\omega^{\alpha})$ are described inductively.

• For
$$C(\omega)$$
, let $x_0^1 = 1_{(0,\omega]}$ and $x_n^1 = 1_{\{n\}}$ for all $n < \omega$.

The standard bases $(x_n^{\alpha})_{n=0}^{\infty}$ of $C(\omega^{\alpha})$ are described inductively.

- For $C(\omega)$, let $x_0^1 = 1_{(0,\omega]}$ and $x_n^1 = 1_{\{n\}}$ for all $n < \omega$.
- If the basis $(x_n^{\gamma-1})_n$ for $C(\omega^{\gamma-1})$ is defined for each $k < \omega$ let $x_{k,n}^{\gamma-1}$ have support in $(\omega^{\gamma}(k-1), \omega^{\gamma}k]$ and satisfy

$$x_{k,n}^{\gamma-1}(\rho) = x_n^{\gamma-1}(\rho - \omega^{\gamma-1}(k-1)) \text{ for } \omega^{\gamma-1}(k-1) < \rho \le \omega^{\gamma-1}k.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The standard bases $(x_n^{\alpha})_{n=0}^{\infty}$ of $C(\omega^{\alpha})$ are described inductively.

- For $C(\omega)$, let $x_0^1 = 1_{(0,\omega]}$ and $x_n^1 = 1_{\{n\}}$ for all $n < \omega$.
- If the basis $(x_n^{\gamma-1})_n$ for $C(\omega^{\gamma-1})$ is defined for each $k < \omega$ let $x_{k,n}^{\gamma-1}$ have support in $(\omega^{\gamma}(k-1), \omega^{\gamma}k]$ and satisfy

$$x_{k,n}^{\gamma-1}(\rho) = x_n^{\gamma-1}(\rho - \omega^{\gamma-1}(k-1)) \text{ for } \omega^{\gamma-1}(k-1) < \rho \le \omega^{\gamma-1}k.$$

• If γ is a limit fix $(\gamma_k) \nearrow \gamma$, and let $x_{k,n}^{\gamma}$ have support in $(\omega^{\gamma_{k-1}}, \omega^{\gamma_k}]$ and satisfy

$$x_{k,n}(\rho) = x_n^{\gamma_k}(\rho - \omega^{\gamma_{k-1}}), \text{ for } \omega^{\gamma_{k-1}} < \rho \le \omega^{\gamma_k}$$

<ロト <四ト <注入 <注下 <注下 <

Put $x_0^{\gamma} = 1_{(0,\omega^{\gamma}]}$ and let $(x_j^{\gamma})_{j\geq 1}$ be the collection defined.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For each $\alpha < \omega_1$

• $(x_n^{\alpha})_{n=1}^{\alpha}$ is a standard basis for $C_0(\omega^{\alpha})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For each $\alpha < \omega_1$

- $(x_n^{\alpha})_{n=1}^{\alpha}$ is a standard basis for $C_0(\omega^{\alpha})$.
- $(x_n^{\alpha})_{n=1}^{\alpha}$ is a shrinking basis.

For each $\alpha < \omega_1$

- $(x_n^{\alpha})_{n=1}^{\alpha}$ is a standard basis for $C_0(\omega^{\alpha})$.
- $(x_n^{\alpha})_{n=1}^{\alpha}$ is a shrinking basis.

It has many subsequences 1-equivalent to the basis. In fact,

Proposition. The basis $(x_n^{\alpha})_{n=1}^{\infty}$ is two-player subsequentially 1-reproducible.

For each $\alpha < \omega_1$

- $(x_n^{\alpha})_{n=1}^{\alpha}$ is a standard basis for $C_0(\omega^{\alpha})$.
- $(x_n^{\alpha})_{n=1}^{\alpha}$ is a shrinking basis.

It has many subsequences 1-equivalent to the basis. In fact,

Proposition. The basis $(x_n^{\alpha})_{n=1}^{\infty}$ is two-player subsequentially 1-reproducible.

This means that for all $\epsilon_k > 0$ and embedding $T : C_0(\omega^{\alpha}) \to Y$, there is a winning strategy for the second player in a two-player game in Y for picking a subsequence $(Tx_{n_k})_{k=1}^{\infty}$ and blocks $(w_k)_{k=1}^{\infty}$ of the basis (y_n) of Y such that

$$\|Tx_{n_k} - w_k\| < \epsilon_k \text{ for each } k \in \mathbb{N},$$

2 (x_{n_k}) is 1-equivalent to (x_n) .

Let $T: C_0(\omega^{\alpha}) \to X$ be an isomorphic embedding, and for $\rho \leq \omega^{\alpha}$ let δ_{ρ} Dirac functional. Let $(y_{\rho}^*)_{\rho \leq \omega^{\alpha}} \subset 2 ||(T^*)^{-1}|| B_{X^*}$ satisfy $T^* y_{\rho}^* = \delta_{\rho}$ for all $\rho \leq \omega^{\alpha}$. Then there is a compact subset Γ of $[1, \omega^{\alpha}]$ homeomorphic to $[1, \omega^{\alpha}]$ and a (weak^{*}) compact subset $(w_{\rho}^*)_{\rho \in \Gamma}$ of Y^* such that

Let $T: C_0(\omega^{\alpha}) \to X$ be an isomorphic embedding, and for $\rho \leq \omega^{\alpha}$ let δ_{ρ} Dirac functional. Let $(y_{\rho}^*)_{\rho \leq \omega^{\alpha}} \subset 2 ||(T^*)^{-1}|| B_{X^*}$ satisfy $T^* y_{\rho}^* = \delta_{\rho}$ for all $\rho \leq \omega^{\alpha}$. Then there is a compact subset Γ of $[1, \omega^{\alpha}]$ homeomorphic to $[1, \omega^{\alpha}]$ and a (weak^{*}) compact subset $(w_{\rho}^*)_{\rho \in \Gamma}$ of Y^* such that

• $S^*w_{\rho}^* = \delta_{\rho}$ for all $\rho \in \Gamma$, the map $\rho \to w_{\rho}^*$ is a homeomorphism,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Let $T: C_0(\omega^{\alpha}) \to X$ be an isomorphic embedding, and for $\rho \leq \omega^{\alpha}$ let δ_{ρ} Dirac functional. Let $(y_{\rho}^*)_{\rho \leq \omega^{\alpha}} \subset 2 ||(T^*)^{-1}|| B_{X^*}$ satisfy $T^* y_{\rho}^* = \delta_{\rho}$ for all $\rho \leq \omega^{\alpha}$. Then there is a compact subset Γ of $[1, \omega^{\alpha}]$ homeomorphic to $[1, \omega^{\alpha}]$ and a (weak^{*}) compact subset $(w_{\rho}^*)_{\rho \in \Gamma}$ of Y^* such that

• $S^*w_{\rho}^* = \delta_{\rho}$ for all $\rho \in \Gamma$, the map $\rho \to w_{\rho}^*$ is a homeomorphism,

• there is a subsequence of $(x_m^{\alpha})_{m \in M}$ equivalent to (x_n^{α}) , with contractively complemented closed linear span such that the restriction to Γ induces an isomorphism R from the span of the subsequence onto $C_0(\Gamma)$ and $R^*\delta_{\rho} = S^* w_{\rho}^*$ for all $\rho \in \Gamma$.

The mapping $S : [x_m : m \in M] \to C_0(\Gamma)$ where $\Gamma = \{\gamma(m) : m \in M\}$ satisfying $(Sx_m)(\gamma(k)) = x_m(\gamma(k))$ is a surjective isometry,

The mapping $S : [x_m : m \in M] \to C_0(\Gamma)$ where $\Gamma = \{\gamma(m) : m \in M\}$ satisfying $(Sx_m)(\gamma(k)) = x_m(\gamma(k))$ is a surjective isometry,

and the projection P is of the form TEV where $V: X \to C_0(\Gamma)$ is defined by $(Vz)(\gamma(m)) = w_m^*(z)$ for all $z \in X$, E is the extension operator which maps $C_0(\Gamma)$ into $C_0(\omega^{\alpha})$ with range in $[x_m: m \in M]$ with SE = I.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

The mapping $S : [x_m : m \in M] \to C_0(\Gamma)$ where $\Gamma = \{\gamma(m) : m \in M\}$ satisfying $(Sx_m)(\gamma(k)) = x_m(\gamma(k))$ is a surjective isometry,

and the projection P is of the form TEV where $V: X \to C_0(\Gamma)$ is defined by $(Vz)(\gamma(m)) = w_m^*(z)$ for all $z \in X$, E is the extension operator which maps $C_0(\Gamma)$ into $C_0(\omega^{\alpha})$ with range in $[x_m: m \in M]$ with SE = I.

Explicitly

$$E_f(\beta) = \begin{cases} f(\beta) & \text{if } \beta \in \Gamma, \\ f(\gamma(m)) & \text{if } x_m(\beta) = 1, x_{m'}(\beta) = 0 \text{ for all } m' > m, \\ 0 & \text{else.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

The mapping $S : [x_m : m \in M] \to C_0(\Gamma)$ where $\Gamma = \{\gamma(m) : m \in M\}$ satisfying $(Sx_m)(\gamma(k)) = x_m(\gamma(k))$ is a surjective isometry,

and the projection P is of the form TEV where $V: X \to C_0(\Gamma)$ is defined by $(Vz)(\gamma(m)) = w_m^*(z)$ for all $z \in X$, E is the extension operator which maps $C_0(\Gamma)$ into $C_0(\omega^{\alpha})$ with range in $[x_m: m \in M]$ with SE = I.

Explicitly

$$E_f(\beta) = \begin{cases} f(\beta) & \text{if } \beta \in \Gamma, \\ f(\gamma(m)) & \text{if } x_m(\beta) = 1, x_{m'}(\beta) = 0 \text{ for all } m' > m, \\ 0 & \text{else.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

The norm of the projection P is at most $||T|| \sup_{m \in M} ||w_m^*||$.

Proposition. Let α be a countable ordinal. A standard basis $(x_n^{\alpha})_{n=1}^{\infty}$ of $C_0(\omega^{\alpha})$ is two-player 2-complementably subsequentially 1-reproducible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Proposition. Let α be a countable ordinal. A standard basis $(x_n^{\alpha})_{n=1}^{\infty}$ of $C_0(\omega^{\alpha})$ is two-player 2-complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon > 0$, T be an isomorphic embedding of X into Y with a basis (y_i) , and (u_j) be a block basis of (y_i) satisfying certain conditions.

Proposition. Let α be a countable ordinal. A standard basis $(x_n^{\alpha})_{n=1}^{\infty}$ of $C_0(\omega^{\alpha})$ is two-player 2-complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon > 0$, T be an isomorphic embedding of X into Y with a basis (y_i) , and (u_j) be a block basis of (y_i) satisfying certain conditions.

On kth turn, the first player chooses a tail subspace $[y_i]_{i \ge t_k}$ and a block u_{j_k} with min supp $u_{j_k} > l_{k-1}$ and the second player chooses a block w_k in $[y_i]_{i \ge t_k}$ and an integer $l_k > \max \operatorname{supp} u_{j_k}$ (put $l_0 = 0$).

Proposition. Let α be a countable ordinal. A standard basis $(x_n^{\alpha})_{n=1}^{\infty}$ of $C_0(\omega^{\alpha})$ is two-player 2-complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon > 0$, T be an isomorphic embedding of X into Y with a basis (y_i) , and (u_j) be a block basis of (y_i) satisfying certain conditions.

On kth turn, the first player chooses a tail subspace $[y_i]_{i \ge t_k}$ and a block u_{j_k} with min supp $u_{j_k} > l_{k-1}$ and the second player chooses a block w_k in $[y_i]_{i \ge t_k}$ and an integer $l_k > \max \operatorname{supp} u_{j_k}$ (put $l_0 = 0$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The second player wins if

Proposition. Let α be a countable ordinal. A standard basis $(x_n^{\alpha})_{n=1}^{\infty}$ of $C_0(\omega^{\alpha})$ is two-player 2-complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon > 0$, T be an isomorphic embedding of X into Y with a basis (y_i) , and (u_j) be a block basis of (y_i) satisfying certain conditions.

On kth turn, the first player chooses a tail subspace $[y_i]_{i \ge t_k}$ and a block u_{j_k} with min supp $u_{j_k} > l_{k-1}$ and the second player chooses a block w_k in $[y_i]_{i \ge t_k}$ and an integer $l_k > \max \operatorname{supp} u_{j_k}$ (put $l_0 = 0$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The second player wins if (i) $\sum_{k=1}^{\infty} ||Tx_{n_k} - w_k|| < \epsilon$ for some (n_k) ;

Proposition. Let α be a countable ordinal. A standard basis $(x_n^{\alpha})_{n=1}^{\infty}$ of $C_0(\omega^{\alpha})$ is two-player 2-complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon > 0$, T be an isomorphic embedding of X into Y with a basis (y_i) , and (u_j) be a block basis of (y_i) satisfying certain conditions.

On kth turn, the first player chooses a tail subspace $[y_i]_{i \ge t_k}$ and a block u_{j_k} with min supp $u_{j_k} > l_{k-1}$ and the second player chooses a block w_k in $[y_i]_{i \ge t_k}$ and an integer $l_k > \max \operatorname{supp} u_{j_k}$ (put $l_0 = 0$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The second player wins if (i) $\sum_{k=1}^{\infty} ||Tx_{n_k} - w_k|| < \epsilon$ for some (n_k) ; (ii) (x_{n_k}) is 1-equivalent to (x_n) ; and

Proposition. Let α be a countable ordinal. A standard basis $(x_n^{\alpha})_{n=1}^{\infty}$ of $C_0(\omega^{\alpha})$ is two-player 2-complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon > 0$, T be an isomorphic embedding of X into Y with a basis (y_i) , and (u_j) be a block basis of (y_i) satisfying certain conditions.

On kth turn, the first player chooses a tail subspace $[y_i]_{i \ge t_k}$ and a block u_{j_k} with min supp $u_{j_k} > l_{k-1}$ and the second player chooses a block w_k in $[y_i]_{i \ge t_k}$ and an integer $l_k > \max \operatorname{supp} u_{j_k}$ (put $l_0 = 0$).

The second player wins if (i) $\sum_{k=1}^{\infty} ||Tx_{n_k} - w_k|| < \epsilon$ for some (n_k) ;

(ii) (x_{n_k}) is 1-equivalent to (x_n) ; and

(iii) there is a projection P from Y onto $[w_k]$ with $||P|| \le 2||T|| ||T^{-1}||$, and $||Pz|| < \epsilon ||z||$ for all $z \in [u_{j_k}]$.