# Separable elastic Banach spaces are universal 

Bünyamin Sarı, University of North Texas<br>joint with Dale Alspach

Warwick, 2015

## Elastic Banach space

[Johnson-Odell, '05] A Banach space $X$ is $K$-elastic if every isomorph of $X K$-embeds into $X$;

$$
X^{\prime} \approx X \Longrightarrow X^{\prime} \stackrel{\mathrm{K}}{\hookrightarrow} X .
$$

## Elastic Banach space

［Johnson－Odell，＇05］A Banach space $X$ is $K$－elastic if every isomorph of $X K$－embeds into $X$ ；

$$
X^{\prime} \approx X \Longrightarrow X^{\prime} \stackrel{\mathrm{K}}{\hookrightarrow} X .
$$

Equivalently，

$$
Y \hookrightarrow X \Longrightarrow Y \stackrel{\mathrm{~K}}{\hookrightarrow} X .
$$

## Elastic Banach space

[Johnson-Odell, '05] A Banach space $X$ is $K$-elastic if every isomorph of $X K$-embeds into $X$;

$$
X^{\prime} \approx X \Longrightarrow X^{\prime} \stackrel{\mathrm{K}}{\hookrightarrow} X .
$$

Equivalently,

$$
Y \hookrightarrow X \Longrightarrow Y \stackrel{\mathrm{~K}}{\hookrightarrow} X .
$$

Say $X$ is elastic if it is $K$-elastic for some $K<\infty$.

## Elastic Banach space

[Johnson-Odell, '05] A Banach space $X$ is $K$-elastic if every isomorph of $X K$-embeds into $X$;

$$
X^{\prime} \approx X \Longrightarrow X^{\prime} \stackrel{\mathrm{K}}{\hookrightarrow} X .
$$

Equivalently,

$$
Y \hookrightarrow X \Longrightarrow Y \stackrel{\mathrm{~K}}{\hookrightarrow} X .
$$

Say $X$ is elastic if it is $K$-elastic for some $K<\infty$.

Example. $C[0,1]$ is 1-elastic.

## Elastic Banach space

[Johnson-Odell, '05] A Banach space $X$ is $K$-elastic if every isomorph of $X \quad K$-embeds into $X$;

$$
X^{\prime} \approx X \Longrightarrow X^{\prime} \stackrel{K}{\longrightarrow} X .
$$

Equivalently,

$$
Y \hookrightarrow X \Longrightarrow Y \stackrel{\mathrm{~K}}{\hookrightarrow} X .
$$

Say $X$ is elastic if it is $K$-elastic for some $K<\infty$.

Example. $C[0,1]$ is 1-elastic. So if $C[0,1] \hookrightarrow X$, then $X$ is elastic.

## Elastic Banach space

[Johnson-Odell, '05] A Banach space $X$ is $K$-elastic if every isomorph of $X \quad K$-embeds into $X$;

$$
X^{\prime} \approx X \Longrightarrow X^{\prime} \stackrel{K}{\longrightarrow} X .
$$

Equivalently,

$$
Y \hookrightarrow X \Longrightarrow Y \stackrel{\mathrm{~K}}{\hookrightarrow} X .
$$

Say $X$ is elastic if it is $K$-elastic for some $K<\infty$.

Example. $C[0,1]$ is 1-elastic. So if $C[0,1] \hookrightarrow X$, then $X$ is elastic.
Conjecture [JO] If $X$ is (separable, $\infty$-dim) elastic, then $C[0,1] \hookrightarrow X$.

## Elastic Banach space

[Johnson-Odell, '05] A Banach space $X$ is $K$-elastic if every isomorph of $X \quad K$-embeds into $X$;

$$
X^{\prime} \approx X \Longrightarrow X^{\prime} \stackrel{K}{\hookrightarrow} X .
$$

Equivalently,

$$
Y \hookrightarrow X \Longrightarrow Y \stackrel{\mathrm{~K}}{\hookrightarrow} X .
$$

Say $X$ is elastic if it is $K$-elastic for some $K<\infty$.

Example. $C[0,1]$ is 1-elastic. So if $C[0,1] \hookrightarrow X$, then $X$ is elastic.

Conjecture [JO] If $X$ is (separable, $\infty$-dim) elastic, then $C[0,1] \hookrightarrow X$.
Theorem [Alspach, S.] If $X$ is separable elastic infinite dimensional, then $C[0,1] \hookrightarrow X$.

## The context this notion arises

Given $X$, the diameter of the isomorphism class

$$
D(X)=\sup \left\{d\left(X_{1}, X_{2}\right): X_{1} \approx X \approx X_{2}\right\}
$$

where $d$ is the Banach-Mazur distance.

## The context this notion arises

Given $X$, the diameter of the isomorphism class

$$
D(X)=\sup \left\{d\left(X_{1}, X_{2}\right): X_{1} \approx X \approx X_{2}\right\}
$$

where $d$ is the Banach-Mazur distance.

Theorem [JO] For separable infinite dimensional $X, D(X)=+\infty$.

## The context this notion arises

Given $X$ ，the diameter of the isomorphism class

$$
D(X)=\sup \left\{d\left(X_{1}, X_{2}\right): X_{1} \approx X \approx X_{2}\right\}
$$

where $d$ is the Banach－Mazur distance．

Theorem［JO］For separable infinite dimensional $X, D(X)=+\infty$ ．

Observe：$D(X)<\infty \Longrightarrow X^{\prime}$ is $D(X)$－elastic for all $X^{\prime} \approx X$ ．

## The context this notion arises

So sufficient to prove
Theorem [JO] If $X$ is separable and $X^{\prime}$ is $K$-elastic for all $X^{\prime} \approx X$, then $X$ is finite dimensional.

## The context this notion arises

So sufficient to prove
Theorem［JO］If $X$ is separable and $X^{\prime}$ is $K$－elastic for all $X^{\prime} \approx X$ ， then $X$ is finite dimensional．

## Steps of the proof

1．$X$ separable elastic $\Longrightarrow c_{0} \hookrightarrow X$ ．
（A tricky Bourgain index argument，separability needed here．）

## The context this notion arises

So sufficient to prove
Theorem [JO] If $X$ is separable and $X^{\prime}$ is $K$-elastic for all $X^{\prime} \approx X$, then $X$ is finite dimensional.

## Steps of the proof

1. $X$ separable elastic $\Longrightarrow c_{0} \hookrightarrow X$.
(A tricky Bourgain index argument, separability needed here.)
2. For every $C<\infty$ construct weakly null normalized $\left(x_{n}\right) \in X$ and equivalent norm $|\cdot|_{C}$ on $X$ so that every subsequence has length $n=n(C)$ blocks $\left(y_{i}\right)_{1}^{n}$ which are badly ( $\geq C$ ) unconditional. (Start with $c_{0}$-sequence, construct a family of bad renormings and embed back using elastic, and use [AOST] to construct a dominating one away from $c_{0}$ and $\ell_{1}$ and do Maurey-Rosenthal.)

## The context this notion arises

So sufficient to prove
Theorem [JO] If $X$ is separable and $X^{\prime}$ is $K$-elastic for all $X^{\prime} \approx X$, then $X$ is finite dimensional.

## Steps of the proof

1. $X$ separable elastic $\Longrightarrow c_{0} \hookrightarrow X$.
(A tricky Bourgain index argument, separability needed here.)
2. For every $C<\infty$ construct weakly null normalized $\left(x_{n}\right) \in X$ and equivalent norm $|\cdot|_{C}$ on $X$ so that every subsequence has length $n=n(C)$ blocks $\left(y_{i}\right)_{1}^{n}$ which are badly ( $\geq C$ ) unconditional. (Start with $c_{0}$-sequence, construct a family of bad renormings and embed back using elastic, and use [AOST] to construct a dominating one away from $c_{0}$ and $\ell_{1}$ and do Maurey-Rosenthal.)
3. But every $X$ with a normalized basis can be renormed $|\cdot|_{n}$ so that all blocks of length $n$ are 3 unconditional while the basis is still normalized in $|\cdot|_{n}$.
(Easy.)

## The new proof of the diameter theorem

Once we prove

$$
X \text { separable elastic } \Longrightarrow C[0,1] \hookrightarrow X,
$$

the proof of [JO] becomes an easy observation:

Let $\left(e_{i}\right)$ be a monotone normalized basis in $C[0,1]$. Let $n \in \mathbb{N}$, and let $|\cdot|_{n}$ be a renorming of $C[0,1]$ so that every normalized block sequence $\left(x_{i}\right)_{1}^{n}$ of $\left(e_{i}\right)$ of length $n$ is 3 -unconditional in $|\cdot|_{n}$ (The easy Step 3 above). By assumption, $C[0,1] K$-embeds into $\left(C[0,1],|\cdot|_{n}\right)$. Since the basis $\left(e_{i}\right)$ is reproducible, there exists a block sequence $\left(u_{i}\right)$ of the basis in $\left(C[0,1],|\cdot|_{n}\right)$ that is $K+\varepsilon$ equivalent to $\left(e_{i}\right)$. So then $\left(e_{i}\right)$ must be block $n$ unconditional with constant $3(K+\varepsilon)$. Since $n$ is arbitrary and $\left(e_{i}\right)$ is not unconditional, this is a contradiction.

## Embedding $C[0,1]$

The Main Theorem. Let $X$ be a separable elastic Banach space. If a sequence of $C_{0}\left(\alpha_{n}\right)$ spaces embed into $X$ where each $\alpha_{n}<\omega_{1}$, then $\left(\sum_{n=1}^{\infty} C_{0}\left(\alpha_{n}\right)\right)_{c_{0}}$ embeds into $X$.

## Embedding $C[0,1]$

The Main Theorem．Let $X$ be a separable elastic Banach space．If a sequence of $C_{0}\left(\alpha_{n}\right)$ spaces embed into $X$ where each $\alpha_{n}<\omega_{1}$ ，then $\left(\sum_{n=1}^{\infty} C_{0}\left(\alpha_{n}\right)\right)_{c_{0}}$ embeds into $X$ ．

This shows $C[0,1] \hookrightarrow X$ since

## Embedding $C[0,1]$

The Main Theorem. Let $X$ be a separable elastic Banach space. If a sequence of $C_{0}\left(\alpha_{n}\right)$ spaces embed into $X$ where each $\alpha_{n}<\omega_{1}$, then $\left(\sum_{n=1}^{\infty} C_{0}\left(\alpha_{n}\right)\right)_{c_{0}}$ embeds into $X$.

This shows $C[0,1] \hookrightarrow X$ since

- $C_{0}\left(\omega^{\omega^{\alpha}}\right) \approx C_{0}\left(\omega^{\omega^{\alpha} n}\right)$ for all $n$, and

$$
\left(\sum_{n=1}^{n} C_{0}\left(\omega^{\omega^{\alpha} n}\right)\right)_{c_{0}} \approx C_{0}\left(\omega^{\omega^{\alpha+1}}\right) . \text { Similar for limit ordinals } \alpha
$$

## Embedding $C[0,1]$

The Main Theorem．Let $X$ be a separable elastic Banach space．If a sequence of $C_{0}\left(\alpha_{n}\right)$ spaces embed into $X$ where each $\alpha_{n}<\omega_{1}$ ，then $\left(\sum_{n=1}^{\infty} C_{0}\left(\alpha_{n}\right)\right)_{c_{0}}$ embeds into $X$ ．

This shows $C[0,1] \hookrightarrow X$ since
－$C_{0}\left(\omega^{\omega^{\alpha}}\right) \approx C_{0}\left(\omega^{\omega^{\alpha} n}\right)$ for all $n$ ，and $\left(\sum_{n=1}^{n} C_{0}\left(\omega^{\omega^{\alpha} n}\right)\right)_{c_{0}} \approx C_{0}\left(\omega^{\omega^{\alpha+1}}\right)$ ．Similar for limit ordinals $\alpha$ ．
－So the Main theorem yields $C(\alpha) \hookrightarrow X$ for all $\alpha<\omega_{1}$ ．

## Embedding $C[0,1]$

The Main Theorem. Let $X$ be a separable elastic Banach space. If a sequence of $C_{0}\left(\alpha_{n}\right)$ spaces embed into $X$ where each $\alpha_{n}<\omega_{1}$, then $\left(\sum_{n=1}^{\infty} C_{0}\left(\alpha_{n}\right)\right)_{c_{0}}$ embeds into $X$.

This shows $C[0,1] \hookrightarrow X$ since

- $C_{0}\left(\omega^{\omega^{\alpha}}\right) \approx C_{0}\left(\omega^{\omega^{\alpha} n}\right)$ for all $n$, and
$\left(\sum_{n=1}^{n} C_{0}\left(\omega^{\omega^{\alpha} n}\right)\right)_{c_{0}} \approx C_{0}\left(\omega^{\omega^{\alpha+1}}\right)$. Similar for limit ordinals $\alpha$.
- So the Main theorem yields $C(\alpha) \hookrightarrow X$ for all $\alpha<\omega_{1}$.
- Bourgain. $C(\alpha) \hookrightarrow X$ for all $\alpha<\omega_{1} \Longrightarrow C[0,1] \hookrightarrow X$.

Embedding $C[0,1]$

The proof requires

## Embedding $C[0,1]$

The proof requires

- a 'higher dimensional' Bourgain index argument,


## Embedding $C[0,1]$

The proof requires

- a 'higher dimensional' Bourgain index argument, and effective (algorithmic) versions of


## Embedding $C[0,1]$

The proof requires

- a 'higher dimensional' Bourgain index argument,
and effective (algorithmic) versions of
- the weak injectivity of $C(\alpha)$ (Pelczynski)


## Embedding $C[0,1]$

The proof requires
－a＇higher dimensional＇Bourgain index argument，
and effective（algorithmic）versions of
－the weak injectivity of $C(\alpha)$（Pelczynski）
－the reproducibility property of their canonical bases
（Lindesntrauss－Pelczynski）

## An ordinal index for direct sums

$\left(\sum Y_{n}\right)_{Z}$－trees $\mathcal{T}$ on $X$ with constants $C, D$ ．

## An ordinal index for direct sums

$\left(\sum Y_{n}\right)_{z}$-trees $\mathcal{T}$ on $X$ with constants $C, D$.

Let $Z$ be a space with a 1-unconditional basis $\left(z_{n}\right),\left(\sum Y_{n}\right)_{Z}$ be the direct sum of spaces $Y_{n}$ with norm $\|\cdot\|_{n}$ with respect to $\left(z_{n}\right)$. Consider a tree $\mathcal{T}$ of tuples consisting of pairs of subspaces and isomorphisms

$$
\left(\left(X_{1}, T_{1}\right),\left(X_{2}, T_{2}\right), \ldots,\left(X_{k}, T_{k}\right)\right)
$$

where $X_{n} \subseteq X$ and $T_{n}: X_{n} \rightarrow Y_{n}$ such that $\left\|T_{n}\right\| \leq C,\left\|T_{n}^{-1}\right\| \leq 1$, and for all $x_{n} \in X_{n}$, we have

$$
\left\|\sum_{n=1}^{k} x_{n}\right\| \leq\left\|\left(T_{n} x_{n}\right)\right\|_{Z} \leq D\left\|\sum_{n=1}^{k} x_{n}\right\|, 1 \leq n \leq k
$$

Partially order $\mathcal{T}$ by extension.

## An ordinal index for direct sums

Theorem. Let $Z$ be a Banach space with a normalized 1-unconditional basis $\left(z_{n}\right)$, and let $X$ and $Y_{n}, n \in \mathbb{N}$ be separable Banach spaces. If $\mathcal{T}$ is a $\left(\sum Y_{n}\right)_{Z}$-tree in $X$ with index $\omega_{1}$ and constants $C, D$, then $X$ contains a subspace which is $D$-isomorphic to $\left(\sum Y_{n}\right)_{Z}$.

## A glimpse into the proof

Want to show for all $\epsilon>0$ and limit $\alpha<\omega_{1}, X$ contains a $\left(\sum_{n=1}^{\infty} Y_{n}\right)_{c_{0}}$-tree of order at least $\alpha$ with both constants $K(1+\epsilon)$.

## A glimpse into the proof

Want to show for all $\epsilon>0$ and limit $\alpha<\omega_{1}, X$ contains a $\left(\sum_{n=1}^{\infty} Y_{n}\right)_{c_{0}}$-tree of order at least $\alpha$ with both constants $K(1+\epsilon)$.

For this construct Banach spaces $V^{\alpha}, \alpha<\omega_{1}$ which are isomorphic to subspaces of $X$ and contain $\left(\sum_{n=N}^{\infty} Y_{n}\right)_{c_{0}}$-trees of order $\alpha$ for each $N \geq 1$.

## A glimpse into the proof

Want to show for all $\epsilon>0$ and limit $\alpha<\omega_{1}, X$ contains a $\left(\sum_{n=1}^{\infty} Y_{n}\right)_{c_{0}}$-tree of order at least $\alpha$ with both constants $K(1+\epsilon)$.

For this construct Banach spaces $V^{\alpha}, \alpha<\omega_{1}$ which are isomorphic to subspaces of $X$ and contain $\left(\sum_{n=N}^{\infty} Y_{n}\right)_{c_{0}}$-trees of order $\alpha$ for each $N \geq 1$.

We will show each $Y_{n}$ has a good basis (complementably reproducible) $\left(y_{n, k}\right)_{k=1}^{\infty}$. This means that for every embeddings $T_{n}: Y_{n} \rightarrow X$ with $\left\|T_{n}\right\| \leq K$ and $\left\|T_{n}^{-1}\right\| \leq 1$, we can find subsequences $\left(y_{n, k}\right)_{k \in K_{n}}$ such that

- $\left(y_{n, k}\right)_{k \in K_{n}} \approx\left(y_{n, k}\right)_{k \in \mathbb{N}}$, for all $n \in \mathbb{N}$,


## A glimpse into the proof

Want to show for all $\epsilon>0$ and limit $\alpha<\omega_{1}, X$ contains a $\left(\sum_{n=1}^{\infty} Y_{n}\right)_{c_{0}}$-tree of order at least $\alpha$ with both constants $K(1+\epsilon)$.

For this construct Banach spaces $V^{\alpha}, \alpha<\omega_{1}$ which are isomorphic to subspaces of $X$ and contain $\left(\sum_{n=N}^{\infty} Y_{n}\right)_{c_{0}}$-trees of order $\alpha$ for each $N \geq 1$.

We will show each $Y_{n}$ has a good basis (complementably reproducible) $\left(y_{n, k}\right)_{k=1}^{\infty}$. This means that for every embeddings $T_{n}: Y_{n} \rightarrow X$ with $\left\|T_{n}\right\| \leq K$ and $\left\|T_{n}^{-1}\right\| \leq 1$, we can find subsequences $\left(y_{n, k}\right)_{k \in K_{n}}$ such that

- $\left(y_{n, k}\right)_{k \in K_{n}} \approx\left(y_{n, k}\right)_{k \in \mathbb{N}}$, for all $n \in \mathbb{N}$,
- $\left(T_{n} y_{n, k}\right)_{k \in K_{n}, n \in \mathbb{N}}$ is (equivalent to) a block basis,


## A glimpse into the proof

Want to show for all $\epsilon>0$ and limit $\alpha<\omega_{1}, X$ contains a $\left(\sum_{n=1}^{\infty} Y_{n}\right)_{c_{0}}$-tree of order at least $\alpha$ with both constants $K(1+\epsilon)$.

For this construct Banach spaces $V^{\alpha}, \alpha<\omega_{1}$ which are isomorphic to subspaces of $X$ and contain $\left(\sum_{n=N}^{\infty} Y_{n}\right)_{c_{0}}$-trees of order $\alpha$ for each $N \geq 1$.

We will show each $Y_{n}$ has a good basis (complementably reproducible) $\left(y_{n, k}\right)_{k=1}^{\infty}$. This means that for every embeddings $T_{n}: Y_{n} \rightarrow X$ with $\left\|T_{n}\right\| \leq K$ and $\left\|T_{n}^{-1}\right\| \leq 1$, we can find subsequences $\left(y_{n, k}\right)_{k \in K_{n}}$ such that

- $\left(y_{n, k}\right)_{k \in K_{n}} \approx\left(y_{n, k}\right)_{k \in \mathbb{N}}$, for all $n \in \mathbb{N}$,
- $\left(T_{n} y_{n, k}\right)_{k \in K_{n}, n \in \mathbb{N}}$ is (equivalent to) a block basis,
- for each $m$ there is a projection $\left\|P_{m}\right\| \lesssim K$ from $V=\left[T_{n} y_{n, k}: k \in K_{n}, n \in \mathbb{N}\right]$ onto $\left[T_{m} y_{m, k}: k \in K_{m}\right]$ with $P_{m} y \approx 0$ for all $y \in\left[T_{n} y_{n, k}: k \in K_{n}, n \in \mathbb{N}, n \neq m\right]$.

A glimpse into the proof

Construction of $V^{\omega}$
$\qquad$

## A glimpse into the proof

Construction of $V^{\omega}$

For each $i \in \mathbb{N}$ define a norm $\|\cdot\|_{i}$ on $V=\left[T_{n} y_{n, k}: k \in K_{n}, n \in \mathbb{N}\right]$ by （reseting constants）

$$
\|y\|_{i}=\sup \left\{\left\|R_{m} T_{m}^{-1} P_{m} y\right\|: m \in \mathbb{N}\right\} \vee \frac{\|y\|}{i C}
$$

where $C$ is good basis constant，$R_{n}$ be the basis equivalence from $\left(y_{n, k}\right)_{k \in K_{n}}$ to $\left(y_{n, k}\right)_{k=1}^{\infty}$ ．

## A glimpse into the proof

Construction of $V^{\omega}$

For each $i \in \mathbb{N}$ define a norm $\|\cdot\|_{i}$ on $V=\left[T_{n} y_{n, k}: k \in K_{n}, n \in \mathbb{N}\right]$ by （reseting constants）

$$
\|y\|_{i}=\sup \left\{\left\|R_{m} T_{m}^{-1} P_{m} y\right\|: m \in \mathbb{N}\right\} \vee \frac{\|y\|}{i C}
$$

where $C$ is good basis constant，$R_{n}$ be the basis equivalence from $\left(y_{n, k}\right)_{k \in K_{n}}$ to $\left(y_{n, k}\right)_{k=1}^{\infty}$ ．
This is an equivalent norm on $V$ ．

## A glimpse into the proof

## Construction of $V^{\omega}$

For each $i \in \mathbb{N}$ define a norm $\|\cdot\|_{i}$ on $V=\left[T_{n} y_{n, k}: k \in K_{n}, n \in \mathbb{N}\right]$ by (reseting constants)

$$
\|y\|_{i}=\sup \left\{\left\|R_{m} T_{m}^{-1} P_{m} y\right\|: m \in \mathbb{N}\right\} \vee \frac{\|y\|}{i C},
$$

where $C$ is good basis constant, $R_{n}$ be the basis equivalence from $\left(y_{n, k}\right)_{k \in K_{n}}$ to $\left(y_{n, k}\right)_{k=1}^{\infty}$.
This is an equivalent norm on $V$.
For each $i$, let $V^{i}=\left(V,\|.\| \|_{i}\right) . V^{i}$,s have good bases. Embed back into $X$ using $K$-elastic, reset the constants to get $V^{\omega}$.

## Bases in $C(\alpha)$

The standard bases $\left(x_{n}^{\alpha}\right)_{n=0}^{\infty}$ of $C\left(\omega^{\alpha}\right)$ are described inductively.

## Bases in $C(\alpha)$

The standard bases $\left(x_{n}^{\alpha}\right)_{n=0}^{\infty}$ of $C\left(\omega^{\alpha}\right)$ are described inductively.

- For $C(\omega)$, let $x_{0}^{1}=1_{(0, \omega]}$ and $x_{n}^{1}=1_{\{n\}}$ for all $n<\omega$.


## Bases in $C(\alpha)$

The standard bases $\left(x_{n}^{\alpha}\right)_{n=0}^{\infty}$ of $C\left(\omega^{\alpha}\right)$ are described inductively.

- For $C(\omega)$, let $x_{0}^{1}=1_{(0, \omega]}$ and $x_{n}^{1}=1_{\{n\}}$ for all $n<\omega$.
- If the basis $\left(x_{n}^{\gamma-1}\right)_{n}$ for $C\left(\omega^{\gamma-1}\right)$ is defined for each $k<\omega$ let $x_{k, n}^{\gamma-1}$ have support in $\left(\omega^{\gamma}(k-1), \omega^{\gamma} k\right]$ and satisfy

$$
x_{k, n}^{\gamma-1}(\rho)=x_{n}^{\gamma-1}\left(\rho-\omega^{\gamma-1}(k-1)\right) \text { for } \omega^{\gamma-1}(k-1)<\rho \leq \omega^{\gamma-1} k .
$$

## Bases in $C(\alpha)$

The standard bases $\left(x_{n}^{\alpha}\right)_{n=0}^{\infty}$ of $C\left(\omega^{\alpha}\right)$ are described inductively.

- For $C(\omega)$, let $x_{0}^{1}=1_{(0, \omega]}$ and $x_{n}^{1}=1_{\{n\}}$ for all $n<\omega$.
- If the basis $\left(x_{n}^{\gamma-1}\right)_{n}$ for $C\left(\omega^{\gamma-1}\right)$ is defined for each $k<\omega$ let $x_{k, n}^{\gamma-1}$ have support in $\left(\omega^{\gamma}(k-1), \omega^{\gamma} k\right]$ and satisfy

$$
x_{k, n}^{\gamma-1}(\rho)=x_{n}^{\gamma-1}\left(\rho-\omega^{\gamma-1}(k-1)\right) \text { for } \omega^{\gamma-1}(k-1)<\rho \leq \omega^{\gamma-1} k .
$$

- If $\gamma$ is a limit fix $\left(\gamma_{k}\right) \nearrow \gamma$, and let $x_{k, n}^{\gamma}$ have support in $\left(\omega^{\gamma_{k-1}}, \omega^{\gamma_{k}}\right]$ and satisfy

$$
x_{k, n}(\rho)=x_{n}^{\gamma_{k}}\left(\rho-\omega^{\gamma_{k-1}}\right), \text { for } \omega^{\gamma_{k-1}}<\rho \leq \omega^{\gamma_{k}}
$$

Put $x_{0}^{\gamma}=1_{(0, \omega \gamma]}$ and let $\left(x_{j}^{\gamma}\right)_{j \geq 1}$ be the collection defined.

[^0]Put $x_{0}^{\gamma}=1_{\left(0, \omega^{\gamma}\right]}$ and let $\left(x_{j}^{\gamma}\right)_{j \geq 1}$ be the collection defined. Then the order of the basis is such that whenever the support of one function is contained in another, the top function precedes in the order.

Put $x_{0}^{\gamma}=1_{\left(0, \omega^{\gamma}\right]}$ and let $\left(x_{j}^{\gamma}\right)_{j \geq 1}$ be the collection defined. Then the order of the basis is such that whenever the support of one function is contained in another, the top function precedes in the order.

For each $\alpha<\omega_{1}$

- $\left(x_{n}^{\alpha}\right)_{n=1}^{\alpha}$ is a standard basis for $C_{0}\left(\omega^{\alpha}\right)$.

Put $x_{0}^{\gamma}=1_{\left(0, \omega^{\gamma}\right]}$ and let $\left(x_{j}^{\gamma}\right)_{j \geq 1}$ be the collection defined. Then the order of the basis is such that whenever the support of one function is contained in another, the top function precedes in the order.

For each $\alpha<\omega_{1}$

- $\left(x_{n}^{\alpha}\right)_{n=1}^{\alpha}$ is a standard basis for $C_{0}\left(\omega^{\alpha}\right)$.
- $\left(x_{n}^{\alpha}\right)_{n=1}^{\alpha}$ is a shrinking basis.

Put $x_{0}^{\gamma}=1_{\left(0, \omega^{\gamma}\right]}$ and let $\left(x_{j}^{\gamma}\right)_{j \geq 1}$ be the collection defined．Then the order of the basis is such that whenever the support of one function is contained in another，the top function precedes in the order．

For each $\alpha<\omega_{1}$
－$\left(x_{n}^{\alpha}\right)_{n=1}^{\alpha}$ is a standard basis for $C_{0}\left(\omega^{\alpha}\right)$ ．
－$\left(x_{n}^{\alpha}\right)_{n=1}^{\alpha}$ is a shrinking basis．
It has many subsequences 1 －equivalent to the basis．In fact，
Proposition．The basis $\left(x_{n}^{\alpha}\right)_{n=1}^{\infty}$ is two－player subsequentially 1－reproducible．

Put $x_{0}^{\gamma}=1_{\left(0, \omega^{\gamma}\right]}$ and let $\left(x_{j}^{\gamma}\right)_{j \geq 1}$ be the collection defined. Then the order of the basis is such that whenever the support of one function is contained in another, the top function precedes in the order.

For each $\alpha<\omega_{1}$

- $\left(x_{n}^{\alpha}\right)_{n=1}^{\alpha}$ is a standard basis for $C_{0}\left(\omega^{\alpha}\right)$.
- $\left(x_{n}^{\alpha}\right)_{n=1}^{\alpha}$ is a shrinking basis.

It has many subsequences 1 -equivalent to the basis. In fact,
Proposition. The basis $\left(x_{n}^{\alpha}\right)_{n=1}^{\infty}$ is two-player subsequentially 1-reproducible.

This means that for all $\epsilon_{k}>0$ and embedding $T: C_{0}\left(\omega^{\alpha}\right) \rightarrow Y$, there is a winning strategy for the second player in a two-player game in $Y$ for picking a subsequence $\left(T x_{n_{k}}\right)_{k=1}^{\infty}$ and blocks $\left(w_{k}\right)_{k=1}^{\infty}$ of the basis $\left(y_{n}\right)$ of $Y$ such that
(1) $\left\|T x_{n_{k}}-w_{k}\right\|<\epsilon_{k}$ for each $k \in \mathbb{N}$,
(2) $\left(x_{n_{k}}\right)$ is 1-equivalent to $\left(x_{n}\right)$.

## Pelczynski's weak injectivity

Let $T: C_{0}\left(\omega^{\alpha}\right) \rightarrow X$ be an isomorphic embedding, and for $\rho \leq \omega^{\alpha}$ let $\delta_{\rho}$ Dirac functional. Let $\left(y_{\rho}^{*}\right)_{\rho \leq \omega^{\alpha}} \subset 2\left\|\left(T^{*}\right)^{-1}\right\| B_{X^{*}}$ satisfy $T^{*} y_{\rho}^{*}=\delta_{\rho}$ for all $\rho \leq \omega^{\alpha}$. Then there is a compact subset $\Gamma$ of $\left[1, \omega^{\alpha}\right]$ homeomorphic to $\left[1, \omega^{\alpha}\right]$ and a (weak ${ }^{*}$ ) compact subset $\left(w_{\rho}^{*}\right)_{\rho \in \Gamma}$ of $Y^{*}$ such that

## Pelczynski＇s weak injectivity

Let $T: C_{0}\left(\omega^{\alpha}\right) \rightarrow X$ be an isomorphic embedding，and for $\rho \leq \omega^{\alpha}$ let $\delta_{\rho}$ Dirac functional．Let $\left(y_{\rho}^{*}\right)_{\rho \leq \omega^{\alpha}} \subset 2\left\|\left(T^{*}\right)^{-1}\right\| B_{X^{*}}$ satisfy $T^{*} y_{\rho}^{*}=\delta_{\rho}$ for all $\rho \leq \omega^{\alpha}$ ．Then there is a compact subset $\Gamma$ of $\left[1, \omega^{\alpha}\right]$ homeomorphic to $\left[1, \omega^{\alpha}\right]$ and a（weak ${ }^{*}$ ）compact subset $\left(w_{\rho}^{*}\right)_{\rho \in \Gamma}$ of $Y^{*}$ such that
－$S^{*} w_{\rho}^{*}=\delta_{\rho}$ for all $\rho \in \Gamma$ ，the map $\rho \rightarrow w_{\rho}^{*}$ is a homeomorphism，

## Pelczynski's weak injectivity

Let $T: C_{0}\left(\omega^{\alpha}\right) \rightarrow X$ be an isomorphic embedding, and for $\rho \leq \omega^{\alpha}$ let $\delta_{\rho}$ Dirac functional. Let $\left(y_{\rho}^{*}\right)_{\rho \leq \omega^{\alpha}} \subset 2\left\|\left(T^{*}\right)^{-1}\right\| B_{X^{*}}$ satisfy $T^{*} y_{\rho}^{*}=\delta_{\rho}$ for all $\rho \leq \omega^{\alpha}$. Then there is a compact subset $\Gamma$ of $\left[1, \omega^{\alpha}\right]$ homeomorphic to $\left[1, \omega^{\alpha}\right]$ and a $\left(\right.$ weak $\left.^{*}\right)$ compact subset $\left(w_{\rho}^{*}\right)_{\rho \in \Gamma}$ of $Y^{*}$ such that

- $S^{*} w_{\rho}^{*}=\delta_{\rho}$ for all $\rho \in \Gamma$, the map $\rho \rightarrow w_{\rho}^{*}$ is a homeomorphism,
- there is a subsequence of $\left(x_{m}^{\alpha}\right)_{m \in M}$ equivalent to $\left(x_{n}^{\alpha}\right)$, with contractively complemented closed linear span such that the restriction to $\Gamma$ induces an isomorphism $R$ from the span of the subsequence onto $C_{0}(\Gamma)$ and $R^{*} \delta_{\rho}=S^{*} w_{\rho}^{*}$ for all $\rho \in \Gamma$.


## Pelczynski's weak injectivity

The mapping $S:\left[x_{m}: m \in M\right] \rightarrow C_{0}(\Gamma)$ where $\Gamma=\{\gamma(m): m \in M\}$ satisfying $\left(S x_{m}\right)(\gamma(k))=x_{m}(\gamma(k))$ is a surjective isometry,

## Pelczynski's weak injectivity

The mapping $S:\left[x_{m}: m \in M\right] \rightarrow C_{0}(\Gamma)$ where $\Gamma=\{\gamma(m): m \in M\}$ satisfying $\left(S x_{m}\right)(\gamma(k))=x_{m}(\gamma(k))$ is a surjective isometry,
and the projection $P$ is of the form $T E V$ where $V: X \rightarrow C_{0}(\Gamma)$ is defined by $(V z)(\gamma(m))=w_{m}^{*}(z)$ for all $z \in X, E$ is the extension operator which maps $C_{0}(\Gamma)$ into $C_{0}\left(\omega^{\alpha}\right)$ with range in $\left[x_{m}: m \in M\right]$ with $S E=I$.

## Pelczynski's weak injectivity

The mapping $S:\left[x_{m}: m \in M\right] \rightarrow C_{0}(\Gamma)$ where $\Gamma=\{\gamma(m): m \in M\}$ satisfying $\left(S x_{m}\right)(\gamma(k))=x_{m}(\gamma(k))$ is a surjective isometry,
and the projection $P$ is of the form TEV where $V: X \rightarrow C_{0}(\Gamma)$ is defined by $(V z)(\gamma(m))=w_{m}^{*}(z)$ for all $z \in X, E$ is the extension operator which maps $C_{0}(\Gamma)$ into $C_{0}\left(\omega^{\alpha}\right)$ with range in $\left[x_{m}: m \in M\right]$ with $S E=I$.

Explicitly

$$
E_{f}(\beta)=\left\{\begin{array}{l}
f(\beta) \quad \text { if } \beta \in \Gamma \\
f(\gamma(m)) \quad \text { if } x_{m}(\beta)=1, x_{m^{\prime}}(\beta)=0 \text { for all } m^{\prime}>m \\
0 \quad \text { else }
\end{array}\right.
$$

## Pelczynski's weak injectivity

The mapping $S:\left[x_{m}: m \in M\right] \rightarrow C_{0}(\Gamma)$ where $\Gamma=\{\gamma(m): m \in M\}$ satisfying $\left(S x_{m}\right)(\gamma(k))=x_{m}(\gamma(k))$ is a surjective isometry,
and the projection $P$ is of the form TEV where $V: X \rightarrow C_{0}(\Gamma)$ is defined by $(V z)(\gamma(m))=w_{m}^{*}(z)$ for all $z \in X, E$ is the extension operator which maps $C_{0}(\Gamma)$ into $C_{0}\left(\omega^{\alpha}\right)$ with range in $\left[x_{m}: m \in M\right]$ with $S E=I$.

Explicitly

$$
E_{f}(\beta)=\left\{\begin{array}{l}
f(\beta) \quad \text { if } \beta \in \Gamma \\
f(\gamma(m)) \quad \text { if } x_{m}(\beta)=1, x_{m^{\prime}}(\beta)=0 \text { for all } m^{\prime}>m \\
0 \quad \text { else }
\end{array}\right.
$$

The norm of the projection $P$ is at most $\|T\| \sup _{m \in M}\left\|w_{m}^{*}\right\|$.

## Effective version

Proposition. Let $\alpha$ be a countable ordinal. A standard basis $\left(x_{n}^{\alpha}\right)_{n=1}^{\infty}$ of $C_{0}\left(\omega^{\alpha}\right)$ is two-player 2-complementably subsequentially 1-reproducible.

## Effective version

Proposition. Let $\alpha$ be a countable ordinal. A standard basis $\left(x_{n}^{\alpha}\right)_{n=1}^{\infty}$ of $C_{0}\left(\omega^{\alpha}\right)$ is two-player 2-complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon>0, T$ be an isomorphic embedding of $X$ into $Y$ with a basis $\left(y_{i}\right)$, and $\left(u_{j}\right)$ be a block basis of $\left(y_{i}\right)$ satisfying certain conditions.

## Effective version

Proposition. Let $\alpha$ be a countable ordinal. A standard basis $\left(x_{n}^{\alpha}\right)_{n=1}^{\infty}$ of $C_{0}\left(\omega^{\alpha}\right)$ is two-player 2-complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon>0, T$ be an isomorphic embedding of $X$ into $Y$ with a basis $\left(y_{i}\right)$, and $\left(u_{j}\right)$ be a block basis of $\left(y_{i}\right)$ satisfying certain conditions.

On $k$ th turn, the first player chooses a tail subspace $\left[y_{i}\right]_{i \geq t_{k}}$ and a block $u_{j_{k}}$ with minsupp $u_{j_{k}}>l_{k-1}$ and the second player chooses a block $w_{k}$ in $\left[y_{i}\right]_{i \geq t_{k}}$ and an integer $l_{k}>\max \operatorname{supp} u_{j_{k}}\left(\right.$ put $\left.l_{0}=0\right)$.

## Effective version

Proposition. Let $\alpha$ be a countable ordinal. A standard basis $\left(x_{n}^{\alpha}\right)_{n=1}^{\infty}$ of $C_{0}\left(\omega^{\alpha}\right)$ is two-player 2-complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon>0, T$ be an isomorphic embedding of $X$ into $Y$ with a basis $\left(y_{i}\right)$, and $\left(u_{j}\right)$ be a block basis of $\left(y_{i}\right)$ satisfying certain conditions.

On $k$ th turn, the first player chooses a tail subspace $\left[y_{i}\right]_{i \geq t_{k}}$ and a block $u_{j_{k}}$ with minsupp $u_{j_{k}}>l_{k-1}$ and the second player chooses a block $w_{k}$ in $\left[y_{i}\right]_{i \geq t_{k}}$ and an integer $l_{k}>\max \operatorname{supp} u_{j_{k}}\left(\right.$ put $\left.l_{0}=0\right)$.

The second player wins if

## Effective version

Proposition. Let $\alpha$ be a countable ordinal. A standard basis $\left(x_{n}^{\alpha}\right)_{n=1}^{\infty}$ of $C_{0}\left(\omega^{\alpha}\right)$ is two-player 2 -complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon>0, T$ be an isomorphic embedding of $X$ into $Y$ with a basis $\left(y_{i}\right)$, and $\left(u_{j}\right)$ be a block basis of $\left(y_{i}\right)$ satisfying certain conditions.

On $k$ th turn, the first player chooses a tail subspace $\left[y_{i}\right]_{i \geq t_{k}}$ and a block $u_{j_{k}}$ with minsupp $u_{j_{k}}>l_{k-1}$ and the second player chooses a block $w_{k}$ in $\left[y_{i}\right]_{\geq t_{k}}$ and an integer $l_{k}>\max \operatorname{supp} u_{j_{k}}$ (put $l_{0}=0$ ).

The second player wins if
(i) $\sum_{k=1}^{\infty}\left\|T x_{n_{k}}-w_{k}\right\|<\epsilon$ for some $\left(n_{k}\right)$;

## Effective version

Proposition. Let $\alpha$ be a countable ordinal. A standard basis $\left(x_{n}^{\alpha}\right)_{n=1}^{\infty}$ of $C_{0}\left(\omega^{\alpha}\right)$ is two-player 2 -complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon>0, T$ be an isomorphic embedding of $X$ into $Y$ with a basis $\left(y_{i}\right)$, and $\left(u_{j}\right)$ be a block basis of $\left(y_{i}\right)$ satisfying certain conditions.

On $k$ th turn, the first player chooses a tail subspace $\left[y_{i}\right]_{i \geq t_{k}}$ and a block $u_{j_{k}}$ with minsupp $u_{j_{k}}>l_{k-1}$ and the second player chooses a block $w_{k}$ in $\left[y_{i}\right]_{i \geq t_{k}}$ and an integer $l_{k}>\max \operatorname{supp} u_{j_{k}}$ (put $l_{0}=0$ ).

The second player wins if
(i) $\sum_{k=1}^{\infty}\left\|T x_{n_{k}}-w_{k}\right\|<\epsilon$ for some $\left(n_{k}\right)$;
(ii) $\left(x_{n_{k}}\right)$ is 1-equivalent to $\left(x_{n}\right)$; and

## Effective version

Proposition. Let $\alpha$ be a countable ordinal. A standard basis $\left(x_{n}^{\alpha}\right)_{n=1}^{\infty}$ of $C_{0}\left(\omega^{\alpha}\right)$ is two-player 2 -complementably subsequentially 1-reproducible.

This means (roughly) if the second player has a winning strategy in the following two-player game. Let $\epsilon>0, T$ be an isomorphic embedding of $X$ into $Y$ with a basis $\left(y_{i}\right)$, and $\left(u_{j}\right)$ be a block basis of $\left(y_{i}\right)$ satisfying certain conditions.

On $k$ th turn, the first player chooses a tail subspace $\left[y_{i}\right]_{i \geq t_{k}}$ and a block $u_{j_{k}}$ with minsupp $u_{j_{k}}>l_{k-1}$ and the second player chooses a block $w_{k}$ in $\left[y_{i}\right]_{i \geq t_{k}}$ and an integer $l_{k}>\max \operatorname{supp} u_{j_{k}}$ (put $l_{0}=0$ ).
The second player wins if
(i) $\sum_{k=1}^{\infty}\left\|T x_{n_{k}}-w_{k}\right\|<\epsilon$ for some $\left(n_{k}\right)$;
(ii) $\left(x_{n_{k}}\right)$ is 1-equivalent to $\left(x_{n}\right)$; and
(iii) there is a projection $P$ from $Y$ onto $\left[w_{k}\right]$ with $\|P\| \leq 2\|T\|\left\|T^{-1}\right\|$, and $\|P z\|<\epsilon\|z\|$ for all $z \in\left[u_{j_{k}}\right]$.


[^0]:    

