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The linear background

Chapter 12 of Banach’s book (1932) is devoted to the question
of when Lq(= Lq(0,1)) is isomorphic to a subspace of Lp,
p,q ∈ [1,∞).
Banach proved there that if Lq is isomorphic to a subspace of
Lp then necessarily either p ≤ q ≤ 2 or 2 ≤ q ≤ p, and that L2
is isomorphic to a subspace of Lp for all p.
Banach also conjectured that Lq is isomorphic to a subspace of
Lp if p < q < 2 or 2 < q < p.
In the range p < q < 2, Banach’s question was answered
affirmatively by Kadec (1958), who showed that in this case Lq
is linearly isometric to a subspace of Lp.
When 2 < q < p, Banach’s question was answered negatively
by Paley (1936), i.e., Lq is not isomorphic to a subspace of Lp
when 2 < q < p.
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The linear background

The cases q < p < 2 and 2 < p < q and also the cases when p
and q are on opposite sides of 2 are best dealt with by Type
and Cotype.

Since Lp, p ≤ 2, has type p

(E±‖
∑
±xi‖p)1/p ≤ C(

∑
‖xi‖p)1/p

clearly, for q < p ≤ 2, the distance of `nq from a subspace of Lp

is of order n
1
q−

1
p .

Similarly, for q > p ≥ 2, using the fact that Lp has cotype p, the

distance of `nq from a subspace of Lp is of order n
1
p−

1
q .

The cases when p and q are on opposite sides of 2 is dealt with
similarly.
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The linear background

The case 2 < q < p is more complicated, especially if one
wants to compute the distance of `nq from a subspace of Lp

The Xp inequality [JMST, ’79]:

For p > 2, all n and all real numbers a1, . . . ,an, x1, . . . , xn

E±,π|
n∑

i=1

±aixπ(i)|p ≤

Cp

(
1
n

n∑
i=1

|ai |p
n∑

i=1

|xi |p +
1

np/2 (
n∑

i=1

a2
i )

p/2(
n∑

i=1

x2
i )

p/2

)

The inverse inequality also holds.
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The linear background

The inequality was used in [JMST] to characterize the finite
dimensional symmetric bases in Lp, p > 2. Later it was used in
[FJS] to find the (order of the) distance of `nq to a subspace of
Lp for 2 < q < p. For the lower bound only a special case is
needed: For all k ≤ n

E±,S⊂{1,...,n},|S|=k |
∑
i∈S

±xi |p ≤

Cp

k
n

n∑
i=1

|xi |p +

(
k
n

)p/2
(

n∑
i=1

x2
i

)p/2


Or, for all x1, . . . , xn ∈ Lp,

E±,S⊂{1,...,n},|S|=k‖
∑
i∈S

±xi‖p ≤

Cp

(
k
n

n∑
i=1

‖xi‖p +

(
k
n

)p/2

E±‖
n∑

i=1

±xi‖p
)
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The linear background

Plugging for xi the image of the `nq canonical unit vector basis
and optimizing over k , we get a lower estimate for the distortion
of embedding `nq into Lp. It is

≥ n
( 1

2 − 1
q )( 1

q − 1
p )

1
2 − 1

p

and it matches the upper bound.
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The linear background

One last linear remark:

The situation with the `p spaces is simpler:

For all p 6= q `q does not embed into `p.
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The non-linear background

A metric space (X ,dX ) is said to admit a bi-Lipschitz
embedding into a metric space (Y ,dY ) if there exist s ∈ (0,∞),
D ∈ [1,∞) and a mapping f : X → Y such that

∀ x , y ∈ X , sdX (x , y) ≤ dY (f (x), f (y)) ≤ DsdX (x , y).

When this happens we say that that (X ,dX ) embeds into
(Y ,dY ) with distortion at most D. We denote by cY (X ) the
infinum over such D ∈ [1,∞]. When Y = Lp we use the shorter
notation cLp(X ) = cp(X ).
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The non-linear background

It follows from general principles (mostly differentiation) that
cp(Lq) and cp(`

n
q) are equal to their linear counterparts. But

these principles no longer apply when dealing with cp(A) for a
discrete set A ⊂ Lq
nor for cp(Lαq ) where for 0 < α < 1 Lαq denotes Lq with the
metric dq,α(x , y) = ‖x − y‖αq .

It turns out however that the non-linear versions of Type and
Cotype still apply in such situations when q < p < 2 and
2 < p < q or when p and q are on opposite sides of 2.

(But not when 2 < q < p)
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The non-linear background

A metric space (X ,dX ) is said to have (Enflo) type r ∈ [1,∞) if
for every n ∈ N and f : {−1,1}n → X ,

E [dX (f (ε), f (−ε))r ] .X
n∑

j=1

E
[
dX (f (ε), f (ε1, . . . , εj−1,−εj , εj+1, . . . , εn))

r ] , (1)

where the expectation is with respect to ε ∈ {−1,1}n chosen
uniformly at random. Note that if X is a Banach space and f is
the linear function given by f (ε) =

∑n
j=1 εjxj then this is the

inequality defining type r .
For p ∈ [1,∞), Lp actually has Enflo type r = min{p,2}. i.e.,
X = Lp satisfies (1) with f : {−1,1}n → Lp allowed to be an
arbitrary mapping rather than only a linear mapping. This
statement was proved by Enflo in 1969 for p ∈ [1,2] (and by
[NS, 2002] for p ∈ (2,∞)).

Gideon Schechtman Metric Xp inequalities



The non-linear background

A metric space (X ,dX ) is said to have (Enflo) type r ∈ [1,∞) if
for every n ∈ N and f : {−1,1}n → X ,

E [dX (f (ε), f (−ε))r ] .X
n∑

j=1

E
[
dX (f (ε), f (ε1, . . . , εj−1,−εj , εj+1, . . . , εn))

r ] , (1)

where the expectation is with respect to ε ∈ {−1,1}n chosen
uniformly at random. Note that if X is a Banach space and f is
the linear function given by f (ε) =

∑n
j=1 εjxj then this is the

inequality defining type r .
For p ∈ [1,∞), Lp actually has Enflo type r = min{p,2}. i.e.,
X = Lp satisfies (1) with f : {−1,1}n → Lp allowed to be an
arbitrary mapping rather than only a linear mapping. This
statement was proved by Enflo in 1969 for p ∈ [1,2] (and by
[NS, 2002] for p ∈ (2,∞)).

Gideon Schechtman Metric Xp inequalities



The non-linear background

A metric space (X ,dX ) is said to have (Enflo) type r ∈ [1,∞) if
for every n ∈ N and f : {−1,1}n → X ,

E [dX (f (ε), f (−ε))r ] .X
n∑

j=1

E
[
dX (f (ε), f (ε1, . . . , εj−1,−εj , εj+1, . . . , εn))

r ] , (1)

where the expectation is with respect to ε ∈ {−1,1}n chosen
uniformly at random. Note that if X is a Banach space and f is
the linear function given by f (ε) =

∑n
j=1 εjxj then this is the

inequality defining type r .
For p ∈ [1,∞), Lp actually has Enflo type r = min{p,2}. i.e.,
X = Lp satisfies (1) with f : {−1,1}n → Lp allowed to be an
arbitrary mapping rather than only a linear mapping. This
statement was proved by Enflo in 1969 for p ∈ [1,2] (and by
[NS, 2002] for p ∈ (2,∞)).

Gideon Schechtman Metric Xp inequalities



The non-linear background

A metric space (X ,dX ) is said to have (Enflo) type r ∈ [1,∞) if
for every n ∈ N and f : {−1,1}n → X ,

E [dX (f (ε), f (−ε))r ] .X
n∑

j=1

E
[
dX (f (ε), f (ε1, . . . , εj−1,−εj , εj+1, . . . , εn))

r ] , (1)

where the expectation is with respect to ε ∈ {−1,1}n chosen
uniformly at random. Note that if X is a Banach space and f is
the linear function given by f (ε) =

∑n
j=1 εjxj then this is the

inequality defining type r .
For p ∈ [1,∞), Lp actually has Enflo type r = min{p,2}. i.e.,
X = Lp satisfies (1) with f : {−1,1}n → Lp allowed to be an
arbitrary mapping rather than only a linear mapping. This
statement was proved by Enflo in 1969 for p ∈ [1,2] (and by
[NS, 2002] for p ∈ (2,∞)).

Gideon Schechtman Metric Xp inequalities



The non-linear background

Here is an illustration how to use Enflo type to show that for
q < p ≤ 2 cp({−1,1}n, ‖ · ‖q) & n

1
q−

1
p (that cp(`

n
q) ≤ n

1
q−

1
p is

trivial).

Let f : {−1,1}n → Lp be such that

∀ x , y ∈ {−1,1}n, ‖x − y‖q ≤ ‖f (x)− f (y)‖p ≤ D‖x − y‖q

Then

2pnp/q ≤ E‖f (ε)− f (−ε)‖pp .
n∑

j=1

E‖f (ε)− f (ε1, . . . , εj−1,−εj , εj+1, . . . , εn)‖pp . Dpn2p.

So D & n
1
q−

1
p .

Similarly one shows that for α > q/p cp({−1,1}n, ‖ · ‖αq )→∞.
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The non-linear background

The definition of non-linear cotype is more problematic.
Changing the direction of the inequality in the definition of type
is no good if f ({−1,1}n) is a discrete set. A good definition was
sought for a long time until the following:
A metric space (X ,dX ) is said to have (Mendel-Naor) cotype

s ∈ [1,∞) if for every n ∈ N there is an m ∈ N such that for all
f : Zn

2m → X ,

n∑
j=1

E
[
dX (f (x + mej), f (x))s]

ms .X E [dX (f (x + ε), f (x))s] ,

where the expectation is with respect to
(x , ε) ∈ Zn

2m × {−1,0,1}n chosen uniformly at random.
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is no good if f ({−1,1}n) is a discrete set. A good definition was
sought for a long time until the following:
A metric space (X ,dX ) is said to have (Mendel-Naor) cotype

s ∈ [1,∞) if for every n ∈ N there is an m ∈ N such that for all
f : Zn

2m → X ,

n∑
j=1

E
[
dX (f (x + mej), f (x))s]

ms .X E [dX (f (x + ε), f (x))s] ,

where the expectation is with respect to
(x , ε) ∈ Zn

2m × {−1,0,1}n chosen uniformly at random.
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The non-linear background

It was proved by Mendel and Naor (2006) that a Banach space
(X , ‖ · ‖X ) has Rademacher cotype s if and only if it has metric
cotype s, in particular Lp has metric cotype max{p,2}.

Using this one can prove that for 2 < p < q, for some, specific
m depending on n and p, cp(|Z n

m, ‖ · ‖q)→∞ when n→∞.

The cases when p and q are on different sides of 2 can also be
dealt with.

cp(Lαq ) can also be dealt with in these cases.

What about cp((|Z n
m, ‖ · ‖q) and cp(Lαq ) when 2 < q < p?
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The non-linear background

One last non-linear remark:

The situation with the `p spaces is different:

If 1 ≤ q ≤ p <∞ and α ∈ (0,1] is such that (`q, ‖x − y‖αq )
admits a bi-Lipschitz embedding into `p then necessarily
α ≤ q/p [Baudier]. Also, for every 1 ≤ q ≤ p <∞, (`q, ‖ · ‖q/p

q )
does admit a bi-Lipschitz embedding into `p [Albiac and
Baudier].
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The inequality

Recall the linear Xp inequality:

E±,S⊂{1,...,n},|S|=k‖
∑
i∈S

±xi‖p ≤

Cp

(
k
n

n∑
i=1

‖xi‖p +

(
k
n

)p/2

E±‖
n∑

i=1

±xi‖p
)
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The inequality

for S ⊂ {1, . . . ,n} and ε ∈ {−1,1}n we denote εS =
∑

j∈S εjej .

Theorem (Metric Xp inequality)

Fix p ∈ [2,∞). Suppose that m,n ∈ N and k ∈ {1, . . . ,n}
satisfy m ≥ n3/2 log p√

k
+ pn. Then for every f : Zn

4m → Lp we have

1(n
k

) ∑
S⊂{1,...,n}
|S|=k

E
[
‖f (x + 2mεS)− f (x)‖pp

]
mp

.p
k
n

n∑
j=1

E
[∥∥f (x + ej)− f (x)

∥∥p
p

]
+

(
k
n

) p
2

E
[
‖f (x + ε)− f (x)‖pp

]
,

where the expectation is with respect to (x , ε) ∈ Zn
4m × {−1,1}n

chosen uniformly at random. The constant is
(

Cp
log p

)p
.
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Corollaries

Theorem (Lp distortion of Lq grids)

For every 2 < p <∞ there exists αp ∈ (0,∞) such that for
every q ∈ (2,p) and m,n ∈ N we have

cp(Zn
m, ‖ · ‖q) ≥ αp

(
min

{
m

q(p−2)
q(p−2)+p−q ,n

}) ( 1
2 − 1

q )( 1
q − 1

p )

( 1
2 − 1

p )
.

In particular, if m ≥ n1+ p−q
q(p−2) , then

cp(Zn
m, ‖ · ‖q) ≥ αpn

( 1
2 − 1

q )( 1
q − 1

p )

( 1
2 − 1

p ) & αpcp(`
n
q).
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Corollaries

Some lower bound on m is needed:

({−1,1}n, ‖ · ‖q) = ({−1,1}n, ‖ · ‖2/q
2 ) and the later (Lipschitz)

isometrically embeds in L2 which isometrically embeds in Lp.

This also shows that scaling (and using Zn
m instead of just

{−1,1}n) is necessary in the metric Xp inequality.
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Corollaries

Theorem (Lq snowflakes in Lp)

For every 2 < q < p there exists δ(p,q) > 0 such that if
α ∈ (0,1) is such that the metric space (Lq, ‖x − y‖αq ) admits a
bi-Lipschitz embedding into Lp then necessarily α ≤ 1− δ(p,q).
Specifically, α must satisfy α ≤ 1− (p−q)(q−2)

2p3 .

Mendel and Naor (2004) showed that for 2 < q < p, Lq/p
q , the

(q/p)-snowflake of Lq, is isometric to a subset of Lp.
We conjecture that this is sharp.
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A conjecture

We conjecture that the metric Xp inequality holds whenever
m ≥ Cp

√
n/k . I.e.,

Conjecture

Fix p ∈ [2,∞). Suppose that m,n ∈ N and k ∈ {1, . . . ,n}
satisfy m ≥ Cp

√
n/k. Then for every f : Zn

4m → Lp we have

1(n
k

) ∑
S⊂{1,...,n}
|S|=k

E
[
‖f (x + 2mεS)− f (x)‖pp

]
mp

.p
k
n

n∑
j=1

E
[∥∥f (x + ej)− f (x)

∥∥p
p

]
+

(
k
n

) p
2

E
[
‖f (x + ε)− f (x)‖pp

]
.
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A conjecture

If the conjecture holds then

1. The snow flake conjecture holds: If α ∈ (0,1) is such that the
metric space (Lq, ‖x − y‖αq ) admits a bi-Lipschitz embedding
into Lp, 2 < q < p, then necessarily α ≤ q/p.

2. cp(Zn
m, ‖ · ‖q) is given by the best of the two mentioned

embeddings: The linear one (which works for all of `nq) and the

one given by thinking of (Zn
m, ‖ · ‖q) as (Zn

m, ‖ · ‖
2/q
2 ).
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