Metric X_{ρ} inequalities

Gideon Schechtman

Joint work with

Assaf Naor

Coventry, June 2015

イロト イポト イヨト イヨト

■ のへの

- The nonlinear background
- The inequality
- Consequences
- A conjecture

イロン イロン イヨン イヨン

ъ

- The linear background
- The nonlinear background
- The inequality
- Consequences
- A conjecture

・ロト ・回 ト ・ヨト ・ヨト

æ

- The linear background
- The nonlinear background
- The inequality
- Consequences
- A conjecture

・ロト ・回 ト ・ヨト ・ヨト

- The linear background
- The nonlinear background
- The inequality
- Consequences
- A conjecture

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- The linear background
- The nonlinear background
- The inequality
- Consequences
- A conjecture

ヘロト ヘ戸ト ヘヨト ヘヨト

Banach proved there that if L_q is isomorphic to a subspace of L_p then necessarily either $p \le q \le 2$ or $2 \le q \le p$, and that L_2 is isomorphic to a subspace of L_p for all p.

Banach also conjectured that L_q is isomorphic to a subspace of L_p if p < q < 2 or 2 < q < p.

In the range p < q < 2, Banach's question was answered affirmatively by Kadec (1958), who showed that in this case L_q is linearly isometric to a subspace of L_p .

When 2 < q < p, Banach's question was answered negatively by Paley (1936), i.e., L_q is not isomorphic to a subspace of L_p when 2 < q < p.

ヘロン 人間 とくほ とくほとう

Banach proved there that if L_q is isomorphic to a subspace of L_p then necessarily either $p \le q \le 2$ or $2 \le q \le p$, and that L_2 is isomorphic to a subspace of L_p for all p.

Banach also conjectured that L_q is isomorphic to a subspace of L_p if p < q < 2 or 2 < q < p.

In the range p < q < 2, Banach's question was answered affirmatively by Kadec (1958), who showed that in this case L_q is linearly isometric to a subspace of L_p .

When 2 < q < p, Banach's question was answered negatively by Paley (1936), i.e., L_q is not isomorphic to a subspace of L_p when 2 < q < p.

<ロ> (四) (四) (三) (三) (三) (三)

Banach proved there that if L_q is isomorphic to a subspace of L_p then necessarily either $p \le q \le 2$ or $2 \le q \le p$, and that L_2 is isomorphic to a subspace of L_p for all p.

Banach also conjectured that L_q is isomorphic to a subspace of L_p if p < q < 2 or 2 < q < p.

In the range p < q < 2, Banach's question was answered affirmatively by Kadec (1958), who showed that in this case L_q is linearly isometric to a subspace of L_p .

When 2 < q < p, Banach's question was answered negatively by Paley (1936), i.e., L_q is not isomorphic to a subspace of L_p when 2 < q < p.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Banach proved there that if L_q is isomorphic to a subspace of L_p then necessarily either $p \le q \le 2$ or $2 \le q \le p$, and that L_2 is isomorphic to a subspace of L_p for all p.

Banach also conjectured that L_q is isomorphic to a subspace of L_p if p < q < 2 or 2 < q < p.

In the range p < q < 2, Banach's question was answered affirmatively by Kadec (1958), who showed that in this case L_q is linearly isometric to a subspace of L_p .

When 2 < q < p, Banach's question was answered negatively by Paley (1936), i.e., L_q is not isomorphic to a subspace of L_p when 2 < q < p.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Banach proved there that if L_q is isomorphic to a subspace of L_p then necessarily either $p \le q \le 2$ or $2 \le q \le p$, and that L_2 is isomorphic to a subspace of L_p for all p.

Banach also conjectured that L_q is isomorphic to a subspace of L_p if p < q < 2 or 2 < q < p.

In the range p < q < 2, Banach's question was answered affirmatively by Kadec (1958), who showed that in this case L_q is linearly isometric to a subspace of L_p .

When 2 < q < p, Banach's question was answered negatively by Paley (1936), i.e., L_q is not isomorphic to a subspace of L_p when 2 < q < p.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The cases q and <math>2 and also the cases when <math>p and q are on opposite sides of 2 are best dealt with by Type and Cotype.

Since L_p , $p \le 2$, has type p

 $(\mathbb{E}_{\pm} \| \sum \pm x_i \|^p)^{1/p} \le C (\sum \|x_i\|^p)^{1/p}$

clearly, for $q , the distance of <math>\ell_q^n$ from a subspace of L_p is of order $n^{\frac{1}{q} - \frac{1}{p}}$.

Similarly, for $q > p \ge 2$, using the fact that L_p has cotype p, the distance of ℓ_q^n from a subspace of L_p is of order $n^{\frac{1}{p}-\frac{1}{q}}$.

The cases when p and q are on opposite sides of 2 is dealt with similarly.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The cases q and <math>2 and also the cases when <math>p and q are on opposite sides of 2 are best dealt with by Type and Cotype.

Since L_p , $p \leq 2$, has type p

 $(\mathbb{E}_{\pm} \| \sum \pm x_i \|^p)^{1/p} \le C (\sum \|x_i\|^p)^{1/p}$

clearly, for $q , the distance of <math>\ell_q^n$ from a subspace of L_p is of order $n^{\frac{1}{q}-\frac{1}{p}}$.

Similarly, for $q > p \ge 2$, using the fact that L_p has cotype p, the distance of ℓ_q^n from a subspace of L_p is of order $n^{\frac{1}{p}-\frac{1}{q}}$.

The cases when p and q are on opposite sides of 2 is dealt with similarly.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The cases q and <math>2 and also the cases when <math>p and q are on opposite sides of 2 are best dealt with by Type and Cotype.

Since L_p , $p \leq 2$, has type p

 $(\mathbb{E}_{\pm} \| \sum \pm x_i \|^p)^{1/p} \le C(\sum \|x_i\|^p)^{1/p}$

clearly, for $q , the distance of <math>\ell_q^n$ from a subspace of L_p is of order $n^{\frac{1}{q}-\frac{1}{p}}$.

Similarly, for $q > p \ge 2$, using the fact that L_p has cotype p, the distance of ℓ_q^n from a subspace of L_p is of order $n^{\frac{1}{p}-\frac{1}{q}}$.

The cases when p and q are on opposite sides of 2 is dealt with similarly.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The cases q and <math>2 and also the cases when <math>p and q are on opposite sides of 2 are best dealt with by Type and Cotype.

Since L_p , $p \leq 2$, has type p

 $(\mathbb{E}_{\pm} \| \sum \pm x_i \|^{\rho})^{1/\rho} \le C(\sum \|x_i\|^{\rho})^{1/\rho}$

clearly, for $q , the distance of <math>\ell_q^n$ from a subspace of L_p is of order $n^{\frac{1}{q}-\frac{1}{p}}$.

Similarly, for $q > p \ge 2$, using the fact that L_p has cotype p, the distance of ℓ_q^n from a subspace of L_p is of order $n^{\frac{1}{p}-\frac{1}{q}}$.

The cases when p and q are on opposite sides of 2 is dealt with similarly.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The cases q and <math>2 and also the cases when <math>p and q are on opposite sides of 2 are best dealt with by Type and Cotype.

Since L_p , $p \leq 2$, has type p

 $(\mathbb{E}_{\pm} \| \sum \pm x_i \|^{\rho})^{1/\rho} \le C (\sum \|x_i\|^{\rho})^{1/\rho}$

clearly, for $q , the distance of <math>\ell_q^n$ from a subspace of L_p is of order $n^{\frac{1}{q}-\frac{1}{p}}$.

Similarly, for $q > p \ge 2$, using the fact that L_p has cotype p, the distance of ℓ_q^n from a subspace of L_p is of order $n^{\frac{1}{p}-\frac{1}{q}}$.

The cases when p and q are on opposite sides of 2 is dealt with similarly.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The cases q and <math>2 and also the cases when <math>p and q are on opposite sides of 2 are best dealt with by Type and Cotype.

Since L_p , $p \leq 2$, has type p

 $(\mathbb{E}_{\pm} \| \sum \pm x_i \|^{\rho})^{1/\rho} \le C (\sum \|x_i\|^{\rho})^{1/\rho}$

clearly, for $q , the distance of <math>\ell_q^n$ from a subspace of L_p is of order $n^{\frac{1}{q}-\frac{1}{p}}$.

Similarly, for $q > p \ge 2$, using the fact that L_p has cotype p, the distance of ℓ_q^n from a subspace of L_p is of order $n^{\frac{1}{p}-\frac{1}{q}}$.

The cases when p and q are on opposite sides of 2 is dealt with similarly.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The case 2 < q < p is more complicated, especially if one wants to compute the distance of ℓ_q^n from a subspace of L_p

The X_{ρ} **inequality** [JMST, '79]:

For p > 2, all *n* and all real numbers $a_1, \ldots, a_n, x_1, \ldots, x_n$

$$\mathbb{E}_{\pm,\pi} |\sum_{i=1}^{n} \pm a_i x_{\pi(i)}|^p \le C_p \left(\frac{1}{n} \sum_{i=1}^{n} |a_i|^p \sum_{i=1}^{n} |x_i|^p + \frac{1}{n^{p/2}} (\sum_{i=1}^{n} a_i^2)^{p/2} (\sum_{i=1}^{n} x_i^2)^{p/2} \right)$$

The inverse inequality also holds.

・ロン ・四 と ・ ヨ と ・ ヨ と …

The case 2 < q < p is more complicated, especially if one wants to compute the distance of ℓ_q^n from a subspace of L_p

The X_p **inequality** [JMST, '79]:

For p > 2, all *n* and all real numbers $a_1, \ldots, a_n, x_1, \ldots, x_n$

$$\begin{split} \mathbb{E}_{\pm,\pi} |\sum_{i=1}^{n} \pm a_{i} x_{\pi(i)}|^{p} \leq \\ C_{p} \left(\frac{1}{n} \sum_{i=1}^{n} |a_{i}|^{p} \sum_{i=1}^{n} |x_{i}|^{p} + \frac{1}{n^{p/2}} (\sum_{i=1}^{n} a_{i}^{2})^{p/2} (\sum_{i=1}^{n} x_{i}^{2})^{p/2} \right) \end{split}$$

The inverse inequality also holds.

・ロト ・聞 ト ・ヨト ・ヨト

The inequality was used in [JMST] to characterize the finite dimensional symmetric bases in L_p , p > 2. Later it was used in

$$\mathbb{E}_{\pm,S\subset\{1,\dots,n\},|S|=k} |\sum_{i\in S} \pm x_i|^p \le C_p \left(\frac{k}{n}\sum_{i=1}^n |x_i|^p + \left(\frac{k}{n}\right)^{p/2} \left(\sum_{i=1}^n x_i^2\right)^{p/2}\right)$$

Or for all $x_1,\dots,x_n \in L_n$

$$\mathbb{E}_{\pm,S\subset\{1,\ldots,n\},|S|=k} \|\sum_{i\in S} \pm x_i\|^p \leq C_p\left(\frac{k}{n}\sum_{i=1}^n \|x_i\|^p + \left(\frac{k}{n}\right)^{p/2} \mathbb{E}_{\pm} \|\sum_{i=1}^n \pm x_i\|^p\right) \geq \infty$$

Gideon Schechtman

Metric X_p inequalities

The inequality was used in [JMST] to characterize the finite dimensional symmetric bases in L_p , p > 2. Later it was used in [FJS] to find the (order of the) distance of ℓ_q^n to a subspace of L_p for 2 < q < p. For the lower bound only a special case is needed: For all $k \le n$

$$\mathbb{E}_{\pm,S\subset\{1,\ldots,n\},|S|=k} \sum_{i\in S} \pm x_i|^p \leq C_p \left(\frac{k}{n} \sum_{i=1}^n |x_i|^p + \left(\frac{k}{n}\right)^{p/2} \left(\sum_{i=1}^n x_i^2 \right)^{p/2} \right)$$

Or, for all $x_1,\ldots,x_n \in L_p$,
$$\mathbb{E}_{\pm,S\subset\{1,\ldots,n\},|S|=k} \sum_{i\in S} \pm x_i|^p \leq C_p \left(\frac{k}{n} \sum_{i=1}^n ||x_i||^p + \left(\frac{k}{n}\right)^{p/2} \mathbb{E}_{\pm} \sum_{i=1}^n \pm x_i|^p \right)$$

Gideon Schechtman

Metric X_p inequalities

The inequality was used in [JMST] to characterize the finite dimensional symmetric bases in L_p , p > 2. Later it was used in [FJS] to find the (order of the) distance of ℓ_q^n to a subspace of L_p for 2 < q < p. For the lower bound only a special case is needed: For all $k \le n$

$$\mathbb{E}_{\pm,S\subset\{1,\ldots,n\},|S|=k} |\sum_{i\in S} \pm x_i|^{p} \leq C_{p}\left(\frac{k}{n}\sum_{i=1}^{n} |x_i|^{p} + \left(\frac{k}{n}\right)^{p/2} \left(\sum_{i=1}^{n} x_i^{2}\right)^{p/2}\right)$$

Or, for all $x_1, \ldots, x_n \in L_p$,

$$\mathbb{E}_{\pm,S\subset\{1,\ldots,n\},|S|=k} \|\sum_{i\in S} \pm x_i\|^p \leq C_p\left(\frac{k}{n}\sum_{i=1}^n \|x_i\|^p + \left(\frac{k}{n}\right)^{p/2} \mathbb{E}_{\pm} \|\sum_{i=1}^n \pm x_i\|^p\right) \leq C_p\left(\frac{k}{n}\sum_{i=1}^n \|x_i\|^p + \left(\frac{k}{n}\right)^{p/2} \mathbb{E}_{\pm} \|\sum_{i=1}^n \pm x_i\|^p\right) \leq C_p\left(\frac{k}{n}\sum_{i=1}^n \|x_i\|^p + \left(\frac{k}{n}\right)^{p/2} \mathbb{E}_{\pm} \|\sum_{i=1}^n \|x_i\|^p\right) \leq C_p\left(\frac{k}{n}\sum_{i=1}^n \|x_i\|^p + \left(\frac{k}{n}\right)^{p/2} \mathbb{E}_{\pm} \|\sum_{i=1}^n \|x_i\|^p\right)$$

Gideon Schechtman

Metric Xp inequalities

The inequality was used in [JMST] to characterize the finite dimensional symmetric bases in L_p , p > 2. Later it was used in [FJS] to find the (order of the) distance of ℓ_q^n to a subspace of L_p for 2 < q < p. For the lower bound only a special case is needed: For all $k \le n$

$$\mathbb{E}_{\pm,S\subset\{1,\ldots,n\},|S|=k} |\sum_{i\in S} \pm x_i|^p \le C_p\left(\frac{k}{n}\sum_{i=1}^n |x_i|^p + \left(\frac{k}{n}\right)^{p/2} \left(\sum_{i=1}^n x_i^2\right)^{p/2}\right)$$

Or, for all $x_1, \ldots, x_n \in L_p$,

$$\mathbb{E}_{\pm,S\subset\{1,\ldots,n\},|S|=k}\|\sum_{i\in S}\pm x_i\|^{p} \leq C_{p}\left(\frac{k}{n}\sum_{i=1}^{n}\|x_i\|^{p}+\left(\frac{k}{n}\right)^{p/2}\mathbb{E}_{\pm}\|\sum_{i=1}^{n}\pm x_i\|^{p}\right) \geq C_{p}\left(\frac{k}{n}\sum_{i=1}^{n}\|x_i\|^{p}+\left(\frac{k}{n}\right)^{p/2}\mathbb{E}_{\pm}\|\sum_{i=1}^{n}\|x_i\|^{p}\right) \geq C_{p}\left(\frac{k}{n}\sum_{i=1}^{n}\|x_i\|^{p}+\left(\frac{k}{n}\right)^{p/2}\mathbb{E}_{\pm}\|\sum_{i=1}^{n}\|x_i\|^{p}\right) \leq C_{p}\left(\frac{k}{n}\sum_{i=1}^{n}\|x_i\|^{p}+\left(\frac{k}{n}\right)^{p/2}\mathbb{E}_{\pm}\|\sum_{i=1}^{n}\|x_i\|^{p}\right)$$

Gideon Schechtman

Metric X_D inequalities

Plugging for x_i the image of the ℓ_q^n canonical unit vector basis and optimizing over k, we get a lower estimate for the distortion of embedding ℓ_q^n into L_p . It is

$$\geq n^{rac{(rac{1}{2}-rac{1}{q})(rac{1}{q}-rac{1}{p})}{rac{1}{2}-rac{1}{p}}}$$

and it matches the upper bound.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

One last linear remark:

The situation with the ℓ_p spaces is simpler:

For all $p \neq q$ ℓ_q does not embed into ℓ_p .

ヘロト ヘアト ヘビト ヘビト

A metric space (X, d_X) is said to admit a bi-Lipschitz embedding into a metric space (Y, d_Y) if there exist $s \in (0, \infty)$, $D \in [1, \infty)$ and a mapping $f : X \to Y$ such that

$$\forall x, y \in X, \quad sd_X(x, y) \leq d_Y(f(x), f(y)) \leq Dsd_X(x, y).$$

When this happens we say that that (X, d_X) embeds into (Y, d_Y) with distortion at most *D*. We denote by $c_Y(X)$ the infinum over such $D \in [1, \infty]$. When $Y = L_p$ we use the shorter notation $c_{L_p}(X) = c_p(X)$.

ヘロン 人間 とくほとく ほとう

It follows from general principles (mostly differentiation) that $c_p(L_q)$ and $c_p(\ell_q^n)$ are equal to their linear counterparts. But these principles no longer apply when dealing with $c_p(A)$ for a discrete set $A \subset L_q$ nor for $c_p(L_q^\alpha)$ where for $0 < \alpha < 1$ L_q^α denotes L_q with the metric $d_{q,\alpha}(x, y) = ||x - y||_q^\alpha$.

It turns out however that the non-linear versions of Type and Cotype still apply in such situations when q and<math>2 or when p and q are on opposite sides of 2.

(But not when 2 < *q* < *p*)

ヘロン 人間 とくほとく ほとう

It follows from general principles (mostly differentiation) that $c_p(L_q)$ and $c_p(\ell_q^n)$ are equal to their linear counterparts. But these principles no longer apply when dealing with $c_p(A)$ for a discrete set $A \subset L_q$ nor for $c_p(L_q^\alpha)$ where for $0 < \alpha < 1$ L_q^α denotes L_q with the metric $d_{q,\alpha}(x, y) = ||x - y||_q^\alpha$.

It turns out however that the non-linear versions of Type and Cotype still apply in such situations when q and<math>2 or when p and q are on opposite sides of 2.

(But not when 2 < *q* < *p*)

ヘロン 人間 とくほど くほとう

It follows from general principles (mostly differentiation) that $c_p(L_q)$ and $c_p(\ell_q^n)$ are equal to their linear counterparts. But these principles no longer apply when dealing with $c_p(A)$ for a discrete set $A \subset L_q$ nor for $c_p(L_q^\alpha)$ where for $0 < \alpha < 1$ L_q^α denotes L_q with the metric $d_{q,\alpha}(x, y) = ||x - y||_q^\alpha$.

It turns out however that the non-linear versions of Type and Cotype still apply in such situations when q and<math>2 or when p and q are on opposite sides of 2.

(But not when 2 < q < p)

ヘロン 人間 とくほ とくほとう

It follows from general principles (mostly differentiation) that $c_p(L_q)$ and $c_p(\ell_q^n)$ are equal to their linear counterparts. But these principles no longer apply when dealing with $c_p(A)$ for a discrete set $A \subset L_q$ nor for $c_p(L_q^\alpha)$ where for $0 < \alpha < 1$ L_q^α denotes L_q with the metric $d_{q,\alpha}(x, y) = ||x - y||_q^\alpha$.

It turns out however that the non-linear versions of Type and Cotype still apply in such situations when q and<math>2 or when p and q are on opposite sides of 2.

(But not when 2 < *q* < *p*)

ヘロン 人間 とくほ とくほとう

A metric space (X, d_X) is said to have (Enflo) type $r \in [1, \infty)$ if for every $n \in \mathbb{N}$ and $f : \{-1, 1\}^n \to X$,

$$\mathbb{E}\left[d_X(f(\varepsilon), f(-\varepsilon))^r\right] \lesssim_X \\ \sum_{j=1}^n \mathbb{E}\left[d_X(f(\varepsilon), f(\varepsilon_1, \dots, \varepsilon_{j-1}, -\varepsilon_j, \varepsilon_{j+1}, \dots, \varepsilon_n))^r\right], \quad (1)$$

where the expectation is with respect to $\varepsilon \in \{-1, 1\}^n$ chosen uniformly at random. Note that if X is a Banach space and f is the linear function given by $f(\varepsilon) = \sum_{j=1}^{n} \varepsilon_j x_j$ then this is the inequality defining type r.

For $p \in [1, \infty)$, L_p actually has Enflo type $r = \min\{p, 2\}$. i.e., $X = L_p$ satisfies (1) with $f : \{-1, 1\}^n \to L_p$ allowed to be an arbitrary mapping rather than only a linear mapping. This statement was proved by Enflo in 1969 for $p \in [1, 2]$ (and by [NS, 2002] for $p \in (2, \infty)$).

A metric space (X, d_X) is said to have (Enflo) type $r \in [1, \infty)$ if for every $n \in \mathbb{N}$ and $f : \{-1, 1\}^n \to X$,

$$\mathbb{E}\left[d_X(f(\varepsilon), f(-\varepsilon))^r\right] \lesssim_X \\ \sum_{j=1}^n \mathbb{E}\left[d_X(f(\varepsilon), f(\varepsilon_1, \dots, \varepsilon_{j-1}, -\varepsilon_j, \varepsilon_{j+1}, \dots, \varepsilon_n))^r\right], \quad (1)$$

where the expectation is with respect to $\varepsilon \in \{-1, 1\}^n$ chosen uniformly at random. Note that if *X* is a Banach space and *f* is the linear function given by $f(\varepsilon) = \sum_{j=1}^{n} \varepsilon_j x_j$ then this is the inequality defining type *r*.

For $p \in [1, \infty)$, L_p actually has Enflo type $r = \min\{p, 2\}$. i.e., $X = L_p$ satisfies (1) with $f : \{-1, 1\}^n \to L_p$ allowed to be an arbitrary mapping rather than only a linear mapping. This statement was proved by Enflo in 1969 for $p \in [1, 2]$ (and by [NS, 2002] for $p \in (2, \infty)$).

A metric space (X, d_X) is said to have (Enflo) type $r \in [1, \infty)$ if for every $n \in \mathbb{N}$ and $f : \{-1, 1\}^n \to X$,

$$\mathbb{E}\left[d_X(f(\varepsilon), f(-\varepsilon))^r\right] \lesssim_X \\ \sum_{j=1}^n \mathbb{E}\left[d_X(f(\varepsilon), f(\varepsilon_1, \dots, \varepsilon_{j-1}, -\varepsilon_j, \varepsilon_{j+1}, \dots, \varepsilon_n))^r\right], \quad (1)$$

where the expectation is with respect to $\varepsilon \in \{-1, 1\}^n$ chosen uniformly at random. Note that if *X* is a Banach space and *f* is the linear function given by $f(\varepsilon) = \sum_{j=1}^{n} \varepsilon_j x_j$ then this is the inequality defining type *r*.

For $p \in [1, \infty)$, L_p actually has Enflo type $r = \min\{p, 2\}$. i.e., $X = L_p$ satisfies (1) with $f : \{-1, 1\}^n \to L_p$ allowed to be an arbitrary mapping rather than only a linear mapping. This statement was proved by Enflo in 1969 for $p \in [1, 2]$ (and by [NS, 2002] for $p \in (2, \infty)$).

A metric space (X, d_X) is said to have (Enflo) type $r \in [1, \infty)$ if for every $n \in \mathbb{N}$ and $f : \{-1, 1\}^n \to X$,

$$\mathbb{E}\left[d_X(f(\varepsilon), f(-\varepsilon))^r\right] \lesssim_X \\ \sum_{j=1}^n \mathbb{E}\left[d_X(f(\varepsilon), f(\varepsilon_1, \dots, \varepsilon_{j-1}, -\varepsilon_j, \varepsilon_{j+1}, \dots, \varepsilon_n))^r\right], \quad (1)$$

where the expectation is with respect to $\varepsilon \in \{-1, 1\}^n$ chosen uniformly at random. Note that if *X* is a Banach space and *f* is the linear function given by $f(\varepsilon) = \sum_{j=1}^{n} \varepsilon_j x_j$ then this is the inequality defining type *r*.

For $p \in [1, \infty)$, L_p actually has Enflo type $r = \min\{p, 2\}$. i.e., $X = L_p$ satisfies (1) with $f : \{-1, 1\}^n \to L_p$ allowed to be an arbitrary mapping rather than only a linear mapping. This statement was proved by Enflo in 1969 for $p \in [1, 2]$ (and by [NS, 2002] for $p \in (2, \infty)$).

Here is an illustration how to use Enflo type to show that for $q <math>c_p(\{-1,1\}^n, \|\cdot\|_q) \gtrsim n^{\frac{1}{q}-\frac{1}{p}}$ (that $c_p(\ell_q^n) \le n^{\frac{1}{q}-\frac{1}{p}}$ is trivial).

Let $f : \{-1, 1\}^n \to L_p$ be such that $\forall x, y \in \{-1, 1\}^n$, $\|x - y\|_q \le \|f(x) - f(y)\|_p \le D\|x - y\|_q$ Then

$$2^{p} n^{p/q} \leq \mathbb{E} \| f(\varepsilon) - f(-\varepsilon) \|_{p}^{p} \lesssim \sum_{j=1}^{n} \mathbb{E} \| f(\varepsilon) - f(\varepsilon_{1}, \dots, \varepsilon_{j-1}, -\varepsilon_{j}, \varepsilon_{j+1}, \dots, \varepsilon_{n}) \|_{p}^{p} \lesssim D^{p} n 2^{p}.$$

Similarly one shows that for $\alpha > q/p$ $c_p(\{-1, 1\}^n, \|\cdot\|^{\alpha}_q) \xrightarrow{\rightarrow} \infty_{\underline{a}}$

Here is an illustration how to use Enflo type to show that for $q <math>c_p(\{-1,1\}^n, \|\cdot\|_q) \gtrsim n^{\frac{1}{q}-\frac{1}{p}}$ (that $c_p(\ell_q^n) \le n^{\frac{1}{q}-\frac{1}{p}}$ is trivial).

Let
$$f : \{-1, 1\}^n \to L_p$$
 be such that
 $\forall x, y \in \{-1, 1\}^n$, $\|x - y\|_q \le \|f(x) - f(y)\|_p \le D\|x - y\|_q$
Then

$$2^{p} n^{p/q} \leq \mathbb{E} \|f(\varepsilon) - f(-\varepsilon)\|_{p}^{p} \lesssim \sum_{j=1}^{n} \mathbb{E} \|f(\varepsilon) - f(\varepsilon_{1}, \dots, \varepsilon_{j-1}, -\varepsilon_{j}, \varepsilon_{j+1}, \dots, \varepsilon_{n})\|_{p}^{p} \lesssim D^{p} n 2^{p}.$$

So $D \gtrsim n^{\frac{1}{q} - \frac{1}{p}}.$

Similarly one shows that for $\alpha > q/p$ $c_p(\{-1, 1\}^n, \|\cdot\|^\alpha_q) \xrightarrow{\rightarrow} \infty_{\underline{a}} \longrightarrow \infty_{\underline{a}}$

The non-linear background

Here is an illustration how to use Enflo type to show that for $q <math>c_p(\{-1,1\}^n, \|\cdot\|_q) \gtrsim n^{\frac{1}{q}-\frac{1}{p}}$ (that $c_p(\ell_q^n) \le n^{\frac{1}{q}-\frac{1}{p}}$ is trivial).

Let
$$f : \{-1, 1\}^n \to L_p$$
 be such that
 $\forall x, y \in \{-1, 1\}^n$, $\|x - y\|_q \le \|f(x) - f(y)\|_p \le D\|x - y\|_q$
Then

$$2^{p} n^{p/q} \leq \mathbb{E} \|f(\varepsilon) - f(-\varepsilon)\|_{p}^{p} \lesssim \sum_{j=1}^{n} \mathbb{E} \|f(\varepsilon) - f(\varepsilon_{1}, \dots, \varepsilon_{j-1}, -\varepsilon_{j}, \varepsilon_{j+1}, \dots, \varepsilon_{n})\|_{p}^{p} \lesssim D^{p} n 2^{p}.$$

So $D \gtrsim n^{\frac{1}{q} - \frac{1}{p}}.$

Similarly one shows that for $\alpha > q/p$ $c_p(\{-1, 1\}^n_{q}, \|\cdot\|^{\alpha}_{q}) \xrightarrow{}{=} \infty_{\underline{*}}$

The definition of non-linear cotype is more problematic. Changing the direction of the inequality in the definition of type is no good if $f(\{-1, 1\}^n)$ is a discrete set. A good definition was sought for a long time until the following:

A metric space (X, d_X) is said to have (Mendel-Naor) cotype $s \in [1, \infty)$ if for every $n \in \mathbb{N}$ there is an $m \in \mathbb{N}$ such that for all $f : \mathbb{Z}_{2m}^n \to X$,

$$\sum_{j=1}^{n} \frac{\mathbb{E}\left[d_X(f(x+me_j),f(x))^s\right]}{m^s} \lesssim_X \mathbb{E}\left[d_X(f(x+\varepsilon),f(x))^s\right],$$

where the expectation is with respect to $(x, \varepsilon) \in \mathbb{Z}_{2m}^n \times \{-1, 0, 1\}^n$ chosen uniformly at random.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The definition of non-linear cotype is more problematic. Changing the direction of the inequality in the definition of type is no good if $f(\{-1, 1\}^n)$ is a discrete set. A good definition was sought for a long time until the following:

A metric space (X, d_X) is said to have (Mendel-Naor) cotype $s \in [1, \infty)$ if for every $n \in \mathbb{N}$ there is an $m \in \mathbb{N}$ such that for all $f : \mathbb{Z}_{2m}^n \to X$,

$$\sum_{j=1}^{n} \frac{\mathbb{E}\left[d_{X}(f(x+me_{j}),f(x))^{s}\right]}{m^{s}} \lesssim_{X} \mathbb{E}\left[d_{X}(f(x+\varepsilon),f(x))^{s}\right],$$

where the expectation is with respect to $(x, \varepsilon) \in \mathbb{Z}_{2m}^n \times \{-1, 0, 1\}^n$ chosen uniformly at random.

ヘロン 人間 とくほ とくほとう

Using this one can prove that for 2 , for some, specific*m*depending on*n*and*p* $, <math>c_p(|Z_m^n, \| \cdot \|_q) \to \infty$ when $n \to \infty$.

The cases when p and q are on different sides of 2 can also be dealt with.

 $c_p(L_a^{\alpha})$ can also be dealt with in these cases.

What about $c_p((|Z_m^n, \|\cdot\|_q)$ and $c_p(L_q^{\alpha})$ when 2 < q < p?

・ロト ・四ト ・ヨト ・ヨト

Using this one can prove that for 2 , for some, specific*m*depending on*n*and*p* $, <math>c_p(|Z_m^n, \| \cdot \|_q) \to \infty$ when $n \to \infty$.

The cases when p and q are on different sides of 2 can also be dealt with.

 $c_p(L_q^{\alpha})$ can also be dealt with in these cases.

What about $c_p((|Z_m^n, \|\cdot\|_q)$ and $c_p(L_q^{\alpha})$ when 2 < q < p?

ヘロン 人間 とくほとく ほとう

Using this one can prove that for 2 , for some, specific*m*depending on*n*and*p* $, <math>c_p(|Z_m^n, \| \cdot \|_q) \to \infty$ when $n \to \infty$.

The cases when p and q are on different sides of 2 can also be dealt with.

 $c_p(L^{\alpha}_{\alpha})$ can also be dealt with in these cases.

What about $c_p((|Z_m^n, \|\cdot\|_q)$ and $c_p(L_q^{lpha})$ when 2 < q < p?

ヘロン 人間 とくほ とくほとう

Using this one can prove that for 2 , for some, specific*m*depending on*n*and*p* $, <math>c_p(|Z_m^n, \| \cdot \|_q) \to \infty$ when $n \to \infty$.

The cases when p and q are on different sides of 2 can also be dealt with.

 $c_p(L_q^{\alpha})$ can also be dealt with in these cases.

What about $c_p((|Z_m^n, \|\cdot\|_q)$ and $c_p(L_q^{\alpha})$ when 2 < q < p?

ヘロン 人間 とくほ とくほとう

Using this one can prove that for 2 , for some, specific*m*depending on*n*and*p* $, <math>c_p(|Z_m^n, \| \cdot \|_q) \to \infty$ when $n \to \infty$.

The cases when p and q are on different sides of 2 can also be dealt with.

 $c_p(L_q^{\alpha})$ can also be dealt with in these cases.

What about $c_p((|Z_m^n, \| \cdot \|_q)$ and $c_p(L_q^{\alpha})$ when 2 < q < p?

・ロト ・回ト ・ヨト ・ヨト

One last non-linear remark:

The situation with the ℓ_p spaces is different:

If $1 \le q \le p < \infty$ and $\alpha \in (0, 1]$ is such that $(\ell_q, ||x - y||_q^{\alpha})$ admits a bi-Lipschitz embedding into ℓ_p then necessarily $\alpha \le q/p$ [Baudier]. Also, for every $1 \le q \le p < \infty$, $(\ell_q, || \cdot ||_q^{q/p})$ does admit a bi-Lipschitz embedding into ℓ_p [Albiac and Baudier].

・ロト ・四ト ・ヨト ・ヨト ・

One last non-linear remark:

The situation with the ℓ_p spaces is different:

If $1 \le q \le p < \infty$ and $\alpha \in (0, 1]$ is such that $(\ell_q, ||x - y||_q^{\alpha})$ admits a bi-Lipschitz embedding into ℓ_p then necessarily $\alpha \le q/p$ [Baudier]. Also, for every $1 \le q \le p < \infty$, $(\ell_q, || \cdot ||_q^{q/p})$ does admit a bi-Lipschitz embedding into ℓ_p [Albiac and Baudier].

<ロ> (四) (四) (三) (三) (三) (三)

Recall the linear X_p inequality:

$$\mathbb{E}_{\pm,S\subset\{1,\ldots,n\},|S|=k} \|\sum_{i\in S} \pm x_i\|^p \le C_p\left(\frac{k}{n}\sum_{i=1}^n \|x_i\|^p + \left(\frac{k}{n}\right)^{p/2} \mathbb{E}_{\pm} \|\sum_{i=1}^n \pm x_i\|^p\right)$$

<ロト <回 > < 注 > < 注 > 、

2

The inequality

for
$$S \subset \{1, ..., n\}$$
 and $\varepsilon \in \{-1, 1\}^n$ we denote $\varepsilon_S = \sum_{j \in S} \varepsilon_j e_j$.

Theorem (Metric X_p inequality)

Fix $p \in [2, \infty)$. Suppose that $m, n \in \mathbb{N}$ and $k \in \{1, \dots, n\}$ satisfy $m \ge \frac{n^{3/2} \log p}{\sqrt{k}} + pn$. Then for every $f : \mathbb{Z}_{4m}^n \to L_p$ we have

$$\frac{1}{\binom{n}{k}} \sum_{\substack{S \subset \{1, \dots, n\} \\ |S|=k}} \frac{\mathbb{E}\left[\|f(x+2m\varepsilon_S) - f(x)\|_p^p \right]}{m^p} \\ \lesssim_p \frac{k}{n} \sum_{j=1}^n \mathbb{E}\left[\|f(x+e_j) - f(x)\|_p^p \right] + \left(\frac{k}{n}\right)^{\frac{p}{2}} \mathbb{E}\left[\|f(x+\varepsilon) - f(x)\|_p^p \right]$$

where the expectation is with respect to $(x, \varepsilon) \in \mathbb{Z}_{4m}^n \times \{-1, 1\}^n$ chosen uniformly at random. The constant is $\left(\frac{Cp}{\log p}\right)^p$.

Theorem (L_p distortion of L_q grids)

For every $2 there exists <math>\alpha_p \in (0, \infty)$ such that for every $q \in (2, p)$ and $m, n \in \mathbb{N}$ we have

$$c_{p}(\mathbb{Z}_{m}^{n}, \|\cdot\|_{q}) \geq \alpha_{p}\left(\min\left\{m^{\frac{q(p-2)}{q(p-2)+p-q}}, n\right\}\right)^{\frac{\left(\frac{1}{2}-\frac{1}{q}\right)\left(\frac{1}{q}-\frac{1}{p}\right)}{\left(\frac{1}{2}-\frac{1}{p}\right)}}$$

In particular, if $m \ge n^{1+\frac{p-q}{q(p-2)}}$, then

$$c_{\rho}(\mathbb{Z}_m^n, \|\cdot\|_q) \geq \alpha_{\rho} n^{\frac{(\frac{1}{2}-\frac{1}{q})(\frac{1}{q}-\frac{1}{\rho})}{(\frac{1}{2}-\frac{1}{\rho})}} \gtrsim \alpha_{\rho} c_{\rho}(\ell_q^n).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Some lower bound on *m* is needed:

 $(\{-1,1\}^n, \|\cdot\|_q) = (\{-1,1\}^n, \|\cdot\|_2^{2/q})$ and the later (Lipschitz) isometrically embeds in L_2 which isometrically embeds in L_p .

This also shows that scaling (and using \mathbb{Z}_m^n instead of just $\{-1, 1\}^n$) is necessary in the metric X_p inequality.

<ロ> <問> <問> < 回> < 回> < □> < □> <

Some lower bound on *m* is needed:

 $(\{-1,1\}^n, \|\cdot\|_q) = (\{-1,1\}^n, \|\cdot\|_2^{2/q})$ and the later (Lipschitz) isometrically embeds in L_2 which isometrically embeds in L_p .

This also shows that scaling (and using \mathbb{Z}_m^n instead of just $\{-1,1\}^n$) is necessary in the metric X_p inequality.

・ロト ・四ト ・ヨト ・ヨト ・

Some lower bound on *m* is needed:

 $(\{-1,1\}^n, \|\cdot\|_q) = (\{-1,1\}^n, \|\cdot\|_2^{2/q})$ and the later (Lipschitz) isometrically embeds in L_2 which isometrically embeds in L_p .

This also shows that scaling (and using \mathbb{Z}_m^n instead of just $\{-1, 1\}^n$) is necessary in the metric X_p inequality.

ヘロン 人間 とくほ とくほ とう

3

Theorem (L_q snowflakes in L_p)

For every 2 < q < p there exists $\delta(p,q) > 0$ such that if $\alpha \in (0,1)$ is such that the metric space $(L_q, ||x - y||_q^{\alpha})$ admits a bi-Lipschitz embedding into L_p then necessarily $\alpha \le 1 - \delta(p,q)$. Specifically, α must satisfy $\alpha \le 1 - \frac{(p-q)(q-2)}{2p^3}$.

Mendel and Naor (2004) showed that for 2 < q < p, $L_q^{q/p}$, the (q/p)-snowflake of L_q , is isometric to a subset of L_p . We conjecture that this is sharp.

イロト イポト イヨト イヨト 一日

Theorem (L_q snowflakes in L_p)

For every 2 < q < p there exists $\delta(p,q) > 0$ such that if $\alpha \in (0,1)$ is such that the metric space $(L_q, ||x - y||_q^{\alpha})$ admits a bi-Lipschitz embedding into L_p then necessarily $\alpha \le 1 - \delta(p,q)$. Specifically, α must satisfy $\alpha \le 1 - \frac{(p-q)(q-2)}{2p^3}$.

Mendel and Naor (2004) showed that for 2 < q < p, $L_q^{q/p}$, the (q/p)-snowflake of L_q , is isometric to a subset of L_p . We conjecture that this is sharp.

<ロ> <四> <四> <四> <三</td>

A conjecture

We conjecture that the metric X_p inequality holds whenever $m \ge C_p \sqrt{n/k}$. I.e.,

Conjecture

Fix $p \in [2, \infty)$. Suppose that $m, n \in \mathbb{N}$ and $k \in \{1, ..., n\}$ satisfy $m \ge C_p \sqrt{n/k}$. Then for every $f : \mathbb{Z}_{4m}^n \to L_p$ we have

$$\frac{1}{\binom{n}{k}} \sum_{\substack{S \subset \{1, \dots, n\} \\ |S|=k}} \frac{\mathbb{E}\left[\left\| f(x+2m\varepsilon_S) - f(x) \right\|_p^p \right]}{m^p}$$
$$\lesssim_p \frac{k}{n} \sum_{j=1}^n \mathbb{E}\left[\left\| f(x+e_j) - f(x) \right\|_p^p \right] + \left(\frac{k}{n}\right)^{\frac{p}{2}} \mathbb{E}\left[\left\| f(x+\varepsilon) - f(x) \right\|_p^p \right]$$

ヘロン 人間 とくほ とくほとう

= 990

If the conjecture holds then

1. The snow flake conjecture holds: If $\alpha \in (0, 1)$ is such that the metric space $(L_q, ||x - y||_q^{\alpha})$ admits a bi-Lipschitz embedding into L_p , 2 < q < p, then necessarily $\alpha \leq q/p$.

2. $c_p(\mathbb{Z}_m^n, \|\cdot\|_q)$ is given by the best of the two mentioned embeddings: The linear one (which works for all of ℓ_q^n) and the one given by thinking of $(\mathbb{Z}_m^n, \|\cdot\|_q)$ as $(\mathbb{Z}_m^n, \|\cdot\|_2^{2/q})$.

<ロ> (四) (四) (三) (三) (三) (三)

If the conjecture holds then

1. The snow flake conjecture holds: If $\alpha \in (0, 1)$ is such that the metric space $(L_q, ||x - y||_q^{\alpha})$ admits a bi-Lipschitz embedding into L_p , 2 < q < p, then necessarily $\alpha \leq q/p$.

2. $c_p(\mathbb{Z}_m^n, \|\cdot\|_q)$ is given by the best of the two mentioned embeddings: The linear one (which works for all of ℓ_q^n) and the one given by thinking of $(\mathbb{Z}_m^n, \|\cdot\|_q)$ as $(\mathbb{Z}_m^n, \|\cdot\|_2^{2/q})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの