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Rademacher’s Theorem

Theorem (Rademacher)
Every Lipschitz function f : Rn → Rm is differentiable Lebesgue almost
everywhere.

Theorem (Aronszajn, Christensen, Mankiewicz)
Let X be separable, Y have the Radon-Nikodym property, and f : X → Y
be Lipschitz. Then f is Gâteaux differentiable ‘almost everywhere’.

Theorem (Preiss)
Let X ∗ be separable and f : X → R be Lipschitz. Then f is Fréchet
differentiable on a dense set.
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Converse to Rademacher’s Theorem

Theorem
If N ⊂ Rn is Lebesgue null then there is a Lipschitz function f : Rn → Rn

which is differentiable at no point of N.

The case n = 1 is relatively simple.
The case n = 2 was proved by Alberti, Csörnyei and Preiss.
The case n > 2 uses work of ACP together with a recent
(unpublished) result on the structure of Lebesgue null sets by
Csörnyei and Jones.
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Differentiability in Small Sets

Let n > 1.

Theorem (Preiss)
There exists a Lebesgue null set N ⊂ Rn such that every Lipschitz
function f : Rn → R is differentiable at a point of N.

Theorem (Doré-Maleva, Dymond-Maleva)
The universal differentiability set N above can be made compact and of
Hausdorff dimension, or even upper Minkowski dimension, equal to one.

Theorem (Preiss, S.)
There exists a Lebesgue null set N ⊂ Rn such that every Lipschitz
function f : Rn → Rn−1 is differentiable at a point of N.
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Maximality of Directional Derivatives

Let E be a Banach space.

Theorem (Fitzpatrick)
Suppose f : E → R is Lipschitz and f ′(x , e) = Lip(f ) for some x ∈ E and
e ∈ E with ‖e‖ = 1. If the norm of E is Fréchet differentiable at e with
derivative e∗, then f is Fréchet differentiable at x and f ′(x) = Lip(f )e∗.

Suppose f is not differentiable at x - find ε > 0 and small h such that:

f (x + h)− f (x) > Lip(f )e∗(h) + ε‖h‖.

x

x + h

x− te e
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Almost Maximality of Directional Derivatives

Let Df := {(x , e) ∈ E × E : ‖e‖ = 1, f ′(x , e) exists}.

Theorem (Preiss)
Suppose f : E → R is Lipschitz and (x0, e0) ∈ Df . Let M denote the set of
all pairs (x , e) ∈ Df such that f ′(x , e) ≥ f ′(x0, e0) and

|(f (x + te0)− f (x))− (f (x0 + te0)− f (x0))|

≤ 6|t|
√

(f ′(x , e)− f ′(x0, e0))Lip(f )

for every t ∈ R. If the norm is Fréchet differentiable at e0 and

lim
δ↓0

sup{f ′(x , e) : (x , e) ∈ M and ‖x − x0‖ ≤ δ} ≤ f ′(x0, e0),

then f is Fréchet differentiable at x0.
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Heisenberg Group

Definition
The Heisenberg group Hn is the set R2n+1 equipped with the group law:

(x , y , t)(x ′, y ′, t ′) = (x + x ′, y + y ′, t + t ′ − 2(〈x , y ′〉 − 〈y , x ′〉)).

Left invariant horizontal vector fields on Hn are defined by:

Xi (x , y , t) = ∂xi + 2yi∂t , Yi (x , y , t) = ∂yi − 2xi∂t , 1 ≤ i ≤ n.

The Haar measure on Hn is L2n+1.
Dilations are defined by δr (x , y , t) = (rx , ry , r2t). They satisfy

δr (ab) = δr (a)δr (b)

and
L2n+1(δr (A)) = r2n+2L2n+1(A).
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Horizontal Curves

A curve γ : [a, b]→ Hn is absolutely continuous if it is differentiable
almost everywhere and the fundamental theorem of calculus holds.

Definition
An absolutely continuous curve γ : [a, b]→ Hn is horizontal if there exists
h : [a, b]→ R2n such that for almost every t:

γ′(t) =
n∑

i=1
hi (t)Xi (γ(t)) + hi+n(t)Yi (γ(t)).

Define the horizontal length of such a curve by:

L(γ) =
∫ b

a
|h|.
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Horizontal Curves

x

y

t
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Carnot-Caratheodory Distance

Definition
Define the Carnot-Caratheodory distance dcc on Hn by:

dcc(x , y) = inf{L(γ) : γ horizontal and joins x to y}.

Theorem (Chow)
Any two points of Hn are connected by a horizontal curve. Further, the
topology induced by dcc coincides with the Euclidean topology.

dcc(gx , gy) = dcc(x , y) and dcc(δr (x), δr (y)) = rdcc(x , y).
L2n+1(B(0, r)) = r2n+2B(0, 1). The Hausdorff dimension of H2n+1 is
2n + 2 and the topological dimension is 2n + 1.
Carnot-Caratheodory distance is not Lipschitz equivalent to the
Euclidean distance.
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Lusin Approximation in Hn

Theorem (Classical Lusin Approximation)
Suppose γ : [a, b]→ Rn is absolutely continuous and ε > 0. Then there is
a C1 curve Γ: [a, b]→ Rn such that:

L1{t : Γ(t) 6= γ(t) or Γ′(t) 6= γ′(t)} < ε.

Theorem (S.)
Let ε > 0 and γ : [0, 1]→ Hn be an absolutely continuous horizontal curve.
Then there is a C1 horizontal curve Γ: [0, 1]→ Hn such that:

L1{t : Γ(t) 6= γ(t) or Γ′(t) 6= γ′(t)} < ε.

The same result holds in all step 2 Carnot groups (Le Donne, S.) but not
in the Engel group which has step 3 (S.).
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Euclidean Case

Idea:
1 Measure theory: restrict to a large compact set where the starting

function γ is well approximated by a continuous derivative.
2 Geometry: use nice smooth curves to interpolate in the gaps (a, b).

γ(a)

γ(b)
γ′(a)

γ′(b)

γ′(b) ≈ γ′(a)

γ(b) ≈ γ(a) + (b− a)γ′(a)
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Horizontal Lift

Lemma (Horizontal Lift)
An absolutely continuous curve γ : [a, b]→ Hn is horizontal if and only if

γ2n+1(t) = γ2n+1(a) + 2
n∑

i=1

∫ t

a
(γ′iγn+i − γ′n+iγi )

for every t ∈ [a, b].

Lemma (Height-Area Interpretation)
Suppose σ : [a, b]→ R2 is a smooth curve with σ(a) = 0. Let Aσ denote
the signed area of the region enclosed by σ and the straight line [0, σ(b)].
Then

Aσ = 1
2

∫ b

a
(σ1σ

′
2 − σ2σ

′
1).
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Horizontal Lift

x

y

x

y

t
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Construction of a C 1 Horizontal Approximation

Let γ : [0, 1]→ Hn be an absolutely continuous horizontal curve.

1 Find a compact set K ⊂ [0, 1] of large measure such that:
γ′|K is uniformly continuous,
each point of K is a Lebesgue point of γ′ with averages converging
uniformly.

2 Use the description of horizontal curves in Hn to obtain tighter
control on the non-horizontal component of γ.

3 Construct C1 curves in the plane which trace out a given area,
subject to boundary conditions on the position and velocity.

4 Lift these curves from the plane into Hn to redefine γ in the intervals
(a, b) ⊂ [0, 1] \ K .
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Engel Group
The Engel group is a step 3 Carnot group with horizontal vector fields
X1(x) = ∂1 and X2(x) = ∂2 + x1∂3 + x2

1
2 ∂4.

(0, 0, 0, 0)

(0, 0, 0, 0)

(0, 1, 0, 0)

(0, 1, 0,−ε)

γ

∂2

∂4
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Pansu Differentiability

Definition
A function L : Hn → R is called H-linear if L(xy) = L(x) + L(y) and
L(δr (x)) = rL(x) for all x , y ∈ Hn and r > 0.

Definition
A function f : Hn → R is Pansu differentiable at x ∈ Hn if there is a
H-linear map L : Hn → R such that:

lim
y→x
|f (y)− f (x)− L(x−1y)|

dcc(x , y) = 0.
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Pansu’s Theorem and Universal Differentiability Sets

Theorem (Pansu)
Every Lipschitz function f : Hn → R is Pansu differentiable Lebesgue
almost everywhere.

Corollary (Semmes)
There is no bilipschitz embedding of Hn into any Euclidean space.

Theorem (Pinamonti, S.)
There is a Lebesgue measure zero set N ⊂ Hn such that every Lipschitz
function f : Hn → R is Pansu differentiable at a point of N.

Gareth Speight (SNS) UDS in the Heisenberg Group Warwick, June 2015 17 / 23



Pansu’s Theorem and Universal Differentiability Sets

Theorem (Pansu)
Every Lipschitz function f : Hn → R is Pansu differentiable Lebesgue
almost everywhere.

Corollary (Semmes)
There is no bilipschitz embedding of Hn into any Euclidean space.

Theorem (Pinamonti, S.)
There is a Lebesgue measure zero set N ⊂ Hn such that every Lipschitz
function f : Hn → R is Pansu differentiable at a point of N.

Gareth Speight (SNS) UDS in the Heisenberg Group Warwick, June 2015 17 / 23



Pansu’s Theorem and Universal Differentiability Sets

Theorem (Pansu)
Every Lipschitz function f : Hn → R is Pansu differentiable Lebesgue
almost everywhere.

Corollary (Semmes)
There is no bilipschitz embedding of Hn into any Euclidean space.

Theorem (Pinamonti, S.)
There is a Lebesgue measure zero set N ⊂ Hn such that every Lipschitz
function f : Hn → R is Pansu differentiable at a point of N.

Gareth Speight (SNS) UDS in the Heisenberg Group Warwick, June 2015 17 / 23



A Universal Differentiability Set in Hn

Idea:
1 Fix a Lebesgue measure zero Gδ set S containing all horizontal lines

joining pairs of points in Q2n+1.

2 Find an ‘almost maximal’ directional derivative Ef (x), where we
consider x ∈ S and horizontal vector fields E of unit length.

3 Show that if x ∈ S and Ef (x) is ‘almost maximal’ then f is Pansu
differentiable at x .

Gareth Speight (SNS) UDS in the Heisenberg Group Warwick, June 2015 18 / 23



A Universal Differentiability Set in Hn

Idea:
1 Fix a Lebesgue measure zero Gδ set S containing all horizontal lines

joining pairs of points in Q2n+1.
2 Find an ‘almost maximal’ directional derivative Ef (x), where we

consider x ∈ S and horizontal vector fields E of unit length.

3 Show that if x ∈ S and Ef (x) is ‘almost maximal’ then f is Pansu
differentiable at x .

Gareth Speight (SNS) UDS in the Heisenberg Group Warwick, June 2015 18 / 23



A Universal Differentiability Set in Hn

Idea:
1 Fix a Lebesgue measure zero Gδ set S containing all horizontal lines

joining pairs of points in Q2n+1.
2 Find an ‘almost maximal’ directional derivative Ef (x), where we

consider x ∈ S and horizontal vector fields E of unit length.
3 Show that if x ∈ S and Ef (x) is ‘almost maximal’ then f is Pansu

differentiable at x .

Gareth Speight (SNS) UDS in the Heisenberg Group Warwick, June 2015 18 / 23



Directional Derivatives in Hn

Let V = Span{Xi ,Yi : 1 ≤ i ≤ n}. Define an inner product norm N on V
by declaring Xi ,Yi to be orthonormal.

Definition
Let f : Hn → R be Lipschitz and E ∈ V . Define Ef (x) := (f ◦ γ)′(t)
whenever it exists, where γ is any Lipschitz horizontal curve with γ(t) = x
and γ′(t) = E (x).

Lemma
Let f : Hn → R be Lipschitz. Then:

LipH(f ) = sup{|Ef (x)| : x ∈ Hn,E ∈ V ,N(E ) = 1,Ef (x) exists }.
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A Useful Horizontal Curve

Lemma
Let a, b ∈ Rn and c ∈ R. Suppose (a, b) 6= (0, 0) and let L = |(a, b)|. Define
γ : [0, 1]→ Hn by:

γ(t) =

t
(

a − bc
L2 , b + ac

L2 , 0
)

0 ≤ t ≤ 1/2,
1
2

(
a − bc

L2 , b + ac
L2 , 0

)
+
(

t − 1
2

)(
a + bc

L2 , b − ac
L2 , 2c

)
1/2 < t ≤ 1.

Then:
1 γ is a Lipschitz horizontal curve joining (0, 0, 0) ∈ Hn to (a, b, c) ∈ Hn,

2 LipH(γ) ≤ L
(

1 + c2

L4 + 4c2

L2

) 1
2 ,

3 γ′(t) exists and |γ′(t)− (a, b, 0)| ≤ c
L (1 + 4L2) 1

2 for t ∈ [0, 1] \ {1/2} .
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Maximality implies Differentiability

Lemma
Fix u1, u2 ∈ Rn not both zero and let u = (u1, u2, 0) ∈ Hn. Then:

1 dcc(uz , 0) ≥ dcc(u, 0) + 〈z , u/dcc(u, 0)〉 for any z ∈ Hn,
2 dcc(uz , 0) = dcc(u, 0) + 〈z , u/dcc(u, 0)〉+ o(dcc(z , 0)) as z → 0.

That is, the Pansu derivative of dcc(·, 0) at u is x 7→ 〈x , u/dcc(u, 0)〉.

Theorem
Let f : Hn → R be Lipschitz, x ∈ Hn and E ∈ V with N(E ) = 1. Suppose
Ef (x) exists and Ef (x) = LipH(f ). Then f is Pansu differentiable at x
with derivative x 7→ LipH(f )〈x ,E (0)〉.
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Almost Maximality implies Differentiability

Let Df := {(x ,E ) ∈ S × V : N(E ) = 1, Ef (x) exists}.

Theorem
Let f : Hn → R be Lipschitz and (x0,E0) ∈ Df . Let M denote the set of
pairs (x ,E ) ∈ Df such that Ef (x) ≥ E0f (x0) and

|(f (x + tE0(x))− f (x))− (f (x0 + tE0(x0))− f (x0))|

≤ 6|t|((Ef (x)− E0f (x0))LipH(f ))
1
4

for every t ∈ (−1, 1). If

lim
δ↓0

sup{Ef (x) : (x ,E ) ∈ M and dcc(x , x0) ≤ δ} ≤ E0f (x0),

then f is Pansu differentiable at x0 with Pansu derivative
x 7→ E0f (x0)〈x ,E0(0)〉.
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Key Points

A converse to Rademacher’s theorem holds for Lipschitz functions
Rn → Rm if and only if n ≤ m.

The Heisenberg group Hn is a metric measure space admitting
translations and dilations. Distances are measured using lengths of
‘horizontal curves’.
Absolutely continuous horizontal curves in Hn admit a Lusin
approximation by C1 horizontal curves. The same is true in all step 2
Carnot groups, but not in those of higher step.
Lipschitz functions Hn → R are ‘Pansu differentiable’ almost
everywhere.
There are measure zero ‘universal differentiability sets’ in Hn, which
contain points of Pansu differentiability for every Lipschitz function
Hn → R.

Thank you for listening!
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