A Measure Zero Universal Differentiability Set in the Heisenberg Group

Gareth Speight

Scuola Normale Superiore di Pisa

Warwick, June 2015

Gareth Speight (SNS)

UDS in the Heisenberg Group

Theorem (Rademacher)

Every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable Lebesgue almost everywhere.

Theorem (Rademacher)

Every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable Lebesgue almost everywhere.

Theorem (Aronszajn, Christensen, Mankiewicz)

Let X be separable, Y have the Radon-Nikodym property, and $f : X \rightarrow Y$ be Lipschitz. Then f is Gâteaux differentiable 'almost everywhere'.

Theorem (Rademacher)

Every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable Lebesgue almost everywhere.

Theorem (Aronszajn, Christensen, Mankiewicz)

Let X be separable, Y have the Radon-Nikodym property, and $f : X \rightarrow Y$ be Lipschitz. Then f is Gâteaux differentiable 'almost everywhere'.

Theorem (Preiss)

Let X^* be separable and $f : X \to \mathbb{R}$ be Lipschitz. Then f is Fréchet differentiable on a dense set.

Theorem

If $N \subset \mathbb{R}^n$ is Lebesgue null then there is a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^n$ which is differentiable at no point of N.

- The case n = 1 is relatively simple.
- The case n = 2 was proved by Alberti, Csörnyei and Preiss.
- The case *n* > 2 uses work of ACP together with a recent (unpublished) result on the structure of Lebesgue null sets by Csörnyei and Jones.

Differentiability in Small Sets

Let n > 1.

Theorem (Preiss)

There exists a Lebesgue null set $N \subset \mathbb{R}^n$ such that every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point of N.

Let n > 1.

Theorem (Preiss)

There exists a Lebesgue null set $N \subset \mathbb{R}^n$ such that every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point of N.

Theorem (Doré-Maleva, Dymond-Maleva)

The **universal differentiability set** N above can be made compact and of Hausdorff dimension, or even upper Minkowski dimension, equal to one.

Let n > 1.

Theorem (Preiss)

There exists a Lebesgue null set $N \subset \mathbb{R}^n$ such that every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point of N.

Theorem (Doré-Maleva, Dymond-Maleva)

The **universal differentiability set** N above can be made compact and of Hausdorff dimension, or even upper Minkowski dimension, equal to one.

Theorem (Preiss, S.)

There exists a Lebesgue null set $N \subset \mathbb{R}^n$ such that every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^{n-1}$ is differentiable at a point of N.

Let E be a Banach space.

Theorem (Fitzpatrick)

Suppose $f : E \to \mathbb{R}$ is Lipschitz and $f'(x, e) = \operatorname{Lip}(f)$ for some $x \in E$ and $e \in E$ with ||e|| = 1. If the norm of E is Fréchet differentiable at e with derivative e^* , then f is Fréchet differentiable at x and $f'(x) = \operatorname{Lip}(f)e^*$.

Let E be a Banach space.

Theorem (Fitzpatrick)

Suppose $f: E \to \mathbb{R}$ is Lipschitz and $f'(x, e) = \operatorname{Lip}(f)$ for some $x \in E$ and $e \in E$ with ||e|| = 1. If the norm of E is Fréchet differentiable at e with derivative e^* , then f is Fréchet differentiable at x and $f'(x) = \operatorname{Lip}(f)e^*$.

Suppose f is not differentiable at x - find $\varepsilon > 0$ and small h such that:

$$f(x+h) - f(x) > \operatorname{Lip}(f)e^*(h) + \varepsilon \|h\|.$$

Let $D^f := \{(x, e) \in E \times E : ||e|| = 1, f'(x, e) \text{ exists} \}.$

Let $D^f := \{(x, e) \in E \times E : ||e|| = 1, f'(x, e) \text{ exists} \}.$

Theorem (Preiss)

Suppose $f: E \to \mathbb{R}$ is Lipschitz and $(x_0, e_0) \in D^f$.

Let
$$D^f := \{(x, e) \in E \times E : ||e|| = 1, f'(x, e) \text{ exists} \}.$$

Theorem (Preiss)

Suppose $f: E \to \mathbb{R}$ is Lipschitz and $(x_0, e_0) \in D^f$. Let M denote the set of all pairs $(x, e) \in D^f$ such that $f'(x, e) \ge f'(x_0, e_0)$ and

$$egin{aligned} &|(f(x+te_0)-f(x))-(f(x_0+te_0)-f(x_0))|\ &\leq 6|t|\sqrt{(f'(x,e)-f'(x_0,e_0)) ext{Lip}(f)} \end{aligned}$$

for every $t \in \mathbb{R}$.

Let
$$D^f := \{(x, e) \in E \times E : ||e|| = 1, f'(x, e) \text{ exists} \}.$$

Theorem (Preiss)

Suppose $f: E \to \mathbb{R}$ is Lipschitz and $(x_0, e_0) \in D^f$. Let M denote the set of all pairs $(x, e) \in D^f$ such that $f'(x, e) \ge f'(x_0, e_0)$ and

$$egin{aligned} |(f(x+te_0)-f(x))-(f(x_0+te_0)-f(x_0))|\ &\leq 6|t|\sqrt{(f'(x,e)-f'(x_0,e_0)) ext{Lip}(f)} \end{aligned}$$

for every $t \in \mathbb{R}$. If the norm is Fréchet differentiable at e_0 and

$$\lim_{\delta \downarrow 0} \sup\{f'(x, e) \colon (x, e) \in M \text{ and } \|x - x_0\| \le \delta\} \le f'(x_0, e_0),$$

then f is Fréchet differentiable at x_0 .

Definition

The **Heisenberg group** \mathbb{H}^n is the set \mathbb{R}^{2n+1} equipped with the group law:

$$(x,y,t)(x',y',t')=(x+x',y+y',t+t'-2(\langle x,y'
angle-\langle y,x'
angle)).$$

Definition

The **Heisenberg group** \mathbb{H}^n is the set \mathbb{R}^{2n+1} equipped with the group law:

$$(x,y,t)(x',y',t')=(x+x',y+y',t+t'-2(\langle x,y'
angle-\langle y,x'
angle)).$$

Left invariant **horizontal vector fields** on \mathbb{H}^n are defined by:

$$X_i(x, y, t) = \partial_{x_i} + 2y_i \partial_t, \quad Y_i(x, y, t) = \partial_{y_i} - 2x_i \partial_t, \quad 1 \leq i \leq n.$$

Definition

The **Heisenberg group** \mathbb{H}^n is the set \mathbb{R}^{2n+1} equipped with the group law:

$$(x,y,t)(x',y',t')=(x+x',y+y',t+t'-2(\langle x,y'
angle-\langle y,x'
angle)).$$

Left invariant **horizontal vector fields** on \mathbb{H}^n are defined by:

$$X_i(x, y, t) = \partial_{x_i} + 2y_i \partial_t, \quad Y_i(x, y, t) = \partial_{y_i} - 2x_i \partial_t, \quad 1 \leq i \leq n.$$

• The Haar measure on \mathbb{H}^n is \mathcal{L}^{2n+1} .

Definition

The **Heisenberg group** \mathbb{H}^n is the set \mathbb{R}^{2n+1} equipped with the group law:

$$(x,y,t)(x',y',t')=(x+x',y+y',t+t'-2(\langle x,y'
angle-\langle y,x'
angle)).$$

Left invariant **horizontal vector fields** on \mathbb{H}^n are defined by:

$$X_i(x, y, t) = \partial_{x_i} + 2y_i \partial_t, \quad Y_i(x, y, t) = \partial_{y_i} - 2x_i \partial_t, \quad 1 \leq i \leq n.$$

- The Haar measure on \mathbb{H}^n is \mathcal{L}^{2n+1} .
- **Dilations** are defined by $\delta_r(x, y, t) = (rx, ry, r^2t)$. They satisfy

$$\delta_r(ab) = \delta_r(a)\delta_r(b)$$

and

$$\mathcal{L}^{2n+1}(\delta_r(A)) = r^{2n+2}\mathcal{L}^{2n+1}(A).$$

A curve $\gamma \colon [a, b] \to \mathbb{H}^n$ is **absolutely continuous** if it is differentiable almost everywhere and the fundamental theorem of calculus holds.

A curve $\gamma \colon [a, b] \to \mathbb{H}^n$ is **absolutely continuous** if it is differentiable almost everywhere and the fundamental theorem of calculus holds.

Definition

An absolutely continuous curve $\gamma \colon [a, b] \to \mathbb{H}^n$ is **horizontal** if there exists $h \colon [a, b] \to \mathbb{R}^{2n}$ such that for almost every t:

$$\gamma'(t) = \sum_{i=1}^n h_i(t) X_i(\gamma(t)) + h_{i+n}(t) Y_i(\gamma(t)).$$

A curve $\gamma \colon [a, b] \to \mathbb{H}^n$ is **absolutely continuous** if it is differentiable almost everywhere and the fundamental theorem of calculus holds.

Definition

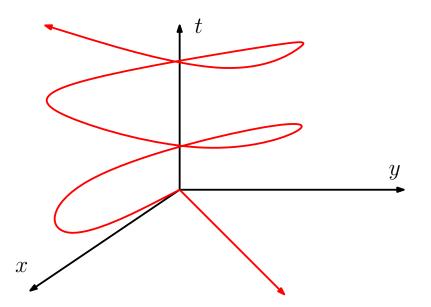
An absolutely continuous curve $\gamma \colon [a, b] \to \mathbb{H}^n$ is **horizontal** if there exists $h \colon [a, b] \to \mathbb{R}^{2n}$ such that for almost every t:

$$\gamma'(t) = \sum_{i=1}^n h_i(t) X_i(\gamma(t)) + h_{i+n}(t) Y_i(\gamma(t)).$$

Define the **horizontal length** of such a curve by:

$$L(\gamma) = \int_a^b |h|.$$

Horizontal Curves



Carnot-Caratheodory Distance

Definition

Define the **Carnot-Caratheodory distance** d_{cc} on \mathbb{H}^n by:

 $d_{cc}(x, y) = \inf\{L(\gamma) \colon \gamma \text{ horizontal and joins } x \text{ to } y\}.$

Define the **Carnot-Caratheodory distance** d_{cc} on \mathbb{H}^n by:

 $d_{cc}(x, y) = \inf\{L(\gamma) \colon \gamma \text{ horizontal and joins } x \text{ to } y\}.$

Theorem (Chow)

Define the **Carnot-Caratheodory distance** d_{cc} on \mathbb{H}^n by:

 $d_{cc}(x, y) = \inf\{L(\gamma) \colon \gamma \text{ horizontal and joins } x \text{ to } y\}.$

Theorem (Chow)

•
$$d_{cc}(gx, gy) = d_{cc}(x, y)$$
 and $d_{cc}(\delta_r(x), \delta_r(y)) = rd_{cc}(x, y)$.

Define the **Carnot-Caratheodory distance** d_{cc} on \mathbb{H}^n by:

 $d_{cc}(x, y) = \inf\{L(\gamma) \colon \gamma \text{ horizontal and joins } x \text{ to } y\}.$

Theorem (Chow)

- $d_{cc}(gx, gy) = d_{cc}(x, y)$ and $d_{cc}(\delta_r(x), \delta_r(y)) = rd_{cc}(x, y)$.
- $\mathcal{L}^{2n+1}(B(0,r)) = r^{2n+2}B(0,1)$. The Hausdorff dimension of \mathbb{H}^{2n+1} is 2n+2 and the topological dimension is 2n+1.

Define the **Carnot-Caratheodory distance** d_{cc} on \mathbb{H}^n by:

 $d_{cc}(x, y) = \inf\{L(\gamma) \colon \gamma \text{ horizontal and joins } x \text{ to } y\}.$

Theorem (Chow)

- $d_{cc}(gx, gy) = d_{cc}(x, y)$ and $d_{cc}(\delta_r(x), \delta_r(y)) = rd_{cc}(x, y)$.
- $\mathcal{L}^{2n+1}(B(0,r)) = r^{2n+2}B(0,1)$. The Hausdorff dimension of \mathbb{H}^{2n+1} is 2n+2 and the topological dimension is 2n+1.
- Carnot-Caratheodory distance is **not** Lipschitz equivalent to the Euclidean distance.

Theorem (Classical Lusin Approximation)

Suppose $\gamma : [a, b] \to \mathbb{R}^n$ is absolutely continuous and $\varepsilon > 0$. Then there is a C^1 curve $\Gamma : [a, b] \to \mathbb{R}^n$ such that:

 \mathcal{L}^1 { $t: \Gamma(t) \neq \gamma(t) \text{ or } \Gamma'(t) \neq \gamma'(t)$ } < ε .

Theorem (Classical Lusin Approximation)

Suppose $\gamma : [a, b] \to \mathbb{R}^n$ is absolutely continuous and $\varepsilon > 0$. Then there is a C^1 curve $\Gamma : [a, b] \to \mathbb{R}^n$ such that:

 \mathcal{L}^1 { $t: \Gamma(t) \neq \gamma(t) \text{ or } \Gamma'(t) \neq \gamma'(t)$ } < ε .

Theorem (S.)

Let $\varepsilon > 0$ and $\gamma : [0,1] \to \mathbb{H}^n$ be an absolutely continuous horizontal curve. Then there is a C^1 horizontal curve $\Gamma : [0,1] \to \mathbb{H}^n$ such that:

$$\mathcal{L}^1\{t\colon \Gamma(t)
eq\gamma(t) \text{ or } \Gamma'(t)
eq\gamma'(t)\}$$

Theorem (Classical Lusin Approximation)

Suppose $\gamma : [a, b] \to \mathbb{R}^n$ is absolutely continuous and $\varepsilon > 0$. Then there is a C^1 curve $\Gamma : [a, b] \to \mathbb{R}^n$ such that:

 \mathcal{L}^1 { $t: \Gamma(t) \neq \gamma(t) \text{ or } \Gamma'(t) \neq \gamma'(t)$ } < ε .

Theorem (S.)

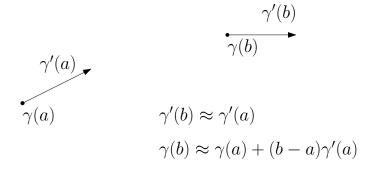
Let $\varepsilon > 0$ and $\gamma : [0,1] \to \mathbb{H}^n$ be an absolutely continuous horizontal curve. Then there is a C^1 horizontal curve $\Gamma : [0,1] \to \mathbb{H}^n$ such that:

$$\mathcal{L}^1\{t\colon \mathsf{\Gamma}(t)
eq\gamma(t) ext{ or } \mathsf{\Gamma}'(t)
eq\gamma'(t)\}$$

The same result holds in all step 2 Carnot groups (Le Donne, S.) but not in the Engel group which has step 3 (S.).

Idea:

- Measure theory: restrict to a large compact set where the starting function γ is well approximated by a continuous derivative.
- **2** Geometry: use nice smooth curves to interpolate in the gaps (a, b).



Lemma (Horizontal Lift)

An absolutely continuous curve $\gamma \colon [a, b] \to \mathbb{H}^n$ is horizontal if and only if

$$\gamma_{2n+1}(t) = \gamma_{2n+1}(a) + 2\sum_{i=1}^n \int_a^t (\gamma'_i \gamma_{n+i} - \gamma'_{n+i} \gamma_i)$$

for every $t \in [a, b]$.

Lemma (Horizontal Lift)

An absolutely continuous curve $\gamma \colon [a, b] \to \mathbb{H}^n$ is horizontal if and only if

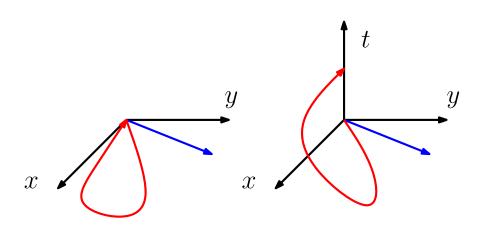
$$\gamma_{2n+1}(t) = \gamma_{2n+1}(a) + 2\sum_{i=1}^n \int_a^t (\gamma'_i \gamma_{n+i} - \gamma'_{n+i} \gamma_i)$$

for every $t \in [a, b]$.

Lemma (Height-Area Interpretation)

Suppose σ : $[a, b] \to \mathbb{R}^2$ is a smooth curve with $\sigma(a) = 0$. Let A_{σ} denote the signed area of the region enclosed by σ and the straight line $[0, \sigma(b)]$. Then

$$A_{\sigma} = \frac{1}{2} \int_{a}^{b} (\sigma_1 \sigma'_2 - \sigma_2 \sigma'_1).$$



Construction of a C^1 Horizontal Approximation

Let $\gamma \colon [0,1] \to \mathbb{H}^n$ be an absolutely continuous horizontal curve.

Let $\gamma \colon [0,1] \to \mathbb{H}^n$ be an absolutely continuous horizontal curve.

- Find a compact set $K \subset [0, 1]$ of large measure such that:
 - $\gamma'|_{\mathcal{K}}$ is uniformly continuous,
 - each point of ${\cal K}$ is a Lebesgue point of γ' with averages converging uniformly.

Let $\gamma \colon [0,1] \to \mathbb{H}^n$ be an absolutely continuous horizontal curve.

- Find a compact set $K \subset [0, 1]$ of large measure such that:
 - $\gamma'|_{\mathcal{K}}$ is uniformly continuous,
 - each point of ${\cal K}$ is a Lebesgue point of γ' with averages converging uniformly.
- ② Use the description of horizontal curves in ℍⁿ to obtain tighter control on the non-horizontal component of *γ*.

Let $\gamma \colon [0,1] \to \mathbb{H}^n$ be an absolutely continuous horizontal curve.

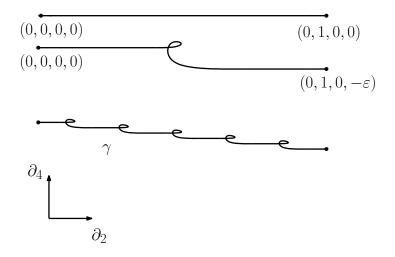
- Find a compact set $K \subset [0, 1]$ of large measure such that:
 - $\gamma'|_{\mathcal{K}}$ is uniformly continuous,
 - each point of ${\cal K}$ is a Lebesgue point of γ' with averages converging uniformly.
- Output: Use the description of horizontal curves in Hⁿ to obtain tighter control on the non-horizontal component of γ.
- Construct C¹ curves in the plane which trace out a given area, subject to boundary conditions on the position and velocity.

Let $\gamma \colon [0,1] \to \mathbb{H}^n$ be an absolutely continuous horizontal curve.

- Find a compact set $K \subset [0, 1]$ of large measure such that:
 - $\gamma'|_{\mathcal{K}}$ is uniformly continuous,
 - each point of ${\cal K}$ is a Lebesgue point of γ' with averages converging uniformly.
- Our Set the description of horizontal curves in ℍⁿ to obtain tighter control on the non-horizontal component of γ.
- Construct C¹ curves in the plane which trace out a given area, subject to boundary conditions on the position and velocity.
- Lift these curves from the plane into ℍⁿ to redefine γ in the intervals
 (a, b) ⊂ [0, 1] \ K.

Engel Group

The **Engel group** is a step 3 Carnot group with horizontal vector fields $X_1(x) = \partial_1$ and $X_2(x) = \partial_2 + x_1\partial_3 + \frac{x_1^2}{2}\partial_4$.



Definition

A function $L: \mathbb{H}^n \to \mathbb{R}$ is called \mathbb{H} -linear if L(xy) = L(x) + L(y) and $L(\delta_r(x)) = rL(x)$ for all $x, y \in \mathbb{H}^n$ and r > 0.

Definition

A function $L: \mathbb{H}^n \to \mathbb{R}$ is called \mathbb{H} -linear if L(xy) = L(x) + L(y) and $L(\delta_r(x)) = rL(x)$ for all $x, y \in \mathbb{H}^n$ and r > 0.

Definition

A function $f : \mathbb{H}^n \to \mathbb{R}$ is **Pansu differentiable** at $x \in \mathbb{H}^n$ if there is a \mathbb{H} -linear map $L : \mathbb{H}^n \to \mathbb{R}$ such that:

$$\lim_{y \to x} \frac{|f(y) - f(x) - L(x^{-1}y)|}{d_{cc}(x, y)} = 0.$$

Theorem (Pansu)

Every Lipschitz function $f : \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable Lebesgue almost everywhere.

Theorem (Pansu)

Every Lipschitz function $f : \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable Lebesgue almost everywhere.

Corollary (Semmes)

There is no bilipschitz embedding of \mathbb{H}^n into any Euclidean space.

Theorem (Pansu)

Every Lipschitz function $f : \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable Lebesgue almost everywhere.

Corollary (Semmes)

There is no bilipschitz embedding of \mathbb{H}^n into any Euclidean space.

Theorem (Pinamonti, S.)

There is a Lebesgue measure zero set $N \subset \mathbb{H}^n$ such that every Lipschitz function $f : \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable at a point of N.

Idea:

Fix a Lebesgue measure zero G_δ set S containing all horizontal lines joining pairs of points in Q²ⁿ⁺¹.

Idea:

- Fix a Lebesgue measure zero G_δ set S containing all horizontal lines joining pairs of points in Q²ⁿ⁺¹.
- Solution is a set of the set

Idea:

- Fix a Lebesgue measure zero G_δ set S containing all horizontal lines joining pairs of points in Q²ⁿ⁺¹.
- Solution is a set of the set
- Show that if x ∈ S and Ef(x) is 'almost maximal' then f is Pansu differentiable at x.

Let $V = \text{Span}\{X_i, Y_i : 1 \le i \le n\}$. Define an inner product norm N on V by declaring X_i, Y_i to be orthonormal.

Let $V = \text{Span}\{X_i, Y_i : 1 \le i \le n\}$. Define an inner product norm N on V by declaring X_i, Y_i to be orthonormal.

Definition

Let $f: \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $E \in V$. Define $Ef(x) := (f \circ \gamma)'(t)$ whenever it exists, where γ is any Lipschitz horizontal curve with $\gamma(t) = x$ and $\gamma'(t) = E(x)$. Let $V = \text{Span}\{X_i, Y_i : 1 \le i \le n\}$. Define an inner product norm N on V by declaring X_i, Y_i to be orthonormal.

Definition

Let $f: \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $E \in V$. Define $Ef(x) := (f \circ \gamma)'(t)$ whenever it exists, where γ is any Lipschitz horizontal curve with $\gamma(t) = x$ and $\gamma'(t) = E(x)$.

Lemma

Let $f : \mathbb{H}^n \to \mathbb{R}$ be Lipschitz. Then:

 $\operatorname{Lip}_{\mathbb{H}}(f) = \sup\{|Ef(x)| \colon x \in \mathbb{H}^n, E \in V, N(E) = 1, Ef(x) \text{ exists }\}.$

Let $a, b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Suppose $(a, b) \neq (0, 0)$ and let L = |(a, b)|. Define $\gamma : [0, 1] \to \mathbb{H}^n$ by:

$$\gamma(t) = \begin{cases} t \left(a - \frac{bc}{L^2}, b + \frac{ac}{L^2}, 0 \right) & 0 \le t \le 1/2, \\ \frac{1}{2} \left(a - \frac{bc}{L^2}, b + \frac{ac}{L^2}, 0 \right) + \left(t - \frac{1}{2} \right) \left(a + \frac{bc}{L^2}, b - \frac{ac}{L^2}, 2c \right) & 1/2 < t \le 1. \end{cases}$$

Let $a, b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Suppose $(a, b) \neq (0, 0)$ and let L = |(a, b)|. Define $\gamma : [0, 1] \to \mathbb{H}^n$ by:

$$\gamma(t) = \begin{cases} t \left(a - \frac{bc}{L^2}, b + \frac{ac}{L^2}, 0 \right) & 0 \le t \le 1/2, \\ \frac{1}{2} \left(a - \frac{bc}{L^2}, b + \frac{ac}{L^2}, 0 \right) + \left(t - \frac{1}{2} \right) \left(a + \frac{bc}{L^2}, b - \frac{ac}{L^2}, 2c \right) & 1/2 < t \le 1. \end{cases}$$

Then:

() γ is a Lipschitz horizontal curve joining $(0,0,0) \in \mathbb{H}^n$ to $(a,b,c) \in \mathbb{H}^n$,

Let $a, b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Suppose $(a, b) \neq (0, 0)$ and let L = |(a, b)|. Define $\gamma : [0, 1] \to \mathbb{H}^n$ by:

$$\gamma(t) = \begin{cases} t \left(a - \frac{bc}{L^2}, b + \frac{ac}{L^2}, 0 \right) & 0 \le t \le 1/2, \\ \frac{1}{2} \left(a - \frac{bc}{L^2}, b + \frac{ac}{L^2}, 0 \right) + \left(t - \frac{1}{2} \right) \left(a + \frac{bc}{L^2}, b - \frac{ac}{L^2}, 2c \right) & 1/2 < t \le 1. \end{cases}$$

Then:

γ is a Lipschitz horizontal curve joining (0,0,0) ∈ Hⁿ to (a, b, c) ∈ Hⁿ,
 Lip_H(γ) ≤ L(1 + ^{c²}/_{L⁴} + ^{4c²}/_{L²})^{1/2},

Let $a, b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Suppose $(a, b) \neq (0, 0)$ and let L = |(a, b)|. Define $\gamma : [0, 1] \to \mathbb{H}^n$ by:

$$\gamma(t) = \begin{cases} t \left(a - \frac{bc}{L^2}, b + \frac{ac}{L^2}, 0 \right) & 0 \le t \le 1/2, \\ \frac{1}{2} \left(a - \frac{bc}{L^2}, b + \frac{ac}{L^2}, 0 \right) + \left(t - \frac{1}{2} \right) \left(a + \frac{bc}{L^2}, b - \frac{ac}{L^2}, 2c \right) & 1/2 < t \le 1. \end{cases}$$

Then:

γ is a Lipschitz horizontal curve joining (0,0,0) ∈ ℍⁿ to (a, b, c) ∈ ℍⁿ,
 Lip_ℍ(γ) ≤ L(1 + c²/L⁴ + 4c²/L²)^{1/2},
 γ'(t) exists and |γ'(t) - (a, b, 0)| ≤ c/L(1 + 4L²)^{1/2} for t ∈ [0,1] \ {1/2}.

Fix $u_1, u_2 \in \mathbb{R}^n$ not both zero and let $u = (u_1, u_2, 0) \in \mathbb{H}^n$. Then:

- $d_{cc}(uz,0) \ge d_{cc}(u,0) + \langle z, u/d_{cc}(u,0) \rangle$ for any $z \in \mathbb{H}^n$,
- $d_{cc}(uz,0) = d_{cc}(u,0) + \langle z, u/d_{cc}(u,0) \rangle + o(d_{cc}(z,0)) \text{ as } z \to 0.$ That is, the Pansu derivative of $d_{cc}(\cdot,0)$ at u is $x \mapsto \langle x, u/d_{cc}(u,0) \rangle$.

Fix $u_1, u_2 \in \mathbb{R}^n$ not both zero and let $u = (u_1, u_2, 0) \in \mathbb{H}^n$. Then:

- $\ \, {\sf O} \ \, d_{cc}(uz,0)\geq d_{cc}(u,0)+\langle z,u/d_{cc}(u,0)\rangle \ \, {\sf for \ any \ } z\in \mathbb{H}^n,$
- $d_{cc}(uz,0) = d_{cc}(u,0) + \langle z, u/d_{cc}(u,0) \rangle + o(d_{cc}(z,0)) \text{ as } z \to 0.$ That is, the Pansu derivative of $d_{cc}(\cdot,0)$ at u is $x \mapsto \langle x, u/d_{cc}(u,0) \rangle$.

Theorem

Let $f : \mathbb{H}^n \to \mathbb{R}$ be Lipschitz, $x \in \mathbb{H}^n$ and $E \in V$ with N(E) = 1. Suppose Ef(x) exists and $Ef(x) = \operatorname{Lip}_{\mathbb{H}}(f)$. Then f is Pansu differentiable at x with derivative $x \mapsto \operatorname{Lip}_{\mathbb{H}}(f)\langle x, E(0) \rangle$.

Let $D^f := \{(x, E) \in S \times V : N(E) = 1, Ef(x) \text{ exists}\}.$

Let $D^f := \{(x, E) \in S \times V : N(E) = 1, Ef(x) \text{ exists}\}.$

Theorem

Let $f : \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $(x_0, E_0) \in D^f$.

Let
$$D^f := \{(x, E) \in S \times V : N(E) = 1, Ef(x) \text{ exists}\}.$$

Theorem

Let $f: \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $(x_0, E_0) \in D^f$. Let M denote the set of pairs $(x, E) \in D^f$ such that $Ef(x) \ge E_0f(x_0)$ and

$$egin{aligned} &|(f(x+tE_0(x))-f(x))-(f(x_0+tE_0(x_0))-f(x_0))|\ &\leq 6|t|((Ef(x)-E_0f(x_0))\mathrm{Lip}_{\mathbb{H}}(f))^{rac{1}{4}} \end{aligned}$$

for every $t \in (-1, 1)$.

Let
$$D^f := \{(x, E) \in S \times V : N(E) = 1, Ef(x) \text{ exists}\}.$$

Theorem

Let $f: \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $(x_0, E_0) \in D^f$. Let M denote the set of pairs $(x, E) \in D^f$ such that $Ef(x) \ge E_0 f(x_0)$ and

$$\begin{split} |(f(x+tE_0(x))-f(x))-(f(x_0+tE_0(x_0))-f(x_0))|\\ &\leq 6|t|((Ef(x)-E_0f(x_0))\mathrm{Lip}_{\mathbb{H}}(f))^{\frac{1}{4}} \end{split}$$

for every $t \in (-1,1)$. If

 $\lim_{\delta \downarrow 0} \sup \{ Ef(x) \colon (x, E) \in M \text{ and } d_{cc}(x, x_0) \leq \delta \} \leq E_0 f(x_0),$

then f is Pansu differentiable at x_0 with Pansu derivative $x \mapsto E_0 f(x_0) \langle x, E_0(0) \rangle$.

• A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.

- A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.
- The Heisenberg group \mathbb{H}^n is a metric measure space admitting translations and dilations. Distances are measured using lengths of 'horizontal curves'.

- A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.
- The Heisenberg group \mathbb{H}^n is a metric measure space admitting translations and dilations. Distances are measured using lengths of 'horizontal curves'.
- Absolutely continuous horizontal curves in \mathbb{H}^n admit a Lusin approximation by C^1 horizontal curves. The same is true in all step 2 Carnot groups, but not in those of higher step.

- A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.
- The Heisenberg group \mathbb{H}^n is a metric measure space admitting translations and dilations. Distances are measured using lengths of 'horizontal curves'.
- Absolutely continuous horizontal curves in *Hⁿ* admit a Lusin approximation by C¹ horizontal curves. The same is true in all step 2 Carnot groups, but not in those of higher step.
- Lipschitz functions $\mathbb{H}^n \to \mathbb{R}$ are 'Pansu differentiable' almost everywhere.

- A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.
- The Heisenberg group \mathbb{H}^n is a metric measure space admitting translations and dilations. Distances are measured using lengths of 'horizontal curves'.
- Absolutely continuous horizontal curves in \mathbb{H}^n admit a Lusin approximation by C^1 horizontal curves. The same is true in all step 2 Carnot groups, but not in those of higher step.
- Lipschitz functions $\mathbb{H}^n \to \mathbb{R}$ are 'Pansu differentiable' almost everywhere.
- There are measure zero 'universal differentiability sets' in ℍⁿ, which contain points of Pansu differentiability for every Lipschitz function ℍⁿ → ℝ.

- A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.
- The Heisenberg group \mathbb{H}^n is a metric measure space admitting translations and dilations. Distances are measured using lengths of 'horizontal curves'.
- Absolutely continuous horizontal curves in \mathbb{H}^n admit a Lusin approximation by C^1 horizontal curves. The same is true in all step 2 Carnot groups, but not in those of higher step.
- Lipschitz functions $\mathbb{H}^n \to \mathbb{R}$ are 'Pansu differentiable' almost everywhere.
- There are measure zero 'universal differentiability sets' in ℍⁿ, which contain points of Pansu differentiability for every Lipschitz function ℍⁿ → ℝ.

Thank you for listening!