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Abstract

The undercurrent in the paper involves orthomodular lattices and
generalized measure algebras where one replaces Boolean algebra & a
measure with a lattice & a submeasure.

In the first part of the talk we take a look at natural density of natural
numbers and how it can be related to measure algebras.

The second part of the paper and talk are speculative in nature. We
discuss how Lp spaces on lattices with submeasures ‘should’ look like.
Then the ‘supports’ of simple functions do not behave distributively as in
the Boolean case.

The preprint is available at ArXiv.
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Lattice

Lattice L = (L,∨,∧, 0, 1) is axiomatized quite similarly as a Boolean
algebra. Typically Boolean algebras and lattices differ in
complementation and distributivity; the latter does not need to enjoy
such properties.

However, a lattice may have weaker versions of complementation
operation A 7→ A⊥ and that of distributivity. An example of such a
structure: orthomodular lattice.

A model for such a lattice: the system of closed subspaces of a
Hilbert space.

A generalization of measure: An order-preserving map ϕ : L → [0, 1]
with ϕ(0) = 0, ϕ(1) = 1,

ϕ(A ∨ B) ≤ ϕ(A) + ϕ(B), A,B ∈ L

is called a submeasure.

Relevance: Quantum theory.
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Natural density sets

Let us denote by D the collection of all density sets, i.e. sets A ⊂ N
such that the natural density

d(A) := lim
n→∞

|A ∩ {1, . . . , n}|
n

exists. We denote by N ⊂ D the collection of all null density sets, i.e.
sets A with d(A) = 0. Equivalence relation: A ∼ B if A M B ∈ N .

Important in number theory. Have been studied in Banach spaces too.

Notoriously badly behaved: A ∩ B, A ∪ B may fail to be density sets
even if A and B are such.

Singletons have density 0, thus σ-additivity of d fails.
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A result on turning a system of density sets to a measure
algebra

But if the previous obstructions are dealt with, then the measure sets
turn to measure algebras.

Theorem

Let F ⊂ D be a family closed under finite intersections. Then there is a
σ-algebra Σ order-isomorphically included in D/∼ such that F/∼ ⊂ Σ and
d̂ : Σ→ [0, 1], d̂(K/∼) = d(K ), is σ-additive.
Morerover, if F/∼ is countable and the corresponding σ-generated
measure algebra (Σ, d̂) is atomless, then it is in fact isomorphic to the
measure algebra on the unit interval.
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Structure of the proof 1/2: σ-additivity of d on the cosets

Lemma

With the above notations the mapping d̂ is countably additive in the
following sense: Suppose that ([Ak ])k∈N ⊂ D/∼ is a �N -increasing
sequence. Then

∨
k [Ak ] ∈ D/∼ exists and d̂(

∨
k [Ak ]) =

∨
k d̂([Ak ]).

The gist of the proof: ‘lagged’ subsets.

Version of the main lemma in the paper in more general form:
N L, [0, 1] G , {1, . . . , n}-averages  ϕn, lim limF .
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Structure of the proof 2/2: Dynkin lemma argument

We will apply the argument of the Dynkin-Sierpinski π-λ-lemma. We
call a subset ∆ ⊂ D/∼ a d-system if it satisfies the following
conditions:

(i) [N] ∈ ∆;
(ii) For each [A], [B] ∈ ∆, [A] �N [B], we have [B \ A] ∈ ∆;
(iii) For each [A], [B] ∈ ∆, A ∩ B = ∅, we have [A ∪ B] ∈ ∆;
(iv) If (Ak) ⊂ ∆ is an increasing sequence in the order inherited from D/∼,

then the least upper bound A for this sequence exists in D/∼ and
moreover A ∈ ∆.

Let ∆ be the intersection of all d-systems in D/∼ containing F/∼.

The modification of the π-λ-lemma argument gives that ∆ is
essentially a σ-algebra.
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Spaces of the type Lp(L, ϕ)

Speculative part of the paper. What is Lp(L, ϕ) where ϕ is a
submeasure on a lattice L?

It should be the completion of a suitable normed space of ‘simple
functions’. Except that the space is pointless - not a genuine function
space.

That is mimicking a possible (re)construction of Lp(µ) from the
measure algebra (A, µ), where A = Σ/Ker(µ).

We start with the space c00(L) and denote its canonical Hamel basis
unit vectors by eA, A ∈ L.

This vector space by itself is not ‘realistic’ model for ‘simple
functions’ because there is a spike supported on 0 (empty set). Also,
c00(L) does not recognize the possible overlap of the supports.
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Tensorification

To fix these issues we can use an approach similar to the tensor space
constructions.

Let ∆ ⊂ c00(L) be the linear subspace given by

∆ = [e0] + span((eA + eB)− (eA∨B + eA∧B) : A,B ∈ L}.

We let
q : c00(L)→ c00(L)/∆

be the canonical quotient mapping.

Write X = c00(L)/∆ and we denote by

a⊗ A := q(aeA) ∈ X , a ∈ R, A ∈ L.

Note that X is the space of vectors of the form∑
i∈I

ai ⊗ Ai , ai ∈ R, Ai ∈ L, I finite.
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Auxiliary vector preorder

Let v be the preorder on X generated by the following conditions:

(i) v satisfies the axioms of a partial order of a vector lattice, except
possibly anti-symmetry;

(ii) a⊗ A v b ⊗ A whenever a ≤ b;
(iii) 1⊗ A v 1⊗ B whenever A ≤ B in the intrinsic partial order of L.

We define a semi-norm on X by

ρ

(∑
i

ai ⊗ Ai

)

= inf


(∑

k

|bk |pϕ(Bk)

) 1
p

: ±
∑
i

ai ⊗ Ai v
∑
k

|bk | ⊗ Bk

 .

Indeed, it is easy to see that this is a semi-norm; the triangle
inequality follows from the condition that x + y v v + w whenever
x v v and y v w .
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i

ai ⊗ Ai

)

= inf


(∑

k

|bk |pϕ(Bk)

) 1
p

: ±
∑
i

ai ⊗ Ai v
∑
k

|bk | ⊗ Bk

 .

Indeed, it is easy to see that this is a semi-norm; the triangle
inequality follows from the condition that x + y v v + w whenever
x v v and y v w .
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Non-distributive Lp space

We define Lp(L, ϕ) to be the completion of (X/ker(ρ), ρ(·)).

Theorem

Let 1 ≤ p <∞, L be an orthomodular lattice with an order-preserving
map ϕ : L → [0, 1], as above. Let (Ω,Σ, µ) be a probability space and
Σ0 ⊂ Σ a Boolean algebra which σ-generates Σ. Let us assume that
ϕ(M ∨ N) = ϕ(M) + ϕ(N) whenever N ≤ M⊥. Suppose that there is an
order-embedding  : Σ0 → L such that µ(M) = ϕ(M) for all M ∈ Σ0.
(We are not assuming here that  respects the orthocomplementation
operation.) Then∑

i

ai [1Ai
]a.e.
=
7→
∑
i

ai ⊗ (Ai ), Ai ∈ Σ0

extends to a linear (into) isometry Lp(Ω,Σ, µ)→ Lp(L, ϕ).
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