Γ-a.e. Differentiability of Convex and Quasiconvex Functions

(joint result with L. Zajíček)

Warwick, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem. Let X be a Banach space with X^* separable, $G \subset X$ an open convex set and $f: G \longrightarrow \mathbb{R}$ a continuous convex function. Then f is Fréchet differentiable Γ -almost everywhere in G.

Let X be a Banach space. $\Gamma(X)$ is the space of all continuous mappings $\gamma \colon [0,1]^{\mathbb{N}} \longrightarrow X$ which have continuous partial derivatives $D_k \gamma$. The topology on $\Gamma(X)$ is generated by the countable family of pseudonorms

 $\|\gamma\|_{\infty}$ and $\|D_k\gamma\|_{\infty}, \ k \ge 1.$

Let X be a Banach space. $\Gamma(X)$ is the space of all continuous mappings $\gamma \colon [0,1]^{\mathbb{N}} \longrightarrow X$ which have continuous partial derivatives $D_k \gamma$. The topology on $\Gamma(X)$ is generated by the countable family of pseudonorms

$$\|\gamma\|_{\infty}$$
 and $\|D_k\gamma\|_{\infty}, \ k \ge 1.$

The space $\Gamma_n(X) := C^1([0,1]^n, X)$ is equipped with the norm

$$||f||_{C^1} = \max\{||f||_{\infty}, ||f'||_{\infty}\}.$$

Definition. A Borel set $A \subset X$ is called Γ -null if

$$\mathscr{L}^{\mathbb{N}}\{t\in [0,1]^{\mathbb{N}}\mid \gamma(t)\in A\}=0$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

for residually many $\gamma \in \Gamma(X)$.

Definition. A Borel set $A \subset X$ is called Γ -null if

$$\mathscr{L}^{\mathbb{N}}\{t\in [0,1]^{\mathbb{N}}\mid \gamma(t)\in A\}=0$$

for residually many $\gamma \in \Gamma(X)$. Analogically, a Borel set $A \subset X$ is called Γ_n -null if

$$\mathscr{L}^n\{t\in[0,1]^n\mid\gamma(t)\in A\}=0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for residually many $\gamma \in \Gamma_n(X)$.

Facts.

If $A \subset X$ is a $G_{\sigma\delta}$ set which is Γ_n -null for infinitely many $n \in \mathbb{N}$, then A is Γ -null.

Facts.

If $A \subset X$ is a $G_{\sigma\delta}$ set which is Γ_n -null for infinitely many $n \in \mathbb{N}$, then A is Γ -null.

If A is an F_{σ} set which is Γ -null, then A is Γ_n -null for all $n \in \mathbb{N}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Definition. Let $A \subset X$ be a subset of the Banach space X. We say that A is P-small at the point a if the following property holds:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition. Let $A \subset X$ be a subset of the Banach space X. We say that A is P-small at the point a if the following property holds: For every finite dimensional subspace $V \subset X$ there are sequences $(y_k)_{k \in \mathbb{N}}$ and $(r_k)_{k \in \mathbb{N}}$ of points of X and positive reals, respectively, such that

(i) $r_k \searrow 0$; (ii) $||y_k - a|| = o(r_k), k \to \infty$, and (iii) for every k,

 $B(y_k, r_k) \cap (y_k + V) \cap A = \emptyset.$

Definition. Let $A \subset X$ be a subset of the Banach space X. We say that A is P-small at the point a if the following property holds: For every finite dimensional subspace $V \subset X$ there are sequences $(y_k)_{k \in \mathbb{N}}$ and $(r_k)_{k \in \mathbb{N}}$ of points of X and positive reals, respectively, such that

(i) $r_k \searrow 0$; (ii) $||y_k - a|| = o(r_k), k \to \infty$, and (iii) for every k,

$$B(y_k, r_k) \cap (y_k + V) \cap A = \emptyset.$$

The closed set A is called an \mathcal{P}^{dc} -set if there is a subset $A_0 \subset X$ which is a countable union of *d*.*c*.-hypersurfaces and such that A is *P*-small at all points of $A \setminus A_0$.

Theorem. Let X be a Banach space with X^* separable, $G \subset X$ an open convex set and $f: G \longrightarrow \mathbb{R}$ a continuous convex function. Then the set of points where f is not Fréchet differentiable is a countable union of \mathcal{P}^{dc} -sets. Consequently, f is Fréchet differentiable Γ -almost everywhere in G.

Definition. Let $A \subset X$ be a subset of the Banach space X, let $a \in A$ and $\lambda \in [0, 1)$. We say that A is P_{λ} -small at the point a if the following property holds:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition. Let $A \subset X$ be a subset of the Banach space X, let $a \in A$ and $\lambda \in [0, 1)$. We say that A is P_{λ} -small at the point a if the following property holds:

For every finite dimensional subspace $V \subset X$ there are sequences $(y_k)_{k \in \mathbb{N}}$ and $(r_k)_{k \in \mathbb{N}}$ of points of X and positive reals, respectively, such that

(i)
$$r_k \searrow 0$$
;
(ii) $||y_k - a|| = o(r_k), k \to \infty$, and
(iii) for every k ,

$$\mathscr{H}^m(B(y_k,r_k)\cap(y_k+V)\cap A)\leq\lambda \ \mathscr{H}^m(B(y_k,r_k)\cap(y_k+V)),$$

where $m = \dim V \ge 1$.

Definition. Let $A \subset X$ be a subset of the Banach space X, let $a \in A$ and $\lambda \in [0, 1)$. We say that A is P_{λ} -small at the point a if the following property holds:

For every finite dimensional subspace $V \subset X$ there are sequences $(y_k)_{k \in \mathbb{N}}$ and $(r_k)_{k \in \mathbb{N}}$ of points of X and positive reals, respectively, such that

(i)
$$r_k \searrow 0$$
;
(ii) $||y_k - a|| = o(r_k), k \to \infty$, and
(iii) for every k ,

$$\mathscr{H}^m(B(y_k,r_k)\cap(y_k+V)\cap A)\leq\lambda \mathscr{H}^m(B(y_k,r_k)\cap(y_k+V)),$$

where $m = \dim V \ge 1$.

The closed set A is called an $\mathcal{P}_{\lambda}^{\Gamma}$ -set, $\lambda \in [0, 1)$, if there is a Borel subset $A_0 \subset X$ which is Γ -null and A is P_{λ} -small at all points of $A \setminus A_0$.

Criterion.

Let $A \subset X$ be a $\mathcal{P}_{\lambda}^{\Gamma}$ -set, $\lambda \in [0, 1)$, in a separable Banach space X. Then A is Γ -null.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$f(\tau x + (1 - \tau)y) \le \max\{f(x), f(y)\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for every $x, y \in X$ and $\tau \in [0, 1]$.

$$f(\tau x + (1 - \tau)y) \le \max\{f(x), f(y)\}$$

for every $x, y \in X$ and $\tau \in [0, 1]$.

Equivalently, the sets $\{x \in X \mid f(x) \leq r\}$ are convex for all $r \in \mathbb{R}$.

$$f(\tau x + (1 - \tau)y) \le \max\{f(x), f(y)\}$$

for every $x, y \in X$ and $\tau \in [0, 1]$.

Equivalently, the sets $\{x \in X \mid f(x) \le r\}$ are convex for all $r \in \mathbb{R}$.

Proposition. Let $A \subset X$ be a closed convex subset of a separable Banach space X. Then the boundary ∂A of the set A is $P_{1/2}$ -small at all of its points. Consequently, ∂A is Γ -null. In particular, a closed convex nowhere dense subset of X is Γ -null.

$$f(\tau x + (1 - \tau)y) \le \max\{f(x), f(y)\}$$

for every $x, y \in X$ and $\tau \in [0, 1]$.

Equivalently, the sets $\{x \in X \mid f(x) \le r\}$ are convex for all $r \in \mathbb{R}$.

Proposition. Let $A \subset X$ be a closed convex subset of a separable Banach space X. Then the boundary ∂A of the set A is $P_{1/2}$ -small at all of its points. Consequently, ∂A is Γ -null. In particular, a closed convex nowhere dense subset of X is Γ -null.

Theorem. Let $f: X \longrightarrow \mathbb{R}$ be a continuous quasiconvex function on a separable Banach space X. Then f is Hadamard differentiable Γ -a.e.

The End

<□ > < @ > < E > < E > E のQ @