Random unconditionality for bases in Banach spaces

Pedro Tradacete (UC3M)

Joint work with J. López-Abad (CSIC)

Relations Between Banach Space Theory and
Geometric Measure Theory
08-12 June 2015, Mathematics Institute, University of Warwick

Outline

(1) Introduction: RUC and RUD bases
(2) Basic examples
(3) Duality, reflexivity and uniqueness
(4) Relation with unconditionality

A basis $\left(x_{n}\right)_{n \in \mathbb{N}}$ of a Banach space X is unconditional provided for every $x \in X$ its expansion $\sum_{n \in \mathbb{N}} a_{n} x_{n}$ converges unconditionally.

A basis $\left(x_{n}\right)_{n \in \mathbb{N}}$ of a Banach space X is unconditional provided for every $x \in X$ its expansion $\sum_{n \in \mathbb{N}} a_{n} x_{n}$ converges unconditionally.

TFAE:

- $\left(x_{n}\right)$ is an unconditional basis.
- For every $A \subset \mathbb{N}$,

$$
\sum_{n \in \mathbb{N}} a_{n} x_{n} \text { converges } \Rightarrow \sum_{n \in A} a_{n} x_{n} \text { converges. }
$$

- For every choice of signs $\left(\epsilon_{n}\right)_{n \in \mathbb{N}}$,

$$
\sum_{n \in \mathbb{N}} a_{n} x_{n} \text { converges } \Rightarrow \sum_{n \in \mathbb{N}} \epsilon_{n} a_{n} x_{n} \text { converges. }
$$

- There is $C>0$ such that for any scalars and signs

$$
\left\|\sum_{n=1}^{m} \epsilon_{n} a_{n} x_{n}\right\| \leq C\left\|\sum_{n=1}^{m} a_{n} x_{n}\right\|
$$

Definition (Billard-Kwapien-Pelczynski-Samuel, 1985)
A basis $\left(x_{n}\right)_{n \in \mathbb{N}}$ is of Random unconditional convergence (RUC) if

$$
\sum_{n \in \mathbb{N}} a_{n} x_{n} \text { converges } \Rightarrow \sum_{n \in \mathbb{N}} \epsilon_{n} a_{n} x_{n} \text { converges a.s. }
$$

Definition (Billard-Kwapien-Pelczynski-Samuel, 1985)
A basis $\left(x_{n}\right)_{n \in \mathbb{N}}$ is of Random unconditional convergence (RUC) if

$$
\sum_{n \in \mathbb{N}} a_{n} x_{n} \text { converges } \Rightarrow \sum_{n \in \mathbb{N}} \epsilon_{n} a_{n} x_{n} \text { converges a.s. }
$$

$\left(x_{n}\right)_{n \in \mathbb{N}}$ is an RUC-basis iff there is $K \geq 1$ such that

$$
\mathbb{E}_{\epsilon}\left(\left\|\sum_{n=1}^{m} \epsilon_{n} a_{n} x_{n}\right\|\right)=\frac{1}{2^{m}} \sum_{\left(\epsilon_{n}\right) \in\{-1,+1\}^{m}}\left\|\sum_{n=1}^{m} \epsilon_{n} a_{n} x_{n}\right\| \leq K\left\|\sum_{n=1}^{m} a_{n} x_{n}\right\| .
$$

Definition (Billard-Kwapien-Pelczynski-Samuel, 1985)

A basis $\left(x_{n}\right)_{n \in \mathbb{N}}$ is of Random unconditional convergence (RUC) if

$$
\sum_{n \in \mathbb{N}} a_{n} x_{n} \text { converges } \Rightarrow \sum_{n \in \mathbb{N}} \epsilon_{n} a_{n} x_{n} \text { converges a.s. }
$$

$\left(x_{n}\right)_{n \in \mathbb{N}}$ is an RUC-basis iff there is $K \geq 1$ such that

$$
\mathbb{E}_{\epsilon}\left(\left\|\sum_{n=1}^{m} \epsilon_{n} a_{n} x_{n}\right\|\right)=\frac{1}{2^{m}} \sum_{\left(\epsilon_{n}\right) \in\{-1,+1\}^{m}}\left\|\sum_{n=1}^{m} \epsilon_{n} a_{n} x_{n}\right\| \leq K\left\|\sum_{n=1}^{m} a_{n} x_{n}\right\| .
$$

Definition

A basis $\left(x_{n}\right)_{n \in \mathbb{N}}$ is of Random unconditional divergence (RUD) when

$$
\sum_{n \in \mathbb{N}} a_{n} x_{n} \text { diverges } \Rightarrow \sum_{n \in \mathbb{N}} \epsilon_{n} a_{n} x_{n} \text { diverges a.s. }
$$

Definition (Billard-Kwapien-Pelczynski-Samuel, 1985)

A basis $\left(x_{n}\right)_{n \in \mathbb{N}}$ is of Random unconditional convergence (RUC) if

$$
\sum_{n \in \mathbb{N}} a_{n} x_{n} \text { converges } \Rightarrow \sum_{n \in \mathbb{N}} \epsilon_{n} a_{n} x_{n} \text { converges a.s. }
$$

$\left(x_{n}\right)_{n \in \mathbb{N}}$ is an RUC-basis iff there is $K \geq 1$ such that

$$
\mathbb{E}_{\epsilon}\left(\left\|\sum_{n=1}^{m} \epsilon_{n} a_{n} x_{n}\right\|\right)=\frac{1}{2^{m}} \sum_{\left(\epsilon_{n}\right) \in\{-1,+1\}^{m}}\left\|\sum_{n=1}^{m} \epsilon_{n} a_{n} x_{n}\right\| \leq K\left\|\sum_{n=1}^{m} a_{n} x_{n}\right\| .
$$

Definition

A basis $\left(x_{n}\right)_{n \in \mathbb{N}}$ is of Random unconditional divergence (RUD) when

$$
\sum_{n \in \mathbb{N}} a_{n} x_{n} \text { diverges } \Rightarrow \sum_{n \in \mathbb{N}} \epsilon_{n} a_{n} x_{n} \text { diverges a.s. }
$$

$\left(x_{n}\right)_{n \in \mathbb{N}}$ is an RUD-basis iff there is $K \geq 1$ such that

$$
\left\|\sum_{n=1}^{m} a_{n} x_{n}\right\| \leq K \mathbb{E}_{\epsilon}\left(\left\|\sum_{n=1}^{m} \epsilon_{n} a_{n} x_{n}\right\|\right)
$$

Questions

- What properties of an unconditional basis work for RUC/RUD bases?
- Does every RUC/RUD basis have an unconditional subsequence (resp. blocks)? e Is avery hlock of an RUC/RUD basis, also RUC/RUD?

Questions

- What properties of an unconditional basis work for RUC/RUD bases?
- Does every RUC/RUD basis have an unconditional subsequence (resp. blocks)?
Is every block of an RUC/RUD basis, also RUC/RUD?

Questions

- What properties of an unconditional basis work for RUC/RUD bases?
- Does every RUC/RUD basis have an unconditional subsequence (resp. blocks)?
- Is every block of an RUC/RUD basis, also RUC/RUD?

Questions

- What properties of an unconditional basis work for RUC/RUD bases?
- Does every RUC/RUD basis have an unconditional subsequence (resp. blocks)?
- Is every block of an RUC/RUD basis, also RUC/RUD?
- Can reflexivity be characterized somehow? (in the spirit of James theorem)

Questions

- What properties of an unconditional basis work for RUC/RUD bases?
- Does every RUC/RUD basis have an unconditional subsequence (resp. blocks)?
- Is every block of an RUC/RUD basis, also RUC/RUD?
- Can reflexivity be characterized somehow? (in the spirit of James theorem)
- What are these bases good for?
- ...

Example
 The summing basis $\left(s_{n}\right)$ in c_{0} does not have any RUC nor RUD subsequence

(by Levy's and Khintchine's inequalities)

Example

The summing basis $\left(s_{n}\right)$ in c_{0} does not have any RUC nor RUD subsequence

$$
\left\|\sum_{n=1}^{m} a_{n} s_{n}\right\|=\sup _{1 \leq n \leq m}\left|\sum_{j=1}^{n} a_{j}\right|
$$

Example

The summing basis $\left(s_{n}\right)$ in c_{0} does not have any RUC nor RUD subsequence

$$
\left\|\sum_{n=1}^{m} a_{n} s_{n}\right\|=\sup _{1 \leq n \leq m}\left|\sum_{j=1}^{n} a_{j}\right|
$$

In particular,

$$
\mathbb{E}_{\epsilon}\left(\left\|\sum_{n=1}^{m} \epsilon_{n} a_{n} s_{n}\right\|\right)=\int_{0}^{1} \sup _{1 \leq n \leq m}\left|\sum_{j=1}^{n} a_{j} r_{j}(t)\right| d t \approx\left(\sum_{j=1}^{m} a_{j}^{2}\right)^{\frac{1}{2}}
$$

(by Levy's and Khintchine's inequalities).

Example

The unit basis (u_{n}) of James space is RUD.

$$
\left\|\sum_{n \in \mathbb{N}} a_{n} u_{n}\right\|_{J}=\sup \left\{\left(\sum_{k=1}^{m}\left(a_{p_{k}}-a_{p_{k+1}}\right)^{2}\right)^{\frac{1}{2}}: p_{1}<p_{2}<\ldots<p_{m+1}\right\} .
$$

Example

The unit basis (u_{n}) of James space is RUD.

$$
\left\|\sum_{n \in \mathbb{N}} a_{n} u_{n}\right\|_{J}=\sup \left\{\left(\sum_{k=1}^{m}\left(a_{p_{k}}-a_{p_{k+1}}\right)^{2}\right)^{\frac{1}{2}}: p_{1}<p_{2}<\ldots<p_{m+1}\right\} .
$$

It holds that

$$
\left\|\sum_{i=1}^{m} a_{i} u_{i}\right\|_{J} \leq \sqrt{2} \mathbb{E}_{\epsilon}\left(\left\|\sum_{i=1}^{m} \epsilon_{i} a_{i} u_{i}\right\|_{J}\right) .
$$

Example

The unit basis (u_{n}) of James space is RUD.

$$
\left\|\sum_{n \in \mathbb{N}} a_{n} u_{n}\right\|_{J}=\sup \left\{\left(\sum_{k=1}^{m}\left(a_{p_{k}}-a_{p_{k+1}}\right)^{2}\right)^{\frac{1}{2}}: p_{1}<p_{2}<\ldots<p_{m+1}\right\} .
$$

It holds that

$$
\left\|\sum_{i=1}^{m} a_{i} u_{i}\right\|_{J} \leq \sqrt{2} \mathbb{E}_{\epsilon}\left(\left\|\sum_{i=1}^{m} \epsilon_{i} a_{i} u_{i}\right\|_{J}\right) .
$$

Example

The Haar basis in $L^{1}[0,1]$ is an RUD basis.
Recall, $L^{1}[0,1]$ has no unconditional basis. Actually, $L^{1}[0,1]$ does not embed in a space with unconditional basis [Pelczynski (1961)].

Duality

Proposition

Let $\left(x_{n}\right)$ be a basis, and (x_{n}^{*}) bi-orthogonal functionals.

- $\left(x_{n}\right) R U C \Rightarrow\left(x_{n}^{*}\right) R U D$.
- $\left(x_{n}^{*}\right) R U C \Rightarrow\left(x_{n}\right) R U D$.

Duality

Proposition

Let $\left(x_{n}\right)$ be a basis, and (x_{n}^{*}) bi-orthogonal functionals.

- $\left(x_{n}\right) R U C \Rightarrow\left(x_{n}^{*}\right) R U D$.
- $\left(x_{n}^{*}\right) R U C \Rightarrow\left(x_{n}\right) R U D$.

However, if we take $\left(s_{n}\right)$, the summing basis of c_{0}

$$
s_{n}=(\overbrace{1, \ldots, 1}^{(n)}, 0 \ldots),
$$

this is not RUC, although

$$
s_{n}^{*}=(\overbrace{0, \ldots, 0}^{(n-1)}, 1,-1,0, \ldots)
$$

form an RUD basis in ℓ_{1}.

Reflexivity

Theorem (James)

A Banach space X with unconditional basis which does not contain ℓ_{1} nor c_{0} subspaces, is reflexive.

Reflexivity

Theorem (James)

A Banach space X with unconditional basis which does not contain ℓ_{1} nor c_{0} subspaces, is reflexive.

Theorem

(1) Let $\left(x_{n}\right)$ be a basis of a Banach space X such that every block is $R U D .\left(x_{n}\right)$ is shrinking $\Leftrightarrow \ell_{1} \not \subset X$
(2) Let $\left(x_{n}\right)$ be a basis of a Banach space X such that every block is $R U C .\left(x_{n}\right)$ is boundedly complete $\Leftrightarrow c_{0} \not \subset X$.

Uniqueness

Theorem (Lindenstrauss-Zippin)
X has a unique unconditional basis iff $X \approx \ell_{1}, \ell_{2}$ or c_{0}.

If X has an RUD basis, then there are non-equivalent RUD basis in X.

Uniqueness

Theorem (Lindenstrauss-Zippin)
X has a unique unconditional basis iff $X \approx \ell_{1}, \ell_{2}$ or c_{0}.

Theorem (BKPS)
X has a unique RUC basis iff $X \approx \ell_{1}$.

Uniqueness

Theorem (Lindenstrauss-Zippin)
X has a unique unconditional basis iff $X \approx \ell_{1}, \ell_{2}$ or c_{0}.

Theorem (BKPS)
X has a unique RUC basis iff $X \approx \ell_{1}$.

Theorem

If X has an RUD basis, then there are non-equivalent $R U D$ basis in X.

Uniqueness

Theorem (Lindenstrauss-Zippin)
X has a unique unconditional basis iff $X \approx \ell_{1}, \ell_{2}$ or c_{0}.

Theorem (BKPS)
X has a unique RUC basis iff $X \approx \ell_{1}$.

Theorem

If X has an RUD basis, then there are non-equivalent $R U D$ basis in X.

Things we know

Does every weakly null sequence have an RUD subsequence?

Is every block sequence of an RUD basis also RUD?

Things we know

Does every weakly null sequence have an RUD subsequence? NO [e.g. Maurey-Rosenthal space (Studia 1977).]

Things we know

Does every weakly null sequence have an RUD subsequence? NO [e.g. Maurey-Rosenthal space (Studia 1977).]

Is every block sequence of an RUD basis also RUD?

Given an RUD sequence, does it have an unconditional subsequence?

Things we know

Does every weakly null sequence have an RUD subsequence? NO [e.g. Maurey-Rosenthal space (Studia 1977).]

Is every block sequence of an RUD basis also RUD? NO [A modification of M-R.]

Given an RUD sequence, does it have an unconditional subsequence? NO [e.g. a weakly null sequence in $L_{1}[0,1]$ without un
subsequences (Johnson-Maurey-Schechtman, JAMS
Theorma
Every block sequence of the Haar basis in L_{1} is RUD.

Things we know

Does every weakly null sequence have an RUD subsequence? NO [e.g. Maurey-Rosenthal space (Studia 1977).]

Is every block sequence of an RUD basis also RUD? NO [A modification of M-R.]

Given an RUD sequence, does it have an unconditional subsequence?
subsequences (Johnson-Maurey-Schechtman, JAMS 2007)]

Every block sequence of the Haar basis in L_{1} is RUD.

Things we know

Does every weakly null sequence have an RUD subsequence? NO [e.g. Maurey-Rosenthal space (Studia 1977).]

Is every block sequence of an RUD basis also RUD? NO [A modification of M-R.]

Given an RUD sequence, does it have an unconditional subsequence? NO [e.g. a weakly null sequence in $L_{1}[0,1]$ without unconditional subsequences (Johnson-Maurey-Schechtman, JAMS 2007)]

Theorem

Every block sequence of the Haar basis in L_{1} is RUD.

Things we don't know

- Does every Banach space contain an RUD/RUC basic sequence?
- Is every basis of ℓ_{1} an RUD basis?
- Suppose every block basis of $\left(x_{n}\right)$ is RUD. Can we find unconditional blocks?

Things we don't know

- Does every Banach space contain an RUD/RUC basic sequence?
- Is every basis of ℓ_{1} an RUD basis?

Things we don't know

- Does every Banach space contain an RUD/RUC basic sequence?
- Is every basis of ℓ_{1} an RUD basis?
- Suppose every block basis of $\left(x_{n}\right)$ is RUD. Can we find unconditional blocks?

Thank you for your attention.

