On the structure of the Almost Overcomplete and Almost Overtotal sequences in Banach spaces

C. Zanco (Università degli Studi - Milano (Italy), talk based on a joint work with V.P. Fonf (Ben-Gurion University -Beer-Sheva, Israel), J. Somaglia (Università degli Studi Milano, Italy), S. Troyanski (Universidad de Murcia - Spain and Bulgarian Academy of Science - Sofia, Bulgaria)

Relations between Banach Space Theory and Geometric Measure Theory, University of Warwick, 8-12 June, 2015

Basic concept

Definition

A sequence in a Banach space X is called overcomplete in X whenever each of its subsequences is complete in X. A sequence in the dual space X^{*} is called overtotal on X whenever each of its subsequences is total on X.

Basic concept

Definition

A sequence in a Banach space X is called overcomplete in X whenever each of its subsequences is complete in X. A sequence in the dual space X^{*} is called overtotal on X whenever each of its subsequences is total on X.
J. Lyubich (1958)

Let $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ be any bounded sequence such that $\left[\left\{e_{k}\right\}_{k \in \mathbb{N}}\right]=X$.
Then the sequence

$$
\left\{y_{m}\right\}_{m=2}^{\infty}=\left\{\sum_{k=1}^{\infty} e_{k} m^{-k}\right\}_{m=2}^{\infty}
$$

is $O C$ in X.

Proof

$\left\{y_{m_{j}}\right\}_{j=1}^{\infty}$ any subsequence of $\left\{y_{m}\right\}_{m=2}^{\infty}=\left\{\sum_{k=1}^{\infty} e_{k} m^{-k}\right\}_{m=2}^{\infty}$

$$
f \in X^{*} \cap\left\{y_{m_{j}}\right\}^{\perp}
$$

D the open unit disk in the complex field

$$
\begin{gathered}
\phi: D \rightarrow \mathbb{C}, \phi(t)=\sum_{k=1}^{\infty} f\left(e_{k}\right) t^{k} \\
f\left(y_{m_{j}}\right)=\phi\left(1 / m_{j}\right)=0, \forall j \in \mathbb{N} \Rightarrow \phi \equiv 0 \Rightarrow f\left(e_{k}\right)=0 \forall k \in \mathbb{N}
\end{gathered}
$$

f arbitrarily chosen $\Rightarrow\left[\left\{y_{m_{j}}\right\}\right]=X$

definition

Definition

A sequence in a Banach space X is called almost overcomplete in X whenever the closed linear span of each of its subsequences has finite codimension in X. A sequence in the dual space X^{*} is called almost overtotal on X whenever the annihilator (in X) of each of its subsequences has finite dimension.

definition

Definition

A sequence in a Banach space X is called almost overcomplete in X whenever the closed linear span of each of its subsequences has finite codimension in X. A sequence in the dual space X^{*} is called almost overtotal on X whenever the annihilator (in X) of each of its subsequences has finite dimension.

Clearly, any overcomplete \langle resp. overtotal \rangle sequence is almost overcomplete \langle resp. almost overtotal \rangle and the converse is not true.

Remarks

- It is easy to see that, if $\left\{\left(x_{n}, x_{n}^{*}\right)\right\}$ is a countable biorthogonal system, then neither $\left\{x_{n}\right\}$ can be almost overcomplete in [$\left.\left\{x_{n}\right\}\right]$, nor $\left\{x_{n}^{*}\right\}$ can be almost overtotal on [\{ $\left.\left.x_{n}\right\}\right]$. In particular, no almost overcomplete sequence admits basic subsequences.

Remarks

- It is easy to see that, if $\left\{\left(x_{n}, x_{n}^{*}\right)\right\}$ is a countable biorthogonal system, then neither $\left\{x_{n}\right\}$ can be almost overcomplete in [$\left.\left\{x_{n}\right\}\right]$, nor $\left\{x_{n}^{*}\right\}$ can be almost overtotal on [$\left.\left\{x_{n}\right\}\right]$. In particular, no almost overcomplete sequence admits basic subsequences.
- If X admits a total sequence $\left\{x_{n}^{*}\right\} \subset X^{*}$, then there is an overtotal sequence on X. Indeed, set $Y=\left[\left\{x_{n}^{*}\right\}\right]: Y$ is a separable Banach space, so it admits an overcomplete sequence $\left\{y_{n}^{*}\right\}$. It is easy to see that $\left\{y_{n}^{*}\right\}$ is overtotal on X.

Remarks

- It is easy to see that, if $\left\{\left(x_{n}, x_{n}^{*}\right)\right\}$ is a countable biorthogonal system, then neither $\left\{x_{n}\right\}$ can be almost overcomplete in $\left[\left\{x_{n}\right\}\right]$, nor $\left\{x_{n}^{*}\right\}$ can be almost overtotal on [\{x $\left.\left.x_{n}\right\}\right]$. In particular, no almost overcomplete sequence admits basic subsequences.
- If X admits a total sequence $\left\{x_{n}^{*}\right\} \subset X^{*}$, then there is an overtotal sequence on X. Indeed, set $Y=\left[\left\{x_{n}^{*}\right\}\right]: Y$ is a separable Banach space, so it admits an overcomplete sequence $\left\{y_{n}^{*}\right\}$. It is easy to see that $\left\{y_{n}^{*}\right\}$ is overtotal on X.
- If X is reflexive, a sequence is almost overcomplete in X if and only if it is almost overtotal on X^{*}.

Compactness result (V. Fonf, C.Z., 2014)

Theorem

Each almost overcomplete bounded sequence in a Banach space as well as any sequence in a dual space that is almost overtotal on a predual space is relatively norm-compact.

On the structure of AOC sequences (V. Fonf, J. Somaglia, S. Troyanski, C.Z., 2015)

Theorem

Any (infinite-dimensional) separable Banach space X contains an AOC sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with the following property: for each $i \in \mathbb{N},\left\{x_{n}\right\}_{n \in \mathbb{N}}$ admits a subsequence $\left\{x_{n_{j}}^{(i)}\right\}_{j \in \mathbb{N}}$ such that both the following conditions are satisfied

On the structure of AOC sequences (V. Fonf, J. Somaglia, S. Troyanski, C.Z., 2015)

Theorem

Any (infinite-dimensional) separable Banach space X contains an AOC sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with the following property: for each $i \in \mathbb{N},\left\{x_{n}\right\}_{n \in \mathbb{N}}$ admits a subsequence $\left\{x_{n_{j}}^{(i)}\right\}_{j \in \mathbb{N}}$ such that both the following conditions are satisfied
a) $\operatorname{codim} X\left[\left\{x_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}\right]=i$;

On the structure of AOC sequences (V. Fonf, J. Somaglia, S. Troyanski, C.Z., 2015)

Theorem

Any (infinite-dimensional) separable Banach space X contains an AOC sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with the following property: for each $i \in \mathbb{N},\left\{x_{n}\right\}_{n \in \mathbb{N}}$ admits a subsequence $\left\{x_{n_{j}}^{(i)}\right\}_{j \in \mathbb{N}}$ such that both the following conditions are satisfied
a) $\operatorname{codim}_{X}\left[\left\{x_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}\right]=i$;
b) $\bigcap_{i \in \mathbb{N}}\left[\left\{x_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}\right]=\{0\}$.

Idea for the construction.
$\left\{e_{k}, e_{k}^{*}\right\}_{k \in \mathbb{N}} \subset X \times X^{*}$, biorthogonal system, a normalized M-basis for X. For $i=1,2, \ldots$ put

$$
Y_{i}=\left[\left\{e_{k}\right\}_{k \notin\{i, i+1, i+2, \ldots, 2 i-1\}}\right]
$$

Idea for the construction.
$\left\{e_{k}, e_{k}^{*}\right\}_{k \in \mathbb{N}} \subset X \times X^{*}$, biorthogonal system, a normalized M-basis for X. For $i=1,2, \ldots$ put

$$
Y_{i}=\left[\left\{e_{k}\right\}_{k \notin\{i, i+1, i+2, \ldots, 2 i-1\}}\right]
$$

$\operatorname{codim}_{X} Y_{i}=i$

Idea for the construction.
$\left\{e_{k}, e_{k}^{*}\right\}_{k \in \mathbb{N}} \subset X \times X^{*}$, biorthogonal system, a normalized M-basis for X. For $i=1,2, \ldots$ put

$$
Y_{i}=\left[\left\{e_{k}\right\}_{k \notin\{i, i+1, i+2, \ldots, 2 i-1\}}\right]
$$

$\operatorname{codim}_{X} Y_{i}=i$

$$
\left\{y_{m}^{(i)}\right\}_{m \geq 2}=\left\{\sum_{k=1, k \notin\{i, i+1, i+2, \ldots, 2 i-1\}}^{\infty} m^{-i k} e_{k}\right\}_{m \geq 2}
$$

provides an $O C$ sequence in $Y_{i}, i=1,2, \ldots$.

Idea for the construction.
$\left\{e_{k}, e_{k}^{*}\right\}_{k \in \mathbb{N}} \subset X \times X^{*}$, biorthogonal system, a normalized M-basis for X. For $i=1,2, \ldots$ put

$$
Y_{i}=\left[\left\{e_{k}\right\}_{k \notin\{i, i+1, i+2, \ldots, 2 i-1\}}\right]
$$

$\operatorname{codim}_{X} Y_{i}=i$

$$
\left\{y_{m}^{(i)}\right\}_{m \geq 2}=\left\{\sum_{k=1, k \notin\{i, i+1, i+2, \ldots, 2 i-1\}}^{\infty} m^{-i k} e_{k}\right\}_{m \geq 2}
$$

provides an $O C$ sequence in $Y_{i}, i=1,2, \ldots$.
Order in any way the countable set $\cup_{i \in \mathbb{N}, m \geq 2}\left\{y_{m}^{(i)}\right\}$ as a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$.

For each i, select a subsequence $\left\{x_{n_{p}^{(i)}}\right\}_{p \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ whose terms belong to $\left\{y_{m}^{(i)}\right\}_{m \geq 2}$: this last sequence being $O C$ in Y_{i}, we have $\operatorname{codim}_{X}\left[\left\{x_{n_{p}^{(i)}}\right\}_{p \in \mathbb{N}}\right]=\operatorname{codim}_{X} Y_{i}=i$.

For each i, select a subsequence $\left\{x_{n_{\rho}^{(i)}}\right\}_{p \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ whose terms belong to $\left\{y_{m}^{(i)}\right\}_{m \geq 2}$: this last sequence being $O C$ in Y_{i}, we have $\operatorname{codim} X\left[\left\{x_{n_{p}^{(i)}}\right\}_{p \in \mathbb{N}}\right]=\operatorname{codim}_{X} Y_{i}=i$.

$$
\cap_{i=1}^{\infty} Y_{i}=\{0\} \Rightarrow \cap_{i=1}^{\infty}\left[\left\{x_{n_{p}^{(i)}}\right\}_{p \in \mathbb{N}}\right]=\{0\}
$$

For each i, select a subsequence $\left\{x_{n_{p}^{(i)}}\right\}_{p \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ whose terms belong to $\left\{y_{m}^{(i)}\right\}_{m \geq 2}$: this last sequence being $O C$ in Y_{i}, we have $\operatorname{codim} X\left[\left\{x_{n_{p}^{(i)}}\right\}_{p \in \mathbb{N}}\right]=\operatorname{codim}_{X} Y_{i}=i$.

$$
\cap_{i=1}^{\infty} Y_{i}=\{0\} \Rightarrow \cap_{i=1}^{\infty}\left[\left\{x_{n_{p}^{(i)}}\right\}_{p \in \mathbb{N}}\right]=\{0\}
$$

A) For some $\bar{i},\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}$ contains infinitely many terms from $\left\{y_{m}^{(\bar{i})}\right\}_{m \geq 2}$: being $\left\{y_{m}^{(\bar{i})}\right\}_{m \geq 2} O C$ in $Y_{\bar{i}}$, we have $\operatorname{codim}_{X}\left[\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}\right] \leq \operatorname{codim} X Y_{\bar{i}}=\bar{i}$.
$B)$ For each $i,\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}$ contains at most finitely many terms from $\left\{y_{m}^{(i)}\right\}_{m \geq 2}$.
B) For each $i,\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}$ contains at most finitely many terms from $\left\{y_{m}^{(i)}\right\}_{m \geq 2}$.

$$
f \in\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}^{\perp}
$$

$$
f\left(e_{\bar{k}}\right) \neq 0 \text { for some index } \bar{k}
$$

For $j \in \mathbb{N}$, let

$$
y_{m(j)}^{(i(j))}=x_{n_{j}}
$$

B) For each $i,\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}$ contains at most finitely many terms from $\left\{y_{m}^{(i)}\right\}_{m \geq 2}$.

$$
f \in\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}^{\perp}
$$

$$
f\left(e_{\bar{k}}\right) \neq 0 \text { for some index } \bar{k}
$$

For $j \in \mathbb{N}$, let

$$
\begin{gathered}
y_{m(j)}^{(i(j))}=x_{n_{j}} \\
A=\{i: i=i(j), j \in \mathbb{N}, i(j)>\bar{k}\} .
\end{gathered}
$$

$i(j)$ goes to infinity with j, so A is infinite and we have $e_{\bar{k}} \in Y_{i}$ for every $i \in A$.
$B)$ For each $i,\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}$ contains at most finitely many terms from $\left\{y_{m}^{(i)}\right\}_{m \geq 2}$.

$$
f \in\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}^{\perp}
$$

$$
f\left(e_{\bar{k}}\right) \neq 0 \text { for some index } \bar{k}
$$

For $j \in \mathbb{N}$, let

$$
\begin{gathered}
y_{m(j)}^{(i(j))}=x_{n_{j}} \\
A=\{i: i=i(j), j \in \mathbb{N}, i(j)>\bar{k}\} .
\end{gathered}
$$

$i(j)$ goes to infinity with j, so A is infinite and we have $e_{\bar{k}} \in Y_{i}$ for every $i \in A$.
For $i \in A$, put

$$
m_{i}=\min \left\{m(j): i(j)=i, y_{m(j)}^{(i(j))} \in\left\{y_{m}^{(i)}\right\}_{m \geq 2}\right\}
$$

From $f\left(x_{n_{j}}\right)=0 \forall j \in \mathbb{N}$ it follows that, for each $i \in A$,

$$
f\left(e_{\bar{k}}\right)=-m_{i}^{i \bar{k}} \sum_{k>\bar{k}, k \notin\{i, i+1, i+2, \ldots, 2 i-1\}}^{\infty} m_{i}^{-i k} f\left(e_{k}\right)
$$

From $f\left(x_{n_{j}}\right)=0 \forall j \in \mathbb{N}$ it follows that, for each $i \in A$,

$$
\begin{aligned}
& f\left(e_{\bar{k}}\right)=-m_{i}^{i \bar{k}} \sum_{k>\bar{k}, k \notin\{i, i+1, i+2, \ldots, 2 i-1\}}^{\infty} m_{i}^{-i k} f\left(e_{k}\right) \\
& \left|f\left(e_{\bar{k}}\right)\right| \leq m_{i}^{i \bar{k}}\|f\| \sum_{k>\bar{k}, k \notin\{i, i+1, i+2, \ldots, 2-1\}}^{\infty} m_{i}^{-i k} \leq \\
& \leq\|f\| \sum_{k=\bar{k}+1}^{\infty} m_{i}^{i(\bar{k}-k)} \leq 2\|f\| m_{i}^{-i} \rightarrow 0 \text { as } i \rightarrow \infty
\end{aligned}
$$

Theorem

Any (infinite-dimensional) separable Banach space X contains an AOC sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with the following property: $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ admits countably many subsequences $\left\{x_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}, i=1,2, \ldots$, such that both the following conditions are satisfied
a) $\operatorname{codim} X\left[\left\{x_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}\right]=1$;
b) $\bigcap_{i \in \mathbb{N}}\left[\left\{x_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}\right]=\{0\}$.

Put $Y_{i}=\left[\left\{e_{k}\right\}_{k \neq i}\right]$ in the previous construction.

Theorem

Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be any AOC sequence in any (infinite-dimensional) separable Banach space X and let $\left\{x_{n_{j}^{(1)}}\right\} \supset\left\{x_{n_{j}^{(2)}}\right\} \supset\left\{x_{n_{j}^{(3)}}\right\} \supset \ldots$ any countable family of nested subsequences of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$. Then the increasing sequence of integers $\left\{\operatorname{codim}_{X}\left[\left\{x_{n_{j}^{(i)}}\right\}\right]\right\}_{i \in \mathbb{N}}$ is finite (so eventually constant).

Proof

$\left\{x_{n}\right\}_{n \in \mathbb{N}}$ an $A O C$ not $O C$ sequence
$\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}$ any of its subsequences whose linear span is not dense in X

Proof

$\left\{x_{n}\right\}_{n \in \mathbb{N}}$ an $A O C$ not $O C$ sequence
$\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}$ any of its subsequences whose linear span is not dense in X
Put

$$
X_{1}=\left[\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}\right], \quad p_{1}=\operatorname{codim}_{X} X_{1} \geq 1
$$

Proof

$\left\{x_{n}\right\}_{n \in \mathbb{N}}$ an $A O C$ not $O C$ sequence
$\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}$ any of its subsequences whose linear span is not dense in X

Put

$$
X_{1}=\left[\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}\right], \quad p_{1}=\operatorname{codim}_{X} X_{1} \geq 1
$$

If $\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}$ is $O C$ in X_{1} we are done; otherwise, let $\left\{x_{n_{j k}^{(1)}}\right\}_{k \in \mathbb{N}}$ be any of its subsequences whose linear span is not dense in X_{1}.

Proof

$\left\{x_{n}\right\}_{n \in \mathbb{N}}$ an $A O C$ not $O C$ sequence
$\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}$ any of its subsequences whose linear span is not dense in X

Put

$$
X_{1}=\left[\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}\right], \quad p_{1}=\operatorname{codim}_{X} X_{1} \geq 1
$$

If $\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}$ is $O C$ in X_{1} we are done; otherwise, let $\left\{x_{n_{j}}^{(1)}\right\}_{k \in \mathbb{N}}$ be any of its subsequences whose linear span is not dense in X_{1}. Put

$$
\left\{x_{n_{j}(1)}\right\}_{k \in \mathbb{N}}=\left\{x_{n_{j}^{(2)}}\right\}_{j \in \mathbb{N}}, \quad X_{2}=\left[\left\{x_{n_{j}^{(2)}}\right\}_{j \in \mathbb{N}}\right], \quad p_{2}=\operatorname{codim}_{X} X_{2}>p_{1} .
$$

Proof

$\left\{x_{n}\right\}_{n \in \mathbb{N}}$ an $A O C$ not $O C$ sequence
$\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}$ any of its subsequences whose linear span is not dense in X
Put

$$
X_{1}=\left[\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}\right], \quad p_{1}=\operatorname{codim}_{X} X_{1} \geq 1
$$

If $\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}}$ is $O C$ in X_{1} we are done; otherwise, let $\left\{x_{n_{j}}^{(1)}\right\}_{k \in \mathbb{N}}$ be any of its subsequences whose linear span is not dense in X_{1}.
Put
$\left\{x_{n_{j}(1)}\right\}_{k \in \mathbb{N}}=\left\{x_{n_{j}^{(2)}}\right\}_{j \in \mathbb{N}}, \quad X_{2}=\left[\left\{x_{n_{j}^{(2)}}\right\}_{j \in \mathbb{N}}\right], \quad p_{2}=\operatorname{codim}_{X} X_{2}>p_{1}$.
Let

$$
\left\{x_{n_{j}^{(1)}}\right\}_{j \in \mathbb{N}} \supset\left\{x_{n_{j}^{(2)}}\right\}_{j \in \mathbb{N}} \supset \ldots \supset\left\{x_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}} \supset \ldots
$$

be subsequences of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $p_{i} \uparrow \infty$ as $i \uparrow \infty$, where $p_{i}=\operatorname{codim}_{X} X_{i}$ with $X_{i}=\left[\left\{x_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}\right]$.
$\left\{f_{i}\right\}_{i=1}^{\infty} \subset X^{*}$ such that, for each $i, f_{i} \in X_{i+1}^{\top} \backslash X_{i}^{\top}$.
$\left\{f_{i}\right\}_{i=1}^{\infty} \subset X^{*}$ such that, for each $i, f_{i} \in X_{i+1}^{\top} \backslash X_{i}^{\top}$.
For each i, let y_{i} be an element of the sequence $\left\{x_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}$ not belonging to the sequence $\left\{x_{n_{j}^{(i+1)}}\right\}_{j \in \mathbb{N}}$ such that $f_{i}\left(y_{i}\right) \neq 0$. $f_{k}\left(y_{i}\right)=0 \forall k \leq i$.
WLOG we may assume $f_{i}\left(y_{i}\right)=1$.
$\left\{f_{i}\right\}_{i=1}^{\infty} \subset X^{*}$ such that, for each $i, f_{i} \in X_{i+1}^{\top} \backslash X_{i}^{\top}$.
For each i, let y_{i} be an element of the sequence $\left\{x_{n_{j}(i)}\right\}_{j \in \mathbb{N}}$ not belonging to the sequence $\left\{x_{n_{j}^{(i+1)}}\right\}_{j \in \mathbb{N}}$ such that $f_{i}\left(y_{i}\right) \neq 0$. $f_{k}\left(y_{i}\right)=0 \forall k \leq i$.
WLOG we may assume $f_{i}\left(y_{i}\right)=1$.

$$
\begin{gathered}
g_{1}=f_{1}, \quad g_{2}=f_{2}-f_{2}\left(y_{1}\right) g_{1}, \quad g_{3}=f_{3}-f_{3}\left(y_{1}\right) g_{1}-f_{3}\left(y_{2}\right) g_{2}, \ldots \\
\ldots, \quad g_{k}=f_{k}-\sum_{i=1}^{k-1} f_{k}\left(y_{i}\right) g_{i}, \ldots
\end{gathered}
$$

$g_{k}\left(y_{i}\right)=\delta_{k, i}$ for each $k, i \in \mathbb{N}$, so actually $\left\{y_{k}, g_{k}\right\}_{k \in \mathbb{N}}$ is a biorthogonal system with $\left\{y_{k}\right\}_{k \in \mathbb{N}} \subset\left\{x_{n}\right\}_{n \in \mathbb{N}}$. This is a contradiction since $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ was an $A O C$ sequence.

Corollary

Any AOC sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in a separable Banach space X contains some subsequence $\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}$ that is OC in $\left[\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}\right]$ (with, of course, $\left[\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}\right]$ of finite codimension in X).

On the structure of AOT sequences (V. Fonf, J. Somaglia, S. Troyanski, C.Z., 2015)

Theorem

Let X be any (infinite-dimensional) separable Banach space. Then there is a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset X^{*}$ that is AOT on X and, for each $i \in \mathbb{N}$, admits a subsequence $\left\{f_{n_{j}(i)}\right\}_{j \in \mathbb{N}}$ such that both the following conditions are satisfied
a) $\operatorname{dim}\left\{f_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}^{\top}=i$;
b) $\left[\bigcup_{i \in \mathbb{N}}\left\{f_{n_{j}^{(i)}}\right\}_{j \in \mathbb{N}}^{\top}\right]=X$.

Theorem

Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be any sequence $A O T$ on any (infinite-dimensional) Banach space X and let $\left\{f_{n_{j}^{(1)}}\right\} \supset\left\{f_{n_{j}^{(2)}}\right\} \supset\left\{f_{n_{j}^{(3)}}\right\} \supset \ldots$ any countable family of nested subsequences of $\left\{f_{n}\right\}_{n \in \mathbb{N}}$. Then the increasing sequence of integers $\left\{\operatorname{dim}\left\{f_{n_{j}^{(i)}}\right\}^{\top}\right\}_{i \in \mathbb{N}}$ is finite (so eventually constant).

Corollary

Any AOT sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ on a Banach space X contains some subsequence $\left\{f_{n_{j}}\right\}_{j \in \mathbb{N}}$ that is OT on any subspace of X complemented to $\left\{f_{n_{j}}\right\}_{j \in \mathbb{N}}^{\top}$ (with, of course, $\left\{f_{n_{j}}\right\}_{j \in \mathbb{N}}^{\top}$ of finite dimension).

Compactness result for AOC sequences

Theorem
 Each almost overcomplete bounded sequence in a Banach space is relatively norm-compact.

Compactness result for AOC sequences

Theorem

Each almost overcomplete bounded sequence in a Banach space is relatively norm-compact.

Application

Let X be a Banach space and $\left\{x_{n}\right\} \subset B_{X}$ be a sequence that is not relatively norm-compact. Then there exists an infinite-dimensional subspace Y of X^{*} such that $\left|\left\{x_{n}\right\} \cap Y^{\top}\right|=\infty$. (For instance this is true for any δ-separated sequence $\left\{x_{n}\right\} \subset B_{X}(\delta>0)$.)

Proof

Let $\left\{x_{n}\right\}$ be an almost overcomplete bounded sequence in a (separable) Banach space $(X,\|\cdot\|)$. Without loss of generality we may assume, possibly passing to an equivalent norm, that the norm $\|\cdot\|$ is locally uniformly rotund (LUR) and that $\left\{x_{n}\right\}$ is normalized under that norm.

Proof

Let $\left\{x_{n}\right\}$ be an almost overcomplete bounded sequence in a (separable) Banach space $(X,\|\cdot\|)$. Without loss of generality we may assume, possibly passing to an equivalent norm, that the norm $\|\cdot\|$ is locally uniformly rotund (LUR) and that $\left\{x_{n}\right\}$ is normalized under that norm.

First note that $\left\{x_{n}\right\}$ is relatively weakly compact: otherwise, it is known that it should admit some subsequence that is a basic sequence, a contradiction. Hence, by the Eberlein-Šmulyan theorem, $\left\{x_{n}\right\}$ admits some subsequence $\left\{x_{n_{k}}\right\}$ that weakly converges to some point $x_{0} \in B_{X}$.

Proof

Let $\left\{x_{n}\right\}$ be an almost overcomplete bounded sequence in a (separable) Banach space $(X,\|\cdot\|)$. Without loss of generality we may assume, possibly passing to an equivalent norm, that the norm $\|\cdot\|$ is locally uniformly rotund (LUR) and that $\left\{x_{n}\right\}$ is normalized under that norm.

First note that $\left\{x_{n}\right\}$ is relatively weakly compact: otherwise, it is known that it should admit some subsequence that is a basic sequence, a contradiction. Hence, by the Eberlein-Šmulyan theorem, $\left\{x_{n}\right\}$ admits some subsequence $\left\{x_{n_{k}}\right\}$ that weakly converges to some point $x_{0} \in B_{X}$.

Two cases must now be considered.

1) $\left\|x_{0}\right\|<1$. From $\left\|x_{n_{k}}-x_{0}\right\| \geq 1-\left\|x_{0}\right\|>0$, according to a well known fact, it follows that some subsequence $\left\{x_{n_{k_{i}}}-x_{0}\right\}$ is a basic sequence: hence $\operatorname{codim}\left[\left\{x_{n_{k_{2 i}}}-x_{0}\right\}\right]=\operatorname{codim}\left[\left\{x_{n_{k_{2 i}}}\right\}, x_{0}\right]=\operatorname{codim}\left[\left\{x_{n_{k_{2 i}}}\right\}\right]=\infty, a$ contradiction.
2) $\left\|x_{0}\right\|<1$. From $\left\|x_{n_{k}}-x_{0}\right\| \geq 1-\left\|x_{0}\right\|>0$, according to a well known fact, it follows that some subsequence $\left\{x_{n_{k_{i}}}-x_{0}\right\}$ is a basic sequence: hence
$\operatorname{codim}\left[\left\{x_{n_{k_{2 i}}}-x_{0}\right\}\right]=\operatorname{codim}\left[\left\{x_{n_{k_{2 i}}}\right\}, x_{0}\right]=\operatorname{codim}\left[\left\{x_{n_{k_{2 i}}}\right\}\right]=\infty, a$ contradiction.
3) $\left\|x_{0}\right\|=1$. Since we are working with a LUR norm, the subsequence $\left\{x_{n_{k}}\right\}$ actually converges to x_{0} in the norm too and we are done.

Compactness result for AOT sequences

> Theorem
> Le X be a separable Banach space. Any bounded sequence that is almost overtotal on X is relatively norm-compact.

Compactness result for AOT sequences

Theorem

Le X be a separable Banach space. Any bounded sequence that is almost overtotal on X is relatively norm-compact.

Sketch of the proof

- Let $\left\{f_{n}\right\}_{n=1}^{\infty} \subset X^{*}$ be a bounded sequence almost overtotal on X. WLOG we may assume $\left\{f_{n}\right\} \subset S_{X^{*}}$. Let $\left\{f_{n_{k}}\right\}$ be any subsequence of $\left\{f_{n}\right\}$: since X is separable, WLOG we may assume that $\left\{f_{n_{k}}\right\}$ weakly* converges, say to f_{0}. Let Z be a separable subspace of X^{*} that is 1-norming for X. Set $Y=\left[\left\{f_{n}\right\}_{n=0}^{\infty}, Z\right]$. Clearly X isometrically embeds into Y^{*} and X is 1 -norming for Y.
- There is an equivalent norm $|||\cdot|||$ on Y such that, for any sequence $\left\{h_{k}\right\}$ and h_{0} in Y,

$$
h_{k}(x) \rightarrow h_{0}(x) \quad \forall x \in X \quad \text { implies } \quad\left\|\left|h_{0}\| \| \leq \liminf \right|\right\| h_{k}\| \|
$$

and, in addition,

$$
\left\|\left\|h_{k}\right\|\right\| \rightarrow\left\|\mid h_{0}\right\| \| \quad \text { implies } \quad\left\|\left|h_{k}-h_{0}\right|\right\| \rightarrow 0
$$

- There is an equivalent norm $\|\|\cdot\||\mid$ on Y such that, for any sequence $\left\{h_{k}\right\}$ and h_{0} in Y,

$$
h_{k}(x) \rightarrow h_{0}(x) \quad \forall x \in X \quad \text { implies } \quad\left\|\left|h_{0}\| \| \leq \liminf \right|\right\| h_{k}\| \|
$$

and, in addition,

$$
\left\|\left|\left|h_{k}\| \| \rightarrow\right|\left\|h_{0}\right\| \| \quad \text { implies } \quad\left\|\left|h_{k}-h_{0}\right|\right\| \rightarrow 0\right.\right.
$$

- Take such an equivalent norm on Y and set $h_{k}=f_{n_{k}}$ and $h_{0}=f_{0}$. By (??), we are done if we prove that $\left|\left|\left|h_{k}\right|\right|\right| \rightarrow\left|\left|h_{0}\right|\right| \mid$.
Suppose to the contrary that

$$
\left\|\left\|f_{n_{k}}\right\| \nrightarrow\right\|\left|\mid f_{0}\| \| .\right.
$$

- $\left\{n_{k_{i}}\right\}$ and $\delta>0$ exist such that $\left|\left\|f_{n_{k_{i}}}\right\|\|-\|\right|\left|f_{0} \|\right|>\delta$, which forces $\left\|\mid f_{n_{k_{i}}}-f_{0}\right\| \|>\delta$ for i big enough.
- $\left\{n_{k_{i}}\right\}$ and $\delta>0$ exist such that $\left\|\left|\left|f_{n_{k_{i}}}\left\|\left|-\left\|\left|\left|f_{0} \|\right|>\delta\right.\right.\right.\right.\right.\right.\right.$, which forces $\left\|\mid f_{n_{k_{i}}}-f_{0}\right\| \|>\delta$ for i big enough.
- By W.B. Johnson - H. Rosenthal (1972) some subsequence $\left\{f_{n_{k_{m}}}-f_{0}\right\}_{m=1}^{\infty}$ is a w^{*}-basic sequence.
- $\left\{n_{k_{i}}\right\}$ and $\delta>0$ exist such that $\left|\left\|f_{n_{k_{i}}}\right\|\|-\|\right| \mid f_{0}\| \|>\delta$, which forces $\left\|\mid f_{n_{k_{i}}}-f_{0}\right\| \|>\delta$ for i big enough.
- By W.B. Johnson - H. Rosenthal (1972) some subsequence $\left\{f_{n_{k_{i m}}}-f_{0}\right\}_{m=1}^{\infty}$ is a w^{*}-basic sequence.
- For $m=1,2, \ldots$ put $g_{m}=f_{n_{k_{i}}}$. For some sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ in X,

$$
\left\{\left(g_{m}-f_{0}, x_{m}\right)\right\}_{m=1}^{\infty} \quad \text { is a biorthogonal system. }
$$

- $\left\{n_{k_{i}}\right\}$ and $\delta>0$ exist such that $\left|\left|f_{n_{k_{i}}}\left\|\left|-\left\|f_{0}\right\|\right|>\delta\right.\right.\right.$, which forces $\left\|\mid f_{n_{k_{i}}}-f_{0}\right\| \|>\delta$ for i big enough.
- By W.B. Johnson - H. Rosenthal (1972) some subsequence $\left\{f_{n_{k_{m}}}-f_{0}\right\}_{m=1}^{\infty}$ is a w^{*}-basic sequence.
- For $m=1,2, \ldots$ put $g_{m}=f_{n_{k_{i}}}$. For some sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ in X,

$$
\left\{\left(g_{m}-f_{0}, x_{m}\right)\right\}_{m=1}^{\infty} \quad \text { is a biorthogonal system. }
$$

- Only two cases must now be considered.
- $\left\{n_{k_{i}}\right\}$ and $\delta>0$ exist such that $\left\|\left|f_{n_{k_{i}}}\left\|\left|-\left\|\left|\left|f_{0} \|\right|>\delta\right.\right.\right.\right.\right.\right.$, which forces $\left\|\left|\mid f_{n_{k_{i}}}-f_{0}\| \|>\delta\right.\right.$ for i big enough.
- By W.B. Johnson - H. Rosenthal (1972) some subsequence $\left\{f_{n_{k_{m}}}-f_{0}\right\}_{m=1}^{\infty}$ is a w^{*}-basic sequence.
- For $m=1,2, \ldots$ put $g_{m}=f_{n_{k_{i_{m}}}}$. For some sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ in X,

$$
\left\{\left(g_{m}-f_{0}, x_{m}\right)\right\}_{m=1}^{\infty} \quad \text { is a biorthogonal system. }
$$

- Only two cases must now be considered.
- 1) For some sequence $\left\{m_{j}\right\}_{j=1}^{\infty}$ we have $f_{0}\left(x_{m_{j}}\right)=0, j=1,2, \ldots$ in this case $\left\{\left(g_{m_{j}}, x_{m_{j}}\right)\right\}$ would be a biorthogonal system, contradicting the fact that $\left\{g_{m_{j}}\right\}$ is almost overtotal on X.
- $\left\{n_{k_{i}}\right\}$ and $\delta>0$ exist such that $\left\|\left|f_{n_{k_{i}}}\left\|\left|-\left\|| | f_{0}\right\|>\delta\right.\right.\right.\right.$, which forces $\left\|\mid f_{n_{k_{i}}}-f_{0}\right\| \|>\delta$ for i big enough.
- By W.B. Johnson - H. Rosenthal (1972) some subsequence $\left\{f_{n_{k_{m}}}-f_{0}\right\}_{m=1}^{\infty}$ is a w^{*}-basic sequence.
- For $m=1,2, \ldots$ put $g_{m}=f_{n_{k_{i}}}$. For some sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ in X,

$$
\left\{\left(g_{m}-f_{0}, x_{m}\right)\right\}_{m=1}^{\infty} \quad \text { is a biorthogonal system. }
$$

- Only two cases must now be considered.
- 1) For some sequence $\left\{m_{j}\right\}_{j=1}^{\infty}$ we have $f_{0}\left(x_{m_{j}}\right)=0, j=1,2, \ldots$ in this case $\left\{\left(g_{m_{j}}, x_{m_{j}}\right)\right\}$ would be a biorthogonal system, contradicting the fact that $\left\{g_{m_{j}}\right\}$ is almost overtotal on X.
- 2) There exists q such that for any $m \geq q$ we have $f_{0}\left(x_{m}\right) \neq 0$. The almost overtotal sequence $\left\{g_{3 j}\right\}_{j=q}^{\infty}$ annihilates the subspace $W=\left[\left\{f_{0}\left(x_{3 j-1}\right) \cdot x_{3 j-2}-f_{0}\left(x_{3 j-2}\right) \cdot x_{3 j-1}\right\}_{j=q}^{\infty}\right] \subset X$: being $\left\{x_{m}\right\}_{m=1}^{\infty}$ a linearly independent sequence, W is infinite-dimensional, a contradiction.

THANKS FOR YOUR ATTENTION!

