On the structure of the Almost Overcomplete and Almost Overtotal sequences in Banach spaces

C. Zanco (Università degli Studi - Milano (Italy), talk based on a joint work with V.P. Fonf (Ben-Gurion University -Beer-Sheva, Israel), J. Somaglia (Università degli Studi -Milano, Italy), S. Troyanski (Universidad de Murcia - Spain and Bulgarian Academy of Science - Sofia, Bulgaria)

Relations between Banach Space Theory and Geometric Measure Theory, University of Warwick, 8 - 12 June, 2015

Definition

A sequence in a Banach space X is called *overcomplete* in X whenever each of its subsequences is complete in X. A sequence in the dual space X^* is called *overtotal on* X whenever each of its subsequences is total on X.

Definition

A sequence in a Banach space X is called *overcomplete* in X whenever each of its subsequences is complete in X. A sequence in the dual space X^* is called *overtotal on* X whenever each of its subsequences is total on X.

J. Lyubich (1958) Let $\{e_k\}_{k\in\mathbb{N}}$ be any bounded sequence such that $[\{e_k\}_{k\in\mathbb{N}}] = X$. Then the sequence

$$\{y_m\}_{m=2}^{\infty} = \{\sum_{k=1}^{\infty} e_k m^{-k}\}_{m=2}^{\infty}$$

is OC in X.

Proof

$$\{y_{m_j}\}_{j=1}^{\infty}$$
 any subsequence of $\{y_m\}_{m=2}^{\infty} = \{\sum_{k=1}^{\infty} e_k m^{-k}\}_{m=2}^{\infty}$
 $f \in X^* \cap \{y_{m_j}\}^{\perp}$

D the open unit disk in the complex field

$$\phi: D \to \mathbb{C}, \ \phi(t) = \sum_{k=1}^{\infty} f(e_k) t^k$$

 $f(y_{m_j}) = \phi(1/m_j) = 0, \forall j \in \mathbb{N} \ \Rightarrow \phi \equiv 0 \Rightarrow f(e_k) = 0 \ \forall k \in \mathbb{N}$

f arbitrarily chosen $\Rightarrow [\{y_{m_j}\}] = X$

Definition

A sequence in a Banach space X is called *almost overcomplete* in X whenever the closed linear span of each of its subsequences has finite codimension in X. A sequence in the dual space X^* is called *almost overtotal on* X whenever the annihilator (in X) of each of its subsequences has finite dimension.

Definition

A sequence in a Banach space X is called *almost overcomplete* in X whenever the closed linear span of each of its subsequences has finite codimension in X. A sequence in the dual space X^* is called *almost overtotal on* X whenever the annihilator (in X) of each of its subsequences has finite dimension.

Clearly, any overcomplete $\langle resp. \ overtotal \rangle$ sequence is almost overcomplete $\langle resp. \ almost \ overtotal \rangle$ and the converse is not true.

It is easy to see that, if {(x_n, x_n^{*})} is a countable biorthogonal system, then neither {x_n} can be almost overcomplete in [{x_n}], nor {x_n^{*}} can be almost overtotal on [{x_n}]. In particular, no almost overcomplete sequence admits basic subsequences.

- It is easy to see that, if {(x_n, x_n^{*})} is a countable biorthogonal system, then neither {x_n} can be almost overcomplete in [{x_n}], nor {x_n^{*}} can be almost overtotal on [{x_n}]. In particular, no almost overcomplete sequence admits basic subsequences.
- If X admits a total sequence {x_n^{*}} ⊂ X^{*}, then there is an overtotal sequence on X. Indeed, set Y = [{x_n^{*}}]: Y is a separable Banach space, so it admits an overcomplete sequence {y_n^{*}}. It is easy to see that {y_n^{*}} is overtotal on X.

- It is easy to see that, if {(x_n, x_n^{*})} is a countable biorthogonal system, then neither {x_n} can be almost overcomplete in [{x_n}], nor {x_n^{*}} can be almost overtotal on [{x_n}]. In particular, no almost overcomplete sequence admits basic subsequences.
- If X admits a total sequence {x_n^{*}} ⊂ X^{*}, then there is an overtotal sequence on X. Indeed, set Y = [{x_n^{*}}]: Y is a separable Banach space, so it admits an overcomplete sequence {y_n^{*}}. It is easy to see that {y_n^{*}} is overtotal on X.
- If X is reflexive, a sequence is almost overcomplete in X if and only if it is almost overtotal on X^{*}.

Compactness result (V. Fonf, C.Z., 2014)

Theorem

Each almost overcomplete bounded sequence in a Banach space as well as any sequence in a dual space that is almost overtotal on a predual space is relatively norm-compact.

On the structure of AOC sequences (V. Fonf, J. Somaglia, S. Troyanski, C.Z., 2015)

Theorem

Any (infinite-dimensional) separable Banach space X contains an AOC sequence $\{x_n\}_{n\in\mathbb{N}}$ with the following property: for each $i\in\mathbb{N}, \{x_n\}_{n\in\mathbb{N}}$ admits a subsequence $\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}$ such that both the following conditions are satisfied

On the structure of AOC sequences (V. Fonf, J. Somaglia, S. Troyanski, C.Z., 2015)

Theorem

Any (infinite-dimensional) separable Banach space X contains an AOC sequence $\{x_n\}_{n\in\mathbb{N}}$ with the following property: for each $i\in\mathbb{N}, \{x_n\}_{n\in\mathbb{N}}$ admits a subsequence $\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}$ such that both the following conditions are satisfied a) $\operatorname{codim}_X[\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}] = i;$

On the structure of AOC sequences (V. Fonf, J. Somaglia, S. Troyanski, C.Z., 2015)

Theorem

Any (infinite-dimensional) separable Banach space X contains an AOC sequence $\{x_n\}_{n\in\mathbb{N}}$ with the following property: for each $i\in\mathbb{N}, \{x_n\}_{n\in\mathbb{N}}$ admits a subsequence $\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}$ such that both the following conditions are satisfied a) $\operatorname{codim}_X[\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}] = i;$ b) $\bigcap_{i\in\mathbb{N}}[\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}] = \{0\}.$

 $\{e_k, e_k^*\}_{k \in \mathbb{N}} \subset X \times X^*$, biorthogonal system, a normalized M-basis for X. For i = 1, 2, ... put

$$Y_i = [\{e_k\}_{k \notin \{i, i+1, i+2, \dots, 2i-1\}}]$$

 $\{e_k, e_k^*\}_{k \in \mathbb{N}} \subset X \times X^*$, biorthogonal system, a normalized M-basis for X. For i = 1, 2, ... put

$$Y_i = [\{e_k\}_{k \notin \{i, i+1, i+2, \dots, 2i-1\}}]$$

 $\operatorname{codim}_X Y_i = i$

 $\{e_k, e_k^*\}_{k \in \mathbb{N}} \subset X \times X^*$, biorthogonal system, a normalized M-basis for X. For i = 1, 2, ... put

$$Y_i = [\{e_k\}_{k \notin \{i, i+1, i+2, \dots, 2i-1\}}]$$

 $\operatorname{codim}_X Y_i = i$

$$\{y_m^{(i)}\}_{m\geq 2} = \{\sum_{k=1,k\notin\{i,i+1,i+2,\dots,2i-1\}}^{\infty} m^{-ik} e_k\}_{m\geq 2}$$

provides an OC sequence in Y_i , i = 1, 2,

 $\{e_k, e_k^*\}_{k \in \mathbb{N}} \subset X \times X^*$, biorthogonal system, a normalized M-basis for X. For i = 1, 2, ... put

$$Y_i = [\{e_k\}_{k \notin \{i, i+1, i+2, \dots, 2i-1\}}]$$

 $\operatorname{codim}_X Y_i = i$

$$\{y_m^{(i)}\}_{m\geq 2} = \{\sum_{k=1,k\notin\{i,i+1,i+2,\dots,2i-1\}}^{\infty} m^{-ik} e_k\}_{m\geq 2}$$

provides an OC sequence in Y_i , i = 1, 2,

Order in any way the countable set $\bigcup_{i \in \mathbb{N}, m \ge 2} \{y_m^{(i)}\}\$ as a sequence $\{x_n\}_{n \in \mathbb{N}}$.

For each *i*, select a subsequence $\{x_{n_p^{(i)}}\}_{p\in\mathbb{N}}$ of $\{x_n\}_{n\in\mathbb{N}}$ whose terms belong to $\{y_m^{(i)}\}_{m\geq 2}$: this last sequence being *OC* in Y_i , we have $\operatorname{codim}_X[\{x_{n_p^{(i)}}\}_{p\in\mathbb{N}}] = \operatorname{codim}_X Y_i = i$.

For each *i*, select a subsequence $\{x_{n_p^{(i)}}\}_{p\in\mathbb{N}}$ of $\{x_n\}_{n\in\mathbb{N}}$ whose terms belong to $\{y_m^{(i)}\}_{m\geq 2}$: this last sequence being *OC* in Y_i , we have $\operatorname{codim}_X[\{x_{n_p^{(i)}}\}_{p\in\mathbb{N}}] = \operatorname{codim}_X Y_i = i$.

$$\cap_{i=1}^{\infty} Y_i = \{0\} \ \Rightarrow \ \cap_{i=1}^{\infty} [\{x_{n_p^{(i)}}\}_{p \in \mathbb{N}}] = \{0\}$$

For each *i*, select a subsequence $\{x_{n_p^{(i)}}\}_{p\in\mathbb{N}}$ of $\{x_n\}_{n\in\mathbb{N}}$ whose terms belong to $\{y_m^{(i)}\}_{m\geq 2}$: this last sequence being *OC* in Y_i , we have $\operatorname{codim}_X[\{x_{n_p^{(i)}}\}_{p\in\mathbb{N}}] = \operatorname{codim}_X Y_i = i$.

$$\cap_{i=1}^{\infty} Y_i = \{0\} \ \Rightarrow \ \cap_{i=1}^{\infty} [\{x_{n_p^{(i)}}\}_{p \in \mathbb{N}}] = \{0\}$$

A) For some \overline{i} , $\{x_{n_j}\}_{j\in\mathbb{N}}$ contains infinitely many terms from $\{y_m^{(\overline{i})}\}_{m\geq 2}$: being $\{y_m^{(\overline{i})}\}_{m\geq 2}$ OC in $Y_{\overline{i}}$, we have $\operatorname{codim}_X[\{x_{n_j}\}_{j\in\mathbb{N}}] \leq \operatorname{codim}_X Y_{\overline{i}} = \overline{i}$.

$$f \in \{x_{n_j}\}_{j\in\mathbb{N}}^\perp$$

 $f(e_{\overline{k}}) \neq 0$ for some index \overline{k}

For $j \in \mathbb{N}$, let

 $y_{m(j)}^{(i(j))} = x_{n_j}$

$$f \in \{x_{n_j}\}_{j\in\mathbb{N}}^\perp$$

 $f(e_{\overline{k}}) \neq 0$ for some index \overline{k}

For $j \in \mathbb{N}$, let

 $y_{m(j)}^{(i(j))} = x_{n_j}$

$$A = \{i : i = i(j), j \in \mathbb{N}, i(j) > \overline{k}\}.$$

i(j) goes to infinity with j, so A is infinite and we have $e_{\overline{k}} \in Y_i$ for every $i \in A$.

$$f \in \{x_{n_j}\}_{j\in\mathbb{N}}^\perp$$

 $f(e_{\overline{k}}) \neq 0$ for some index \overline{k}

For $j \in \mathbb{N}$, let

 $y_{m(j)}^{(i(j))} = x_{n_j}$

$$A = \{i : i = i(j), j \in \mathbb{N}, i(j) > \overline{k}\}.$$

i(j) goes to infinity with j, so A is infinite and we have $e_{\overline{k}} \in Y_i$ for every $i \in A$. For $i \in A$, put

$$m_i = \min\{m(j) : i(j) = i, y_{m(j)}^{(i(j))} \in \{y_m^{(i)}\}_{m \ge 2}\}$$

From $f(x_{n_i}) = 0 \ \forall j \in \mathbb{N}$ it follows that, for each $i \in A$,

$$f(e_{\overline{k}}) = -m_i^{i\overline{k}} \sum_{k > \overline{k}, k \notin \{i, i+1, i+2, \dots, 2i-1\}}^{\infty} m_i^{-ik} f(e_k)$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

From $f(x_{n_i}) = 0 \ \forall j \in \mathbb{N}$ it follows that, for each $i \in A$,

$$f(e_{\overline{k}}) = -m_i^{i\overline{k}} \sum_{k > \overline{k}, k \notin \{i, i+1, i+2, \dots, 2i-1\}}^{\infty} m_i^{-ik} f(e_k)$$

 \sim

$$|f(e_{\overline{k}})| \leq m_i^{i\overline{k}} \, \|f\| \sum_{k > \overline{k}, \, k \notin \{i, i+1, i+2, \dots, 2-1\}}^{\infty} m_i^{-ik} \leq$$

$$\leq \|f\|\sum_{k=\overline{k}+1}^{\infty}m_i^{i(\overline{k}-k)}\leq 2\|f\|m_i^{-i}\ \to 0 \ {\rm as} \ i\to\infty$$

個人 くほと くほと

э

C. Zanco (Università degli Studi - Milano (Italy), talk based on a Overcomplete sequences

Any (infinite-dimensional) separable Banach space X contains an AOC sequence $\{x_n\}_{n\in\mathbb{N}}$ with the following property: $\{x_n\}_{n\in\mathbb{N}}$ admits countably many subsequences $\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}, i = 1, 2, ..., such$ that both the following conditions are satisfied a) $\operatorname{codim}_X[\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}] = 1;$ b) $\bigcap_{i\in\mathbb{N}}[\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}] = \{0\}.$

Put $Y_i = [\{e_k\}_{k \neq i}]$ in the previous construction.

Let $\{x_n\}_{n\in\mathbb{N}}$ be any AOC sequence in any (infinite-dimensional) separable Banach space X and let $\{x_{n_j^{(1)}}\} \supset \{x_{n_j^{(2)}}\} \supset \{x_{n_j^{(3)}}\} \supset ...$ any countable family of nested subsequences of $\{x_n\}_{n\in\mathbb{N}}$. Then the increasing sequence of integers $\{\operatorname{codim}_X[\{x_{n_j^{(i)}}\}]\}_{i\in\mathbb{N}}$ is finite (so eventually constant).

$\{x_n\}_{n\in\mathbb{N}}$ an AOC not OC sequence $\{x_{n_j^{(1)}}\}_{j\in\mathbb{N}}$ any of its subsequences whose linear span is not dense in X

$\{x_n\}_{n\in\mathbb{N}}$ an AOC not OC sequence $\{x_{n_j^{(1)}}\}_{j\in\mathbb{N}}$ any of its subsequences whose linear span is not dense in XPut

$$X_1 = [\{x_{n_j^{(1)}}\}_{j \in \mathbb{N}}], \quad p_1 = \operatorname{codim}_X X_1 \ge 1.$$

$\{x_n\}_{n\in\mathbb{N}}$ an AOC not OC sequence $\{x_{n_j^{(1)}}\}_{j\in\mathbb{N}}$ any of its subsequences whose linear span is not dense in X

Put

$$X_1 = [\{x_{n_j^{(1)}}\}_{j \in \mathbb{N}}], \quad p_1 = \operatorname{codim}_X X_1 \ge 1.$$

If $\{x_{n_j^{(1)}}\}_{j \in \mathbb{N}}$ is *OC* in X_1 we are done; otherwise, let $\{x_{n_j^{(1)}}\}_{k \in \mathbb{N}}$ be any of its subsequences whose linear span is not dense in X_1 .

$\{x_n\}_{n\in\mathbb{N}}$ an AOC not OC sequence $\{x_{n_j^{(1)}}\}_{j\in\mathbb{N}}$ any of its subsequences whose linear span is not dense in X

Put

$$X_1 = [\{x_{n_j^{(1)}}\}_{j \in \mathbb{N}}], \quad p_1 = \operatorname{codim}_X X_1 \ge 1.$$

If $\{x_{n_j^{(1)}}\}_{j\in\mathbb{N}}$ is *OC* in X_1 we are done; otherwise, let $\{x_{n_{j_k}^{(1)}}\}_{k\in\mathbb{N}}$ be any of its subsequences whose linear span is not dense in X_1 . Put

$$\{x_{n_{j_k}^{(1)}}\}_{k\in\mathbb{N}} = \{x_{n_j^{(2)}}\}_{j\in\mathbb{N}}, \quad X_2 = [\{x_{n_j^{(2)}}\}_{j\in\mathbb{N}}], \quad p_2 = \operatorname{codim}_X X_2 > p_1.$$

$\{x_n\}_{n\in\mathbb{N}}$ an AOC not OC sequence $\{x_{n_j^{(1)}}\}_{j\in\mathbb{N}}$ any of its subsequences whose linear span is not dense in X

Put

$$X_1 = [\{x_{n_j^{(1)}}\}_{j \in \mathbb{N}}], \quad p_1 = \operatorname{codim}_X X_1 \ge 1.$$

If $\{x_{n_j^{(1)}}\}_{j\in\mathbb{N}}$ is *OC* in X_1 we are done; otherwise, let $\{x_{n_{j_k}^{(1)}}\}_{k\in\mathbb{N}}$ be any of its subsequences whose linear span is not dense in X_1 . Put

$$\{x_{n_{j_k}^{(1)}}\}_{k\in\mathbb{N}} = \{x_{n_j^{(2)}}\}_{j\in\mathbb{N}}, \quad X_2 = [\{x_{n_j^{(2)}}\}_{j\in\mathbb{N}}], \quad p_2 = \operatorname{codim}_X X_2 > p_1.$$

Let

$$\{x_{n_j^{(1)}}\}_{j\in\mathbb{N}}\supset\{x_{n_j^{(2)}}\}_{j\in\mathbb{N}}\supset\ldots\supset\{x_{n_j^{(i)}}\}_{j\in\mathbb{N}}\supset\ldots$$

be subsequences of $\{x_n\}_{n\in\mathbb{N}}$ such that $p_i \uparrow \infty$ as $i \uparrow \infty$, where $p_i = \operatorname{codim}_X X_i$ with $X_i = [\{x_{n_i^{(i)}}\}_{j\in\mathbb{N}}].$

 $\{f_i\}_{i=1}^{\infty} \subset X^*$ such that, for each $i, f_i \in X_{i+1}^{\top} \setminus X_i^{\top}$.

C. Zanco (Università degli Studi - Milano (Italy), talk based on a Overcomplete sequences

伺 ト く ヨ ト く ヨ ト

э

 $\{f_i\}_{i=1}^{\infty} \subset X^*$ such that, for each $i, f_i \in X_{i+1}^{\top} \setminus X_i^{\top}$. For each i, let y_i be an element of the sequence $\{x_{n_j^{(i)}}\}_{j \in \mathbb{N}}$ not belonging to the sequence $\{x_{n_j^{(i+1)}}\}_{j \in \mathbb{N}}$ such that $f_i(y_i) \neq 0$. $f_k(y_i) = 0 \ \forall k \leq i$. WLOG we may assume $f_i(y_i) = 1$. $\{f_i\}_{i=1}^{\infty} \subset X^*$ such that, for each $i, f_i \in X_{i+1}^{\top} \setminus X_i^{\top}$. For each i, let y_i be an element of the sequence $\{x_{n_j^{(i)}}\}_{j \in \mathbb{N}}$ not belonging to the sequence $\{x_{n_j^{(i+1)}}\}_{j \in \mathbb{N}}$ such that $f_i(y_i) \neq 0$. $f_k(y_i) = 0 \ \forall k \leq i$. WLOG we may assume $f_i(y_i) = 1$.

$$g_1 = f_1,$$
 $g_2 = f_2 - f_2(y_1)g_1,$ $g_3 = f_3 - f_3(y_1)g_1 - f_3(y_2)g_2, ...$
..., $g_k = f_k - \sum_{i=1}^{k-1} f_k(y_i)g_i,$

i=1

 $g_k(y_i) = \delta_{k,i}$ for each $k, i \in \mathbb{N}$, so actually $\{y_k, g_k\}_{k \in \mathbb{N}}$ is a biorthogonal system with $\{y_k\}_{k \in \mathbb{N}} \subset \{x_n\}_{n \in \mathbb{N}}$. This is a contradiction since $\{x_n\}_{n \in \mathbb{N}}$ was an *AOC* sequence.

Corollary

Any AOC sequence $\{x_n\}_{n\in\mathbb{N}}$ in a separable Banach space X contains some subsequence $\{x_{n_j}\}_{j\in\mathbb{N}}$ that is OC in $[\{x_{n_j}\}_{j\in\mathbb{N}}]$ (with, of course, $[\{x_{n_j}\}_{j\in\mathbb{N}}]$ of finite codimension in X).

On the structure of AOT sequences (V. Fonf, J. Somaglia, S. Troyanski, C.Z., 2015)

Theorem

Let X be any (infinite-dimensional) separable Banach space. Then there is a sequence $\{f_n\}_{n\in\mathbb{N}} \subset X^*$ that is AOT on X and, for each $i \in \mathbb{N}$, admits a subsequence $\{f_{n_j^{(i)}}\}_{j\in\mathbb{N}}$ such that both the following conditions are satisfied a) dim $\{f_{n_j^{(i)}}\}_{j\in\mathbb{N}}^{\top} = i;$ b) $[\bigcup_{i\in\mathbb{N}} \{f_{n_j^{(i)}}\}_{j\in\mathbb{N}}^{\top}] = X.$

Let $\{f_n\}_{n\in\mathbb{N}}$ be any sequence AOT on any (infinite-dimensional) Banach space X and let $\{f_{n_j^{(1)}}\} \supset \{f_{n_j^{(2)}}\} \supset \{f_{n_j^{(3)}}\} \supset ...$ any countable family of nested subsequences of $\{f_n\}_{n\in\mathbb{N}}$. Then the increasing sequence of integers $\{\dim\{f_{n_j^{(i)}}\}^{\top}\}_{i\in\mathbb{N}}$ is finite (so eventually constant).

Corollary

Any AOT sequence $\{f_n\}_{n\in\mathbb{N}}$ on a Banach space X contains some subsequence $\{f_{n_j}\}_{j\in\mathbb{N}}$ that is OT on any subspace of X complemented to $\{f_{n_j}\}_{j\in\mathbb{N}}^{\top}$ (with, of course, $\{f_{n_j}\}_{j\in\mathbb{N}}^{\top}$ of finite dimension).

Each almost overcomplete bounded sequence in a Banach space is relatively norm-compact.

Each almost overcomplete bounded sequence in a Banach space is relatively norm-compact.

Application

Let X be a Banach space and $\{x_n\} \subset B_X$ be a sequence that is not relatively norm-compact. Then there exists an infinite-dimensional subspace Y of X* such that $|\{x_n\} \cap Y^\top| = \infty$. (For instance this is true for any δ -separated sequence $\{x_n\} \subset B_X$ ($\delta > 0$).)

Let $\{x_n\}$ be an almost overcomplete bounded sequence in a (separable) Banach space $(X, \|\cdot\|)$. Without loss of generality we may assume, possibly passing to an equivalent norm, that the norm $\|\cdot\|$ is locally uniformly rotund (LUR) and that $\{x_n\}$ is normalized under that norm.

Let $\{x_n\}$ be an almost overcomplete bounded sequence in a (separable) Banach space $(X, \|\cdot\|)$. Without loss of generality we may assume, possibly passing to an equivalent norm, that the norm $\|\cdot\|$ is locally uniformly rotund (LUR) and that $\{x_n\}$ is normalized under that norm.

First note that $\{x_n\}$ is relatively weakly compact: otherwise, it is known that it should admit some subsequence that is a basic sequence, a contradiction. Hence, by the Eberlein-Šmulyan theorem, $\{x_n\}$ admits some subsequence $\{x_{n_k}\}$ that weakly converges to some point $x_0 \in B_X$.

Let $\{x_n\}$ be an almost overcomplete bounded sequence in a (separable) Banach space $(X, \|\cdot\|)$. Without loss of generality we may assume, possibly passing to an equivalent norm, that the norm $\|\cdot\|$ is locally uniformly rotund (LUR) and that $\{x_n\}$ is normalized under that norm.

First note that $\{x_n\}$ is relatively weakly compact: otherwise, it is known that it should admit some subsequence that is a basic sequence, a contradiction. Hence, by the Eberlein-Šmulyan theorem, $\{x_n\}$ admits some subsequence $\{x_{n_k}\}$ that weakly converges to some point $x_0 \in B_X$.

Two cases must now be considered.

1) $||x_0|| < 1$. From $||x_{n_k} - x_0|| \ge 1 - ||x_0|| > 0$, according to a well known fact, it follows that some subsequence $\{x_{n_{k_i}} - x_0\}$ is a basic sequence: hence

 $\operatorname{codim}[\{x_{n_{k_{2i}}} - x_0\}] = \operatorname{codim}[\{x_{n_{k_{2i}}}\}, x_0] = \operatorname{codim}[\{x_{n_{k_{2i}}}\}] = \infty$, a contradiction.

1) $||x_0|| < 1$. From $||x_{n_k} - x_0|| \ge 1 - ||x_0|| > 0$, according to a well known fact, it follows that some subsequence $\{x_{n_{k_i}} - x_0\}$ is a basic sequence: hence

 $\operatorname{codim}[\{x_{n_{k_{2i}}} - x_0\}] = \operatorname{codim}[\{x_{n_{k_{2i}}}\}, x_0] = \operatorname{codim}[\{x_{n_{k_{2i}}}\}] = \infty$, a contradiction.

2) $||x_0|| = 1$. Since we are working with a LUR norm, the subsequence $\{x_{n_k}\}$ actually converges to x_0 in the norm too and we are done.

Le X be a separable Banach space. Any bounded sequence that is almost overtotal on X is relatively norm-compact.

Le X be a separable Banach space. Any bounded sequence that is almost overtotal on X is relatively norm-compact.

Sketch of the proof

Let {f_n}[∞]_{n=1} ⊂ X* be a bounded sequence almost overtotal on X. WLOG we may assume {f_n} ⊂ S_{X*}. Let {f_{nk}} be any subsequence of {f_n}: since X is separable, WLOG we may assume that {f_{nk}} weakly* converges, say to f₀. Let Z be a separable subspace of X* that is 1-norming for X. Set Y = [{f_n}[∞]_{n=0}, Z]. Clearly X isometrically embeds into Y* and X is 1-norming for Y.

• There is an equivalent norm $||| \cdot |||$ on Y such that, for any sequence $\{h_k\}$ and h_0 in Y,

 $h_k(x) \to h_0(x) \quad \forall x \in X \quad \text{implies} \quad |||h_0||| \le \liminf |||h_k|||$ and, in addition,

 $|||h_k||| \rightarrow |||h_0||| \quad \text{implies} \quad |||h_k - h_0||| \rightarrow 0.$

伺 と く ヨ と く ヨ と …

3

There is an equivalent norm ||| · ||| on Y such that, for any sequence {h_k} and h₀ in Y,

 $h_k(x) \to h_0(x) \quad \forall x \in X \quad \text{implies} \quad |||h_0||| \le \liminf ||h_k|||$ and, in addition,

 $|||h_k||| \rightarrow |||h_0||| \quad \text{implies} \quad |||h_k - h_0||| \rightarrow 0.$

• Take such an equivalent norm on Y and set $h_k = f_{n_k}$ and $h_0 = f_0$. By (??), we are done if we prove that $|||h_k||| \rightarrow |||h_0|||$. Suppose to the contrary that

 $|||f_{n_k}||| \not\rightarrow |||f_0|||.$

• $\{n_{k_i}\}$ and $\delta > 0$ exist such that $|||f_{n_{k_i}}||| - |||f_0||| > \delta$, which forces $|||f_{n_{k_i}} - f_0||| > \delta$ for *i* big enough.

伺 ト く ヨ ト く ヨ ト

- $\{n_{k_i}\}$ and $\delta > 0$ exist such that $|||f_{n_{k_i}}||| |||f_0||| > \delta$, which forces $|||f_{n_{k_i}} f_0||| > \delta$ for *i* big enough.
- By W.B. Johnson H. Rosenthal (1972) some subsequence ${f_{n_{k_{i_m}}} f_0}_{m=1}^{\infty}$ is a w^* -basic sequence.

- $\{n_{k_i}\}$ and $\delta > 0$ exist such that $|||f_{n_{k_i}}||| |||f_0||| > \delta$, which forces $|||f_{n_{k_i}} f_0||| > \delta$ for *i* big enough.
- By W.B. Johnson H. Rosenthal (1972) some subsequence ${f_{n_{k_{im}}} f_0}_{m=1}^{\infty}$ is a w^{*}-basic sequence.
- For m = 1, 2, ... put $g_m = f_{n_{k_{i_m}}}$. For some sequence $\{x_m\}_{m=1}^{\infty}$ in X,

$$\{(g_m-f_0,x_m)\}_{m=1}^\infty \quad \text{is a biorthogonal system}.$$

- $\{n_{k_i}\}$ and $\delta > 0$ exist such that $|||f_{n_{k_i}}||| |||f_0||| > \delta$, which forces $|||f_{n_{k_i}} f_0||| > \delta$ for *i* big enough.
- By W.B. Johnson H. Rosenthal (1972) some subsequence ${f_{n_{k_{im}}} f_0}_{m=1}^{\infty}$ is a w^{*}-basic sequence.
- For m = 1, 2, ... put $g_m = f_{n_{k_{i_m}}}$. For some sequence $\{x_m\}_{m=1}^{\infty}$ in X,

 $\{(g_m-f_0,x_m)\}_{m=1}^\infty \quad \text{is a biorthogonal system}.$

• Only two cases must now be considered.

- $\{n_{k_i}\}$ and $\delta > 0$ exist such that $|||f_{n_{k_i}}||| |||f_0||| > \delta$, which forces $|||f_{n_{k_i}} f_0||| > \delta$ for *i* big enough.
- By W.B. Johnson H. Rosenthal (1972) some subsequence ${f_{n_{k_{im}}} f_0}_{m=1}^{\infty}$ is a w*-basic sequence.
- For m = 1, 2, ... put $g_m = f_{n_{k_{i_m}}}$. For some sequence $\{x_m\}_{m=1}^{\infty}$ in X,

 $\{(g_m-f_0,x_m)\}_{m=1}^\infty \quad \text{is a biorthogonal system}.$

- Only two cases must now be considered.
- 1) For some sequence $\{m_j\}_{j=1}^{\infty}$ we have $f_0(x_{m_j}) = 0, j = 1, 2, ...$: in this case $\{(g_{m_j}, x_{m_j})\}$ would be a biorthogonal system, contradicting the fact that $\{g_{m_j}\}$ is almost overtotal on X.

- $\{n_{k_i}\}$ and $\delta > 0$ exist such that $|||f_{n_{k_i}}||| |||f_0||| > \delta$, which forces $|||f_{n_{k_i}} f_0||| > \delta$ for *i* big enough.
- By W.B. Johnson H. Rosenthal (1972) some subsequence ${f_{n_{k_{i_m}}} f_0}_{m=1}^{\infty}$ is a w*-basic sequence.
- For m = 1, 2, ... put $g_m = f_{n_{k_{i_m}}}$. For some sequence $\{x_m\}_{m=1}^{\infty}$ in X,

 $\{(g_m-f_0,x_m)\}_{m=1}^\infty \quad \text{is a biorthogonal system}.$

- Only two cases must now be considered.
- 1) For some sequence $\{m_j\}_{j=1}^{\infty}$ we have $f_0(x_{m_j}) = 0, j = 1, 2, ...$: in this case $\{(g_{m_j}, x_{m_j})\}$ would be a biorthogonal system, contradicting the fact that $\{g_{m_j}\}$ is almost overtotal on X.
- 2) There exists q such that for any m ≥ q we have f₀(x_m) ≠ 0. The almost overtotal sequence {g_{3j}}[∞]_{j=q} annihilates the subspace W = [{f₀(x_{3j-1}) · x_{3j-2} f₀(x_{3j-2}) · x_{3j-1}}[∞]_{j=q}] ⊂ X: being {x_m}[∞]_{m=1} a linearly independent sequence, W is infinite-dimensional, a contradiction.

THANKS FOR YOUR ATTENTION!

C. Zanco (Università degli Studi - Milano (Italy), talk based on a Overcomplete sequences

→ < ∃→

э

э